Journal of Siberian Federal University. Mathematics & Physics 2022, 15(2), 160-173

DOI: 10.17516/1997-1397-2022-15-2-160-173
VIIK 517.98

On Ground States for the SOS Model with Competing
Interactions

Muzaffar M. Rahmatullaev*
Institute of Mathematics

Academy of Sciences of Uzbekistan
Toshkent, Uzbekistan

Namangan State University

Namangan, Uzbekistan

Bunyod U. Abraev’

Chirchik state pedagogical institute
Chirchik, Uzbekistan

Received 30.05.2021, received in revised form 17.09.2021, accepted 14.12.2021

Abstract. We study periodic and weakly periodic ground states for the SOS model with competing
interactions on the Cayley tree of order two and three. Further, we study non periodic ground states for
the SOS model with competing interactions on the Cayley tree of order two.

Keywords: Cayley tree, SOS model, periodic and weakly periodic ground states.

Citation: M.M. Rahmatullaev, B.U. Abraev, On Ground States for the SOS Model with Competing
Interactions, J. Sib. Fed. Univ. Math. Phys., 2022, 15(2), 160-173.
DOLI: 10.17516/1997-1397-2022-15-2-160-173.

Introduction

It is known that a phase diagram of Gibbs measures for a Hamiltonian is close to the phase
diagram of isolated (stable) ground states of this Hamiltonian. At low temperatures, a periodic
ground state corresponds to a periodic Gibbs measure, (see [1,2]). It leads us to investigate
the problem of description of periodic and weakly periodic ground states. For the Potts model
with competing interactions on the Cayley tree of order £ = 2 periodic ground states are studied
in [3] (see also [4]). The notion of a weakly periodic ground state is introduced in [5]. For the
Ising model with competing interactions, weakly periodic ground states are described in [1,5].
Such states for the Potts model for normal subgroups of index 2 are studied in [6,7]. For the
Potts model with competing interactions, such states for normal subgroups of index 4 are studied
in [8] and in this work also studied periodic ground states for normal subgroups of index 4 (see
also [9]). In [10] for the Potts model, with competing interactions and countable spin values, on
a Cayley tree of order three periodic ground states are studied.

In [11] finite-range lattice models on Cayley trees with two basic properties: the existence of
only a finite number of ground states and with a Peierls type condition are considered and the
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notion of a contour for the model on the Cayley tree is defined. Also using a contour argument
the existence of different Gibbs measures is shown.

A g-component models on a Cayley tree is investigated in [12] and using a contour argument
the existence of ¢ different Gibbs measures for several g-component models is shown.

In [13] for the SOS model with m = 2 on the Cayley tree order of k = a + b+ 2 the existence
of at least two non periodic Gibbs measures is proved. In [14] an infinite system of functional
equations for the Ising model with competing interactions and countable spin values 0,1, ...
and non zero field on a Cayley tree of order two is investigated. In [15] the authors proved the
existence of weakly periodic Gibbs measures for the Ising model on the Cayley tree of order k = 2
with respect to a normal divisor of index 4.

In this paper, we study periodic and weakly periodic ground states for the SOS model with
competing interactions on a Cayley tree of order k = 2 and k& = 3. Moreover, in the case k = 2
the existence of a countable set of non periodic ground states is proved.

1. Preliminaries

Let I'* = (V, L) be the Cayley tree of order k, i.e., an infinite tree such that exactly k + 1
edges are incident to each vertex. Here V is the set of vertices and L is the set of edges of
I'*. Let G}, denote the free product of k + 1 cyclic groups {e;a;} of order 2 with generators
ai,az,as,...ag1, i.e., let a? = e (see [4]).

The group of all left (right) shifts on G}, is isomorphic to the group Gj. Each transformation
S on the group G, induces a transformation S on the vertex set V of the Cayley tree I'*. In the
sequel, we identify V with Gj.

The following assertion is quite obvious (see also [4]).

Theorem 1.1. The group of left (right) shifts on the right (left) representation of the Cayley
tree is the group of translations.

By the group of translations we mean the automorphism group of the Cayley tree regarded as
a graph. Recall (see, for example, [4]) that a mapping 1 on the vertex set of a graph G is called
an automorphism of G if 1) preserves the adjacency relation, i.e., the images ¢(u) and ¥ (v) of
vertices u and v are adjacent if and only if w and v are adjacent.

For an arbitrary vertex xo € V, we put

W, = {x € V|d(z,2°) =n}, V, ={zc Vl]d(z,2°) <n},

where d(z,y) is the distance between x and y in the Cayley tree, i.e., the number of edges of the
path between x and y.
For each 2 € Gy, let S(z) denote the set of immediate successors of z, i.e., if x € W,, then

S(z) ={y € Wyi1 1 d(z,y) = 1}.

For each z € Gy, let S1(z) denote the set of all neighbors of x, ie., Si(z) = {y € Gy, :
(xz,y) € L}. The set S1(z) \ S(z) is a singleton. Let x| denote the (unique) element of this set.

Let us assume that the spin values belong to the set ® = {0,1,2,...m}. A function o :
x €V — o(z) € ¥ is called configuration on V. The set of all configurations coincides with the
set O =oV.

Consider the quotient group Gy /Gj = {H1,Hs, ..., H,}, where G}, is a normal subgroup of
index r with r > 1.
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Definition 1.1. A configuration o(x) is called G} -periodic, if o(x) = o; for all x € Gy, with
x € H;. A Gy-periodic configuration is called translation invariant.

The period of a periodic configuration is the index of the corresponding normal subgroup.

Definition 1.2. A configuration o(x) is called G7-weakly periodic, if o(x) = o5 for all x € Gy,
with x| € H; and x € Hj.

The Hamiltonian of the model SOS model with competing interactions has a form:

H(o)=~J1 Y lo(@) —o(y)l-Jo Y lo(z)-oly)l (1)

L x,yeV:
(z,y)e A

where (Jl,JQ) € R2.

2. Ground states

In this section, we study ground states for the SOS model on a Cayley tree. For a pair of
configurations ¢ and ¢ which coincide almost everywhere, i.e., everywhere except finitely many
points, we consider the relative Hamiltonian H (o, ¢) describing the energy differences of the two
configurations ¢ and ¢ :

H(o,p)=—J1 Y (lo(@) = o(y)| = le(z) = (y)])-

—Jy Y (o) — o) - lel@) — o)),
Frotm

where (J1, J2) € R?.

Let M be the set of all unit balls with vertices in V, i.e. M = {{z} U S1(z) : Vo € V}. A
restriction of a configuration o to the ball b € M is a bounded configuration and it is denoted
by .

We define the energy of the configuration o, on b by the following formula

1
Uloy) = Ul J1, ) = =50 Y lo(@) =)l =1 D lo(@) —o(y)l, (3)
(x,y): x,y€Eb:
x,yEb d(z,y)=2

where (J, J2) € R2.
The following assertion is known (see [4]).

Lemma 2.1. Relative Hamiltonian (2) has the form:
H(o,0) = Y (U(ow) = Ulpp))-
beM

The existence of a countable set of non periodic ground states on the Cayley tree
of order two

We consider the case k = 2.

Let m = 2. It is easy to see that U(op) € {U; : i =1,...,10} for o,, where

1 3
U1=0, Uz=—-5J1-2J2, Us=—J1-2J3, Us=—5J1, Us=—J1 -4,

3 5
Us = —2Ji —4J, Up=-3h, Us=—3J1—4J, Uy=-2J1 =2Ja, Uio=—3Js — 2.
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Definition 2.1. The configuration ¢ is called the ground state for the Hamiltonian (1) if
U((pb) = H’liIl{le7 Us,Us,..., UlO} fO’I“ any be M.
Let
Ay ={(J1,J2) € R* | Uy = min {U}}.

1<k<10
It is easy to check that

1
Ay ={(J1, J) €R? | J; < 0;.J5 <—ZJ1},

Ay ={(J1,J2) eR?* | Jy <0;J2:—3J1},
Az ={(J1,J2) € R?* | J; = 0; Jo = 0},
Ay ={(J1, Ja) € R® | J1 = 0;J5 < 0},
As ={(J1, J2) €eR* | J, < 0; .y > —i,]l},
Ag ={(J1, J2) €R? | J1 > 0;J5 > %‘]1}’
Ar={(J1, 1) € |1y > 0, < 1),

N

s = {(J1,J2) €R?| J, = 0;Jy >0},
{(J1,J2) €R* | ]y zo;ngo}},

N

9

Ao = {(J1,J2) € R | J; > 0; 0y = 1‘]1}

and U A; = R2

In [16] periodic ground states are studied for SOS model on Cayley tree order of 2. In this
subsection we shall prove the existence of a countable set of non periodic ground states on the
Cayley tree of order two. The next subsection we study periodic and weakly periodic ground
states for the model (1) on the Cayley tree of order three.

Let ¢, denote the center of a unit ball b. We put

Ci = {O’b : U(O’b) = Ul},Z = 1, ].0,

BW =| {z € Si(cp) : gp(x) =1} |, fori=0,1,2
and D; = Q; U Qi, where

Qi ={op:06(cp) =0, |z €b\{cp}:0p(x) =2|=14; |z €b\{cr}:0p(x)=1] =0},

Q= {6p: |6(x) —o(x)| =2, |x € D\{ep} : Fp(z) = 1\ =0,z €b},i=0,1,2,3, ie.,
() — , ifo(z) =
@={ 5

0, if o(z) =

For A;, A;,i # j we have

Ay ifi=1,j=5,
Ajifi=1,j=1,

4
Agifi=5,j =6, )
A10 lfl:6,]:7

AiNA; =

- 163 —



Muzaffar M. Rahmatullaev, Bunyod U. Abraev On Ground States for. ..

Fix J = (J1,J2) € R? and denote
Nj(ov) = {j = o0 € Cj}.
Using (4) one can prove

Lemma 2.2. For any b € M and o, we have

10, if J = (0;0)
Ny(op) =4 3, if J€ A4\ {(0,0)}, i =2,4,8,10 . (5)

1, otherwise

Let GS(H) be the set of all ground states of the Hamiltonian (1).

Theorem 2.1. (i) If J = (0;0) then GS(H) = Q.
(i) If J € A; \ {(0,0)}, i = 2,8,10 then there exists a countable set of non periodic ground
states.

Proof. The assertion (i) is trivial.

Prove (ii):

a) if J € Az \ {(0,0)} then the minimum points of U(o}) would belong to the classes Cy, Co
and Cj;

b) if J € Ag\ {(0,0)} then the minimum points of U(c},) would belong to the classes Cs, Cg
and Cg;

c) if J € Aip\ {(0,0)} then the minimum points of U(o,) would belong to the classes Cg, C7
and 010.

Below we define the configurations of classes Cy,C5,Cg and C7 which satisfying the condition
|z € b\{cp} : op(x) = 1| =0,

o) =0, |zeb\{e}: o (x)=2=0and
5 Na) =2, lred\a): 6 ) =0=0 0,50 ¢,
V() =0, |zeb\{e}:ol(z) =2 =1and
(@) =2, [reifa}: 5 () =01=1, 00,60 e, (6)
o) =0, |zeb\{a}:o(z) =2 =2and
5 =2, lreb\{a}: 670 =0=2, 0c®,6® cCg,
o) =0, |zeb\{a}:o(z) =2 =3and
5 () =2, |red\fa}: 67 ) =0/=30%,6% ¢cc
Thus any ground state ¢ € D; must satisfy
oo € {o”,55 olt iDL = 0,1,2, be M. (7)

Now we shall construct ground states ¢ € D; which satisfying (7).

Note that the configurations o, and oy (b,b' € M) are the same up to a motion in Gy so we
shall omit b. Thus configuration ¢(*) is the configuration such that on any unit ball b € M the
condition (6) is satisfied.
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Suppose two unit balls b and b are neighbors, i.e., they have a common edge. We shall
then say that the two bounded configurations o, and o are compatible if they coincide on the
common edge of the balls b and o’. Denote by B(b) the set of all neighbor balls of b.

Denote Q; = {o®,50) o0+ s0+D1 "4 = 0,1,2. For any w,v € Q; denote by n(w,v) the
number of possibilities to set up the configuration v as a compatible configuration (with w)
around (i.e., on neighboring balls of the ball on which w is given ) the configuration w. Clearly
n(w,v) € {0,1,2,3}, for any w,v € Q;,i =0,1,2.

Denote

n(g(i)ﬂ(i)) n(g(z‘)’(,(i)) n(g(i),g(iﬂ)) n(g i) g(z+1)
n((}(i)70(i)) n((}(i)’g(i)) n((}(i),g(ﬂrl)) n(é (@) li+1) )
(et M) (gt 0) p(gt+D) 0HDY p(s Z+1),U(z+1))

n((}(iﬂ)’U(i)) n(&(iﬂ)’g(i)) n(g(iﬂ)’g(iﬂ)) n(g(iﬂ),g,(iﬂ))

N; =

It is easy to see that

3 03 0 21 21
03 0 3 1 2 1 2
M=ty o1 | MTl121 2]
0 2 1 2 21 2 1
1 2 0 2
21 20
0 3 0 3
3 0 3 0
Consider 3 sets Q; = {Q}, (i = 0,1,2) of matrices Q@ = {q(u,v)}, ,eq, such that
q(u,v) € {0,1,...,n(u,v)}, Z (u,v) = 3,Yu € Q.

veQ;

4, 00) + q(u,0D) = n(u, o), qu,50) + g(u, 39) = n(u,50), and q(u,v) = 0 if and only
if g(v,u) =0, u,v € Q.
Using matrices N; we have

a 0 3—a 0

0 b 0 3—-0
Q=3@=| . 0 2-¢ 1 ’

0 d 1 2—d

here a,b € {0,1,2,3}; ¢,d € {0,1,2}; a =3 iff c=0; b=3iff d = 0.
For ¢ =1 we get

aq b1 2—&1 1—[)1

b2 a9 l—bg 2—a2

C1 d1 1—61 2—d1 ’

d2 C2 27d2 1762

here ay,as,d1,ds € {0,1,2}; by, ba,c1,00 € {0,1}; a1 =2 iff ¢ = 0; ay = 2 iff ¢ = 0; by = 0 iff
bQZO; blzliﬁdgzo; bgzliﬁdlzo; d1:2iﬁd2:2.
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For 1 = 2 we obtain

Q=70 =

QU O T =
S 0 = Q
o
w
|
o

here a,b € {0,1,2}; ¢,d € {0,1,2,3};a=0if b=0;a=2if d=0; b=2iff c =0; c = 3 iff
d=3.

For a given ¢ € ; and Q = {q(u,v)},, ,eq, € Qi we recurrently construct a ground state
©?€ by the following way: fix a ball b € M and put on b the configuration ¢ := ¢ On
balls taken from B(b) we set exactly q(£,w) copies of w for any w € Q;. Thus configurations
wg’g,b' € B(b) are defined. Using these configurations, we define configurations on the balls
B(V') \ {b}, (b € B(b)) putting q(wg’g,v) copies of v € ; \ ¢ and q(wg’g, ) — 1 copies of ¢
which are compatible with gpl?,’g. Further, on the balls B(b") \ {V'}, (b” € B(b)),b" € B(b) we set
q(gpg;E,T) copies of T € Q; \ {%(3,5} and q((pg,’g, wg’g) — 1 copies of @3’5 which are compatible
with (pg,’g. Repeating this construction one can obtain a ground state @< such that

Pt e, [V eBO): ot =w, ot = v} = q(w,v),
for any b € M and w,v € Q.
In general, the ground state ¢@¢ is non periodic (see example below). It is easy to see that
@ » 5 .
27 =g G207 =50 =i i1, i=0,1,2,

where

3—1 i 0 0
8
0 0 2—4 1+1 (8)
0 0 i+1 2—3

Now using the ground states p?¢ we shall construct an infinite set of ground states by the

following way: one can choose £ # 1, £,1n € Q; and Q1,Q2 € Q; such that for configurations

pR1€ @27 there are infinitely many b € M on which @?1’5 and wgz’" are compatible for some

b € B(b). Indeed it is sufficient to take £ # n such that ¢;(£,7)q2(£,m) # 0 (see example below).
Denote
M= M{"(Q1,Q2) = {be M: gt

is compatible > for some b’ € B(b)};
Ny ={ne€{0,1,2,...}: 3b e M such that |¢;| = n};

VW = {zeV:y<z}

Fix m € X; and denote
W, = {r € W,, : 3b € M; such that ¢, = x}.
Consider the configuration

pQ1@2 () — { @ () if 2 € Vi ULV, y € W\ T}

@ (z) if z € VW) gy € W,
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Clearly Q19247 m € Ny is a ground state and the number of such ground states is infinite,
since |N;| = oo. This finishes the proof of Theorem 2.1. m|

Remark 2.1 Let J € A4\(0,0). Q3 = {Ul(,o)7 &ISO), 0,&3), 5;3)} are periodic ground states such that

on any b € M the bounded configurations O'l()o),(}l()o) € C7 and UZES), 65)3) e Cy, i.e., UZ()O), 620) are

translation-invariant and 053),553) are periodic with period 2. Q3 = {Jéo),&éo),oég)ﬁég)} and

Q3 contains the unique matrix

300 0

03 00

@=19 0 0 3

00 3 0

Example. Take matrices

110 1 1 200
, [t 110 , |1 110
Q2*0102’Q2*0102
10 20 00 3 0

and € = 0@, n = 3. The configurations p@2¢, @2 and p@2:Q2&" are represented in Fig. 1
a), b) and c), respectively.

0
0000200 00y, 200200020000

Fig. 1. Ground states
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Periodic and weakly periodic ground states on the Cayley tree of order three
We consider the case k = 3.
Let m = 2. By (3) for any o}, we have U(oy) € {Uy,Us, Us, ..., U5}, where
1
Uy =0, Uy= —§J1 —3J2, Us=—-J1 —4Jy, Uy =—-J —6Jy,

Us = —%Jl —3Ja, Us=-2J1 —8Ja, Uy =-3J1 —6J2, Ug=—-2J; —6Js,

Uy = 72]1 —T7J2, U= *gjl = T7J2, U =—-2J1,U12 = —4J3,

7 5
Uis = =51 =3J, Uiu=—5J1=3J2, Uis = =3J1 — 4.

Definition 2.2. The configuration ¢ is called the ground state for the Hamiltonian (1), if
U((,Ob) = min{Ul, UQ, U37 ey U15} fO’f' Vbe M.

Let Ay, = {(J1,J2) € R? | U,,, = 12;12115{%@}}. It is easy to check that

Ay ={(J1,J2) €R? | J; <0;J5 < _éJl}’

Ay ={(J1,J2) € R? | J1 <05y = _éJl},

do = () B2 | 5 =0, —0),

Ay ={(J1,J2) eR?| ]y <O;,éjl <l < %Jl}’
As = {(J1,J2) € R?| J; =0;J, = 0},

A ={(J1,J2) ER? | Jp > %l«hl},

A7 ={(J1, ) eR* | Jy > O;éjl <J< %th
Ag = {(J1,J2) € R* | J; = 0; J5 = 0},

Ag ={(J1,J2) €ER? | J; > 0;.Jo = %Jl},

1
Ao ={(J1,J2) eR* | 1 <0; )2 = _§J1}7
A11 = {(J17J2) S Rz ‘ Jl = 07 J2 < 0}7

1
Arg = {(J1,]a) €R? | 1 > 0.1y < ),

1
A13 = {(Jl’Jz) € R2 ‘ Jl 2 07 J2 = 6J1}7

Ay ={(J1, o) €R? | J, =0;J, =0},
Ars = {(J1, o) €ER?* | J; = 0; J, =0}

15
and |J A4; = R2.
i=1
Let ¢, be the center of a unit ball 5. We put

Ci={op:U(0op) =U;},i=1,15
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and
BY =|{x € Si(cy) : po(x) =i} |,
for i = 0,1,2.
Let Hy = {x € Gy : ) ;.4 wa(a;) — even}, where w,(a;) is the number of a; in the word .

Note, that Hy4 is a normal subgroup of index two (see [4]). Let Gx/Ha = {Ha,Gr\Ha} be
the quotient group. Denote Hy = Ha, H; = Gx\Ha.

Periodic Ground States for the case k =3
In this section, we shall study Hy-periodic ground states. We note that each H, periodic
configuration has the following form:

o g1, ifx e HO
@ ={ o s n ®
where 0; € ® = {0,1,2},7=1,2.
Theorem 2.2. Let k = 3. The configuration (9) is Hy-periodic ground state iff one of the
following conditions holds:
a) |A| = 1.

Z) ‘ 01 — 09 |: 0, and (J1,J2) c A

ZZ) | 01 — 09 |: 1, and (Jl,JQ) € As.

iii) | o1 — o2 |= 2, and (J1,J3) € Ay.
b) |Al =2.

i) If | 01 — o2 |= 1,then there is not a Hy-periodic ground state;

ZZ) | g1 — 02 |: 2, and (Jl,JQ) S A6.
c) |Al =3.

i) If | o1 — 09 |= 1, then there is not a Hy-periodic ground state;
it) | o1 — o2 |= 2, and (Jy1, J2) € Ar.

d) |A| = 4.
Z) ‘ g1 — 02 |: 1, and (J1,J2) S AH.
ZZ) | 01 — 09 |: 2, and (J17J2) S A12.

Proof: a) i) Let us consider the following configuration

(.’L‘)_ i, if x € Hy
PE=\ i ifeeH

where 7 = 0, 1,2. We denote the center of b € M by ¢. Let ¢, € Hy, then we have
op(cy) =i, B =4,

Hence, pp(x) € Cy, i.e. if (J1, J2) € A; then the corresponding configuration is a ground state.
ii) Now we consider the following configuration

({,C)_ i, if x € Hy
U=y ife e Hy

where | i —j |= 1.
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1) Assume that ¢, € Hy
ov(cy) =i, B =3,BU) = 1.

Hence, ¢p(z) € Cs.
2) Let ¢, € Hy, then one has

op(cy) =i, BY =3, B = 1.

Hence, ¢p(z) € Cs.

We conclude that, if (J;,J2) € As then the corresponding periodic configuration ¢(z) is a
Hy-periodic ground state.

iii) Let us consider the following configuration

i, if 2 € Hy
p(r) =

Js if x € Hy

where | i —j |= 2.
1) Assume that ¢, € Hy
ov(cy) =4, BY =3,BY) =1.

Hence, ¢p(z) € Cy.
2) Let ¢, € Hy, then one has

oi(cy) = j,BY) =3,BW = 1.

Hence, ¢p(z) € Cy.

We conclude that if (Jy, J2) € Ay then the corresponding periodic configuration ¢(z) is a
Hy-periodic ground state.

The proofs of assertions b), ¢) and d) of Theorem 2.2 are similar to the proof of assertion a).
This finishes the proof of Theorem 2.2. O

Remark 2.2 In the case ¢), the Hy periodic ground states coincides with the Gg)—periodic
ground states, where Gf) = {x € Gj : |x| is even}.
Weakly Periodic Ground States for the £ =3

In this section, we describe H 4-weakly periodic ground states, where H 4 is a normal subgroup

of index two. Due to the definition of weakly periodic configuration, we infer that each H 4-weakly
periodic configuration has the following form:

g00, if Ty € Ho,l’ S HO
001, ifr, € Hy,x € Hy
o(x) = i v ) (10)
010, ifxy € Hi,x € Hy
011, lfl'i c Hl,l' € Hy
where o;; € ®, 4,5 =0,1.
In the sequel, we write ¢ = (000, 001,010,011) for such a weakly periodic configuration
o(x), z € G.

Theorem 2.3. Let k = 3 and |A| = 1. Then for the SOS model there is no H -weakly periodic
(non periodic) ground state.
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Proof. Consider (10). If og9 = 091 = 010 = 011, then corresponding configurations are
translation-invariant. Translation-invariant ground states for this case are studied in Theo-
rem 2.2. It is easy to see that in the case ogg = 019 and g1 = 011 the Ha-weakly periodic
configurations (10) are periodic configurations which are studied in Theorem 2.2.

Now we consider the cases ggg # 019 Or 0g1 7# 011.

Let

0, if zy € Hy,z € Hy
0, ifxy € Hy,z € Hy
1, ifxzy € Hy,x € Hy
0, ifx) € Hi,z € Hy

Let ¢, € Hy, we have the following possible cases:

p(r) =

a) cpy € Hy and @p(cpy) = 0, then py(cp) = 0, BO) =4, ¢,(cp) € O,

b) ¢y € Hy and @p(cpy) = 1, then py(cy) =0, BO =3, BN =1, ¢4(cp) € Cs,

c) ¢y, € Hy1 and ¢p(cp) = 1, then there is not any H 4-weakly periodic ground state,
d) ey, € Hy and @p(cpy) = 0, then pp(cy) = 1, BO) =4, py(cp) € Cyy.

Let ¢, € H1, we have the following possible cases:
a) ¢y, € Ho and @p(cpy) = 0, then gy(cp) = 0, B = 4, py(cp) € C1,
b) ¢y, € Hy and @p(cp) = 1, then there is not any Ha-weakly periodic ground state,
¢) ey, € Hy and @p(cpy) = 0, then @p(cy) = 0, BO) =3, BD =1, py(cp) € Co.
We conclude that the configuration ¢ is a ground state on the set
AiNAyN Ay ={(J1, o) €ER?:J = J, =0},

Therefore, if J; # 0 and Jy # 0 then the weakly periodic configuration ¢ is not a weakly
periodic ground state.

By similar way we can prove that all H4-weakly periodic (non periodic) configurations are
not ground states.

This finishes the proof of Theorem 2.3. O

Remark 2.3. 1) Theorem 2.3 shows that for the SOS model with competing interactions, every
H 4-weakly periodic ground state is either H 4-periodic or translation-invariant.

2) The fact that for k = 3 there exists a set of countable non-periodic ground states can be
proved in the same manner as in Theorem 2.1.

3) For the k& > 3 by the same manner as in Theorem 2.1 periodic (and weakly periodic)
ground states could be studied.

The authors thank Professor U. A. Rozikov for useful discussions. The authors are grateful to
the referee’s helpful suggestions.
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OcHoBHBIE cocTOogHUSA AJist Moziesin SOS ¢ KOHKYpPUPYIOIIMU
B3aMMO/JIeiiCTBUSIMU

My3zaddap M. PaxmaryniaeB
WNucruryr Maremarukn AH PV3

TarmkenT, ¥Y36ekucran

Hamanranckuii rocy/1apCTBEHHBIN yHUBEPCUTET
Hawmanran, Y36ekucran

Byuén VY. Abpaes
HupUIukcKuii rocy1apCTBEHHBIN 1€1arOrnIeCKUil HHCTUTYT
Yupuuk, Y30eKucTan

Amunorarusi. B pabore 1151 HOpMAJBHOTO JEJUTEsT UHIEKCA 2 U3yUeHbl CJIabo-IIePUOINIECKUE OCHOB-
Hble cocTosiHUsT Jijist Mojesn SOS ¢ KOHKYPUPYIOIIUMU B3aUMOJAEHCTBUSIMU Ha, JepeBe Kaaum mopsinka 2
u opsaka 3. Jlajee n3ydeHbl HEEPUOAUIECKUE OCHOBHBIE COCTOsAHUSA st Mozen SOS ¢ KOHKYPUPYIO-
UM B3auMOJIefiCTBAsIMU Ha jepeBe K3/ BTOPOro mopsijika.

Kuarouessie cioBa: jepeBo Kamu, SOS-Mozens, nepuoandeckue u c1abo-mepuondecKine OCHOBHBIE CO-

CTOAHUA.
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