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Abstract

The application of polarimetric Synthetic Aperture Radar
(SAR) to forest observation for mapping, classification and
parameter estimation (especially biomass) has a relatively
long history. The radar penetration through forest volume,
and hence the multi-layer nature of scattering models, make
fully polarimetric data the observation space enabling a
robust and full inversion of such models. A critical advance
came with the introduction of polarimetric SAR
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interferometry, where polarimetry provides the parameter
diversity, while the interferometric baseline proves a user-
defined entropy control as well as spatial separation of
scattering components, together with their location in the
third dimension (height). Finally, the availability of multi-
ple baselines leads to the full 3-D imaging of forest
volumes through TomoSAR, the quality of which is again
greatly enhanced by the inclusion of polarimetry. The
objective of this Chapter is to review applications of SAR
polarimetry, polarimetric interferometry and tomography to
forest mapping and classification, height estimation, 3-D
structure characterization and biomass estimation. This
review includes not only models and algorithms, but it
also contains a large number of experimental results in
different test sites and forest types, and from airborne and
space borne SAR data at different frequencies.

2.1 Introduction

The application of radar polarimetry to forestry has a long
history. Ever since the earliest days of airborne data trials
with the JPL-AIRSAR system it was realized that forest
scattering at microwave frequencies generates more linear
cross-polarization (HV) than non-forest (especially at lower
radar frequencies such as P- and L- bands). Since then,
various groups have attempted to develop algorithms for the
generation of imaging radar products based on forest
mapping, classification and parameter estimation (especially
biomass) requirements.

It was also quickly realized that improved products were
obtained by using fully coherent scattering matrix or quad-
pol PolSAR systems. These then allow the application of
target decomposition and multivariate classification
techniques accounting not only for backscatter amplitude
and ratios, but also for phase and coherence statistics. The
physics behind these techniques is based on the idea that
there is significant forest penetration of microwave radiation,
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Table 2.1 Remote sensing applications on forestry

(End) Users
National International Authorities/Agencies

Forest Management

even to the surface layer under the forest, and hence multi-
layer scattering theories are required to properly interpret the
signatures. These multi-layer approaches in turn require mul-
tiple parameters for model based estimation and inversion
and the use of quadpol data allows much more robust inver-
sion of such models, providing as it does a wider set of
observables than classical single or even dual-pol radars.

Still there remained a problem unique to forestry, namely
high scattering entropy due to the complexity of the random
media scattering environment generated by forests. This inevi-
tably leads to lower accuracy and poorer resolution products. A
significant advance therefore came with realization that lower
entropy scattering could be obtained for forests by combining
polarimetry with interferometry for PolInSAR. Here polarim-
etry provides again the parameter diversity, with the interfero-
metric baseline now providing a user defined entropy control
as well as spatial separation of scattering components.

This concept has also recently been extended to consider
multiple baselines for multibaseline PolInSAR, which in the
limit leads to 3-D imaging of forests through TomoSAR, while
for limited baselines offers band-limited 3-D imaging, the
quality of which is again greatly enhanced by the inclusion
of polarimetry. This technology has now matured to the stage
where several important products (especially forest height and
vertical structure) can be accurately obtained at high spatial
resolutions and with wide continuous coverage. Since 2006,
with the launch of ALOS-PALSAR, such quad-pol
capabilities have been available routinely from space imaging
radars, enabling important developments in product maturity,
as well as opening new possibilities by using time series
analysis to capture dynamic changes in forests. A general
classification of the applications is reported in Table 2.1.

2.2 Forest Classification

2.2.1 Land Cover Classification in Tropical
Lands Using PolISAR

2.2.1.1 Introduction, Motivation and Literature
Review

Recent radar space borne systems, like the C-band

ENVISAT-ASAR, the C-band RADARSAT and the

L-band ALOS-PALSAR systems, offer unique possibilities

Application(s)

Forest biomass
Deforestration

Forest type classification
Forest (top) height
Species classification
Mapping of storm damage
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Interest/Motivation

Carbon cycle & environmental science
Carbon cycle & environmental science
Biodiversity

Inventory (selective)

Biodiversity, Forest monitoring

Forest monitoring

of mapping and monitoring the tropical forest, usually cov-
ered by clouds. Nevertheless it is still not clear which are the
advantages of complex fully polarimetric systems over sim-
ple single or double polarized systems for certain
applications. Also the specific use of frequencies and fre-
quency combinations is still unclear: long radar wavelength
like at L- and P- bands could add information to the short
wavelengths at C- and X- bands due to the different scattering
mechanisms involved in the wave interactions with the forest,
the difference in canopy penetration, improving the classifi-
cation of land cover classes or forest types.

Polarimetric radar classification simulations gave in the
past insights into the accuracy of using certain band/polariza-
tion combination for land cover, forest type and biomass
mapping (Hoekman and Quifiones 2000, 2002; Quifiones
2002). Nevertheless this information needed to be recreated
on the frame of recent versatile, robust and computational
efficient algorithms that can be applied over polarimetric and
multi-frequency space borne data. In this Section, a pixel
based unsupervised classification technique, developed in
Hoekman et al. (2011), is used as a research tool to evaluate
the NASA’s AIRSAR, C-, L- and P-band radar data acquired
in 1993 over the Guaviare site in the Colombian Amazon. A
polarimetric decomposition algorithm, that preserves the full
polarimetric information content into six different radar
intensities is used. Results give indication on the added
valued of certain frequency and polarization combination in
a tropical land. The robustness of the algorithm is further
demonstrated by its applications to fine beam dual-pol (FBD)
L-band HH/HV and wide beam (WB) L-band HH ALOS-
PALSAR data in central Kalimantan.

2.2.1.2 Methodology

Classification — accuracy results from  unsupervised
segmentations applied to different combinations of
polarimetric C, L and P band data are used to evaluate the
possible radar band combinations useful for tropical forest
monitoring and mapping. Use is made of the unsupervised
fully polarimetric SAR segmentation tool developed in
Hoekman et al. (2011). The unsupervised approach consists
of six processing steps extensively explained in Hoekman
and Vissers (2003). The first step is a mathematical data
transform which allows polarimetric data, without loss of
any information, to be written in a form where classes are
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well approximated by multivariate normal distributions. This
transform allows application of a wide class of mature image
processing algorithms to polarimetric data, including unsu-
pervised data clustering. The second step relates to unsuper-
vised clustering encompassing a simple region-growing
segmentation (incomplete and over-segmented), followed
by model-based agglomerative clustering (Step 3), and
expectation-maximization on the pixels of these segments
(Step 4). Classification is achieved by Markov random field
filtering on the original data (Step 5). The result is a series of
segmented maps, which differ in the number of (unsuper-
vised) classes.

For the analysis of the results three different accuracy
percentages are used as indicators of the performance of a
particular polarization/frequency combination in the classifi-
cation of the four cover types. The first is the overall classifi-
cation accuracy, calculated as the percentage of right and
wrong classified pixels for all the classes, for a particular
polarization/frequency combination. A Kappa statistic (K)
was computed to evaluate significant differences between
any pair of classification results (Lillesand and Kiefer
1994). A test statistic AK can be calculated as:

k&
o[k + o [k

where Eic {IA( } is the approximate large sample variance of K.

AK = (2.1)

At the 95% confidence level two results may be considered
significantly different if AK > 1.96 (Benson and De Gloria
1985).

The second accuracy percentage is the users classification
accuracy that indicates the percentages of pixels classified in
a certain class given that the pixel was label into that class.
This particular indicator is useful to evaluate the capacity of a
certain combination to classify a class.
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The third indicator is the percentage of confusion between
two particular land cover types in the absence of other clas-
ses. This indicator is of particular interest for the evaluation
of possible monitoring scenarios in a changing tropical forest.
Monitoring scenarios are defined as the capacity to differen-
tiate processes like deforestation, forest degradation and
forest regeneration as explained in Hoekman and
Quinones (2000).

2.2.1.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on land cover clas-
sification in tropical lands are summarized in Table 2.2 and
further described in Appendix A. Figure 2.1 shows an over-
view of the radar data.

Fully polarimetric target properties for uniform distributed
scatterers can be described by nine single-pol radar intensities
as introduced in Hoekman and Vissers (2003). For the
AIRSAR data the Stokes scattering operator matrix was set
to zero for the four ‘asymmetric’ elements of the covariance
matrix. For that reason it is assumed that the objects display
azimuthal symmetry and that the asymmetrical information
may be discarded. In this case the case of azimuthal symme-
try (Freeman 1999) the covariance matrix simplifies to.

(SwSin) 0 (SwS5u)

C = 0 (SmSp,) 0
(SwSi) 0 (SwSh)

(2.2)

In the intensity representation introduced in Hoekman and
Vissers (2003) it is possible to find several sets of 5 indepen-
dent intensity values containing this and only symmetrical
information. At least one (non-redundant) possibility is
needed to represent the polarimetric data. A selection of
6 intensities were made using the conjugated Real and Imag-
inary parts of the HH-VV phase differences as follows:

0 0!o0
o 010
with B =—|0 0 11 0 (2.3)
472- 1___1____1 _____ —
P Loi2 0
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Table 2.2 Test sites and corresponding radar and validation data selected for the generation of showcases on land cover classification

Application/product Test site — Radar data

Reference data

Guaviare, Colombian Amazon
AIRSAR P-, L-, and C-band data (1993),
incidence angle from 20° to 60°

Land cover classification
in tropical lands

Direct field observations on vegetation and terrain characteristics
like drainage, flooding and slopes

Fig. 2.1 Total power image of the P-, L- and C-band AIRSAR data, in
the 45°-50° incidence angle range, over the Guaviare study site.
Photographs illustrate the four vegetation cover types in this study.
Polygons digitized over the visited field locations for all the four cover

Intensity images created for the C-, L-, and P-band data are
shown in Fig. 2.2.

For each single frequency, comparisons were made
between the combinations of dual-like polarizations
(HH/VV), three linear polarizations (HH/VV/HV) and all
6 intensity polarizations (Pol-6i) containing the polarimetric
information (HH/VV/HV/MR/PL/PM). For the comparison
between multi-frequency data, combinations where made
using two and three frequencies (C-L), (L-P), (C-L-P) with
three linear polarizations (HH/VV/HV) and with all polari-
metric data per frequency (HH/VV/HV/MR/PL/PM).
Figure 2.3 shows the classification result from the unsuper-
vised segmentation using different combinations. Table 2.3
shows all three accuracy percentages calculated for the stud-
ied frequency/polarizations combinations. Low overall clas-
sification accuracies and low users accuracy per class were

types are illustrated: (1) primary forest (red): 27 polygons (4983 pixels);
(2) secondary forest (blue): 49 polygons (4004 pixels); (3) recently
deforested areas (green): 30 polygons (2878 pixels); and (4) grasslands
(white): 18 polygons (4046 pixels)

found for all C-band combinations and for L- and P-band
dual-pol (HH/VV)/single frequency combinations. High con-
fusion between classes was also found for these channel
combinations. For both L- and P-band the results by adding
the HV channel to the dual-pol (HH/VV) were significantly
higher (94.5% to 85.5%, for L-band and 93.5% to 61.2% for
P-band, respectively) and improved both the users accuracy
per class and the confusion between classes especially
between primary and secondary forest and primary and
recently cut areas in both cases. When these classes are
confused the particular combination will not addressed the
monitoring scenarios for detection of forest regeneration or
deforestation processes, at least using only single-date data.
The addition of HV polarization to the dual-pol (HH/VV)
data, have significant impact on the classification accuracy
for both L- and P-band data.
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Fig. 2.2 Intensity images derived from the C-, L-, and P-band AIRSAR polarimetric decompositions into intensity images. Horizontal (h), vertical
(v), left circular (1), right circular (r), 45° linear (p) and —45° linear (m)

Fig. 2.3 A 400 x 400 pixels window, classification maps resulting  (4) grasslands (blue). In the top left corner, a total power image is
from the unsupervised segmentation of images when using different shown with some of the validation polygons that have been used as a
frequency/polarization combinations. (1) primary forest (green); (2) sec-  reference to evaluate the results

ondary forest (yellow); (3) recently deforested areas (red); and
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Table 2.3 Accuracy classification results for different polarization combinations for all AIRSAR channels studied

Overall classification accuracy calculated between | Users accuracy in percentage of right Confusion between classes in absence of

all classes classified pixels per class other classes

Band Polariz. Right % Wrong % 1 2 3 4 1-2 1-3 14 |23 2-4 34
C HH/VV 55.8 442 60.5 51.5 81.7 54.5 41.0 27 |77 6.8 8.8 [36.6
C HH/VV/HV | 56.6 43.4 54.6 42.1 82.3 60.9 46.9 37 |64 24 143 |283
C Pol-6i 57.9 42.1 56.6 454 93.8 61.8 38.6 |12.1 |8.1 46 |17.5 |229
L HH/VV 85.5 14.5 78.1 77.8 87.7 99.1 17.5 9.0 |0.0 3.6 0.3 3.6
L HH/VV/HV | 94.5 5.5 91.7 91.2 96.3 99.1 7.6 08 (0.0 2.0 0.3 0.3
L Pol-6i 90.7 9.3 81.0 91.3 97.0 99.3 13.4 1.1 ]0.0 29 0.6 0.6
P HH/VV 61.2 38.8 58.3 41.9 16.2 91.6 213 271 0.1 57.1 |182 0.2
P HH/VV/HV | 935 6.5 96.9 84.2 98.6 96.5 2.5 20 |0.0 7.1 2.5 0.4
P Pol-6i 89.9 10.1 97.4 81.6 94.7 87.9 4.5 32 0.0 5.7 6.8 1.6
C-L HH/VV/HV | 91.7 8.3 88.4 87.8 91.9 98.2 10.2 2.1 0.0 39 0.4 0.7
L-P HH/VV/HV  |96.2 3.8 94.8 92.7 98.9 99.4 34 34 0.0 0.5 0.4 0.2
C-L Pol-6i 91.5 8.5 84.7 86.5 99.0 99.9 10.6 1.6 |0.1 4.6 0.4 0.0
L-P Pol-6i 98.0 2.0 99.0 95.3 97.3 99.9 1.8 04 |0.0 0.5 0.4 0.9
C-L-P |HH/VV/HV |98.0 2.0 97.8 95.5 99.5 99.6 2.8 0.5 |0.0 0.1 0.2 0.1
C-L-P | Pol-6i 96.2 3.8 98.0 91.3 100. 96.8 1.8 06 |0.1 2.5 1.2 2.0

The bold numbers indicate the best result plus the results that are not significantly different from the best result at the 95% level of confidence.
(1) Primary forest; (2) Secondary forest; (3) Recently deforested areas; and (4) Grasslands

The addition of polarimetric (Pol-6i) data to the three
polarization (HH/VV/HV) combinations decreases the over-
all classification accuracy and in most of the cases increases
the confusion between primary and secondary forest. In gen-
eral the confusion between classes is below 10%, for all the
land cover pairs, when using L- (HH/VV/HV) or P- (HH/VV/
HV) and P- (Pol-6i) combinations. When comparing the
results produced by the L- and the P-band combinations
there are no significant differences in the results, meaning
that both single L- or P- band data (HH/HV/VV) or (Pol-6i)
are very good to assess the monitoring scenarios. All overall
accuracies are above 90% for the frequency/polarizations
combination. For the two frequencies combinations, the
accuracy results of the C-L combination (91.5% and 91.7%)
are significantly lower than the combinations of the L-P
combinations (96.2% and 98%) for (HH/VV/HV) and
(Pol-6i) respectively. Lower percentages when using
C-band are explained by the relatively lower “user’s accu-
racy” classification results, for primary and secondary forest
and the high confusion found between these same classes.

The combination of C-L-P (HH/VV/HV) and L-P (Pol-6i)
were not significantly different from each other. These
combinations also show high users accuracy for all the clas-
ses and low confusion percentages between all pairs of cover
types, addressing all the monitoring scenarios.

2.2.1.4 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
Most of the classifications for the combinations involving
C-band channels appear to be very irregular affecting the

accuracy results. The low classification accuracies and the
high confusion between classes, found when using the
C-band single frequency combinations and the C-L multi-
frequency combinations are obviously suffering from the
effect of rough texture in the C-band images (high variance
between neighboring pixels) due to the higher resolution of
the C-band channels and also by the direct scattering occur-
ring between the short C-band waves with the leaves and
branches of the rough canopy of the primary forest and
secondary vegetation. On the other hand, the results involv-
ing C-band channels are also affected by the nature of the
classification algorithm and the application of the Markov
random field filter to the segmentation procedure. When there
is much variance between neighbors the classification of a
pixel might be more affected by system filter parameters than
for channels with less texture.

For combinations involving L- and P-band channels the
classifications are smoother and borders are better defined.
Classification accuracy results are higher, which might be
explained by the physical interactions, mostly double
bounces and volume scattering, occurring between the longer
wavelengths and the larger scatterers in this land cover clas-
ses. These frequencies are more sensitive to contrasting veg-
etation structure as is the case by the cover types selected for
this study.

The use of polarimetric data for both single frequency and
multi frequency combinations, for the L- and P-band
channels, did not add significant information compared to
the (HH/VV/HV) combinations. For this contrasting vegeta-
tion structures polarimetric information is of no need, but
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might be of relevance for other applications like forest type
mapping (Quifiones 2002).

In general, for addressing the monitoring scenarios in the
tropical forest when using the land cover classes used in this
study, the L- and P-band linear polarizations (HH/VV/HV)
appear to be suitable, and there is no evidence that could
show that any of this two frequencies should be preferred
over the other.

What is certainly clear is that the use of only two like
polarizations for the L and P band was not enough to differ-
entiate this land cover classes and not good enough to address
the monitoring scenarios in this study. The use of HV polari-
zation significantly improved the overall classification
accuracies and decreased the confusion between the cover
classes. At that respect, the assessment of dual polarizations
involving cross-polarized data (HV) is of interest for future
studies.

With the launch of polarimetric space borne SAR systems
like RADARSAT-2 (C-band) in December 2007 and ALOS-
PALSAR (L-band) in January 2006, the need for simple,
robust and accurate polarimetric classification and biophysi-
cal parameter estimation algorithms for monitoring
applications and research is of great importance. Ideally,
algorithms should be sufficiently versatile to handle multi-
band, multi-polarization, multi-date and/or multi-sensor data
sets. Moreover, it would be an important asset when
algorithms could deal with situations were ground truth is
sparse or incomplete. Combination of unsupervised with
supervised approaches increases the accuracies of the classi-
fication as shown in Cao et al. (2010) so the possibility of
using unsupervised segmentation algorithm as supervised
segmentation procedure when classes are already being sta-
tistically described and labelled is very useful.

The current segmentation methodology applied for
mapping and monitoring of tropical forest allows all the
above mention possibilities. Until now, it is being extensively
tested over images of the L-band WB and FBD-FBS ALOS-
PALSAR, and C-band ENVISAT-ASAR and RADARSAT.
Some issues surrounding the application of the current algo-
rithm, to these space borne images, are related to speckle and
image texture. The use of a Markov random field filter in the
classification procedure helps to overcome partly the effect of
speckle, nevertheless it is being demonstrated that filtering of
radar images previous segmentation can help in the better
statistical definition of classes and in the final classification
results. In addition, the use of the current algorithms in the
high resolution RADARSAT-2 and (X-band) TerraSAR-X
images can create very blurry classifications and re-sampling
of the data is necessary before getting reasonable results.
Also regarding the legend development process, the field
information is still necessary and the interpretation of the
radar signatures can be of great complexity. Nevertheless
several maps have been created using this algorithm
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(Hoekman et al. 2010). An example is a forest type map
created for an ecologically complex area in Central
Kalimantan. This map was created using a combination of
space borne WB (HH) and FBD (HV/HH) polarizations for
2 years of ALOS-PALSAR acquisitions. The results are
reported in Fig. 2.4. The overall classification accuracy cal-
culated for the map is of 84% for 17 different vegetation
cover types. This methodology has proven to be very robust
to noise/outliers and overlapping clusters, is reasonably fast
and is suitable for moderate to large images.

2.2.2 Forest Mapping and Classification Using
Polarimetric and Interferometric Data

2.2.2.1 Introduction, Motivation and Literature
Review

Forest remote sensing from SAR data has been intensively
studied during the last 15 years. Various types of SAR data
(single-, dual- and quad-pol, single- or multi-frequency)
acquired in multi-temporal, multi-angular or interferometric
modes were used to retrieve geophysical property estimates.
All these studies demonstrated that SAR quantities (intensity,
phase, correlation, coherence...) show particular behaviors
over forested areas and may be used for classification
purposes. Forest classification may be split into two comple-
mentary applications requiring different levels of accuracy
and processing complexity:

e forest area mapping, which consists in delimiting the
extent of forested areas within a SAR image;

* discrimination of vegetation categories, which aims to
separate pixels belonging to different types of vegetated
media.

This Section proposes to gather complementary aspects of
polarimetric and interferometric data processing techniques
to improve forest mapping and classification performance. If
SAR polarimetry is particularly well adapted to the analysis
and description of scattering mechanisms, and hence may be
used to discriminate different environments, it is well known
that PoISAR parameters tend to saturate over volumetric
media with highly random response, like dense forest
observed at L band or at higher carrier frequency. Oppositely,
interferometric SAR measurements permit to further investi-
gate volumetric media properties but suffer from a lack of
contrast over areas showing more polarimetrically determin-
istic responses like agricultural fields and open surfaces.

This Section proposes simple processing schemes, based
on both SAR signal statistical properties and physical
interpretations of wave scattering, that combine PolSAR
and PolInSAR analysis techniques into hierarchical,
supervised or unsupervised classification approaches. It is
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Fig. 2.4 Land cover Map (rightl) created using a combination of WB and FBD- L-band ALOS-PALSAR data (left). Accuracy assessment was done
using field photographs taken on the points over long transects in the study area (centre). Calculated accuracy 84% for 17 classes

shown that forest mapping can be performed efficiently using
PolSAR data processing and that refined segmentation results
may be obtained by including POLinSAR information. For-
est category identification is, in general, a significantly more
complex task, since classical SAR indicators like reflectivity,
or usual polarimetric parameters, can reveal highly
misleading in the frame of forest classification, due to their
saturation or high correlation with factors unrelated to the tree
species under observation. As it is related hereafter, this
serious limitation may be overcome by dealing with intrinsic
PolInSAR parameters, that do not depend on forest radiome-
try and that are less affected by saturation effects.

Many studies report that SAR backscatter intensity value
depends, up to a certain extent, on forest bio and geo-physical
properties such as biomass, tree age (Lee et al. 2002). Never-
theless, high performance mapping or classification of for-
ested areas can generally not be achieved by thresholding
backscattered intensity due to the large variability of SAR
image information. Single polarization data-based mapping
techniques generally use additional modes of diversity, like
texture (De Grandi et al. 2000; Wegmiiller and Werner 1995),
or time (seasonal variations, stability) (Grover et al. 1999;
Lee et al. 1999; Paloscia et al. 1999). Partially or fully
polarimetric SAR data may also be used to map forests,
using cross-pol ratios or co-pol correlation (Hoekman and
Quifones 2000; Hoekman and Varekamp 2001) and com-
bined with multi-frequency measurements (mainly P-, L- and
C-bands) (Quegan et al. 2000; Ranson and Sun 1994; Ranson
et al. 1995). However, the robustness of such supervised
approaches has to be tempered by considering repeatability
and generalization issues related to uncontrolled variations of
polarimetric scattering patterns with time (year, season,
month or even days) or depending on the geographical

location or the investigated area (Ranson and Sun 1994; Le
Toan et al. 2001; Cloude and Pottier 1997).

Unsupervised PolSAR approaches, related to the decom-
position of polarimetric covariance matrices may be
employed to determine the presence of forest from an inter-
pretation of polarimetric scattering mechanisms (Le Toan
et al. 2001; Cloude and Pottier 1997; Durden et al. 1989;
Ferro-Famil et al. 2001, 2006). Such methods may meet some
limitations over complex areas that cannot be separated from
forests based on PolSAR information only (Ferro-Famil et al.
2003; Freeman and Durden 1998; Kurvonen and Hallikainen
1999). Single polarization interferometric coherence may be
used to map forested areas (Askne et al. 1997; Dammert et al.
1999; Engdahl and Hyyppé 2003; Rignot et al. 1994a), but
such techniques have to deal with exterior factors such as the
spatial/temporal baselines compromises, forest density and
topography that may affect the mapping accuracy and reli-
ability. Finally, complementary aspects of both polarimetric
and interferometric diversity modes may be combined in
order to overcome intrinsic issues of each separate mode,
and provide more reliable and accurate mapping results
(Ferro-Famil et al. 2006).

An important number of studies have been led to discrim-
inate different types of forest from single polarization SAR
data (Dobson et al. 1996). Similarly to forest mapping
applications, reasonable classification rates may be reached
with supervised algorithms, particularly well adapted to one
site or type of vegetation, but a systematic implementation
may meet some problems of generalization, due to temporal
variations and saturation of the basckscattered intensity (Lee
et al. 2002; Hyypa et al. 1997; Mougin et al. 1999). The use
of fully polarimetric and/or multifrequency data permit to
further discriminate a large range of natural media (Hoekman
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and Quifiones 2000, 2002; Hoekman and Varekamp 2001;
Ranson et al. 1995; Dobson et al. 1992) using supervised
hierarchical  classifiers, multi-frequency  polarimetric
acquisitions (Hoekman and Quifiones 2002; Dobson et al.
1992; Ferrazzoli et al. 1997; Hagberg et al. 1995), model-
based approaches (Hoekman and Quifiones 2000; Hoekman
and Varekamp 2001; Ranson and Sun 1994; Lombardo and
Macri Pellizzeri 2002), or directly based on polarimetric
measurements (Ranson et al. 1995) or on pre-processed
polarimetric indicators, such as polarimetric decompositions
results (Ferro-Famil et al. 2001; Kurvonen and Hallikainen
1999). One has to note that parameter saturation over forested
areas may affect polarimetric indicators too and may then
limit the performance of all the classification approaches
mentioned above. Radar interferometry is an efficient tool
for forest observation (Grover et al. 1999) and may overcome
limitations due to polarimetric scattering coefficient satura-
tion. Interferometric classification approaches generally rely
on the modeling of SAR measurement coherence and an
interpretation of its relation to the observed media nature
and geophysical characteristics (Askne et al. 1997, 2003;
Eriksson et al. 2003a; Imhoff 1995a; Strozzi et al. 2000;
Van Zyl 1993; Wegmiiller and Werner 1997). Statistical
segmentation procedures adapted to inSAR data sets have
been developed as well (Dammert et al. 1999; Engdahl and
Hyyppd 2003; Rignot et al. 1994a). Interferometry based
classification meet limitations similar to those enounced in
the case of forest mapping, mainly linked to temporal-spatial
baselines, topography and to the lack of polarimetric diver-
sity. Quad polarization interferometric data, Pol-In-SAR,
based classification is a powerful alternative to multi-
frequency data processing. The interpretation of this high-
dimensional information by the way of optimisation
procedures permits to isolate different kinds of forested
areas and constitutes a good solution to forest classification
(Ferro-Famil et al. 2006). The introduction of joint polarimet-
ric and interferometric information in an unsupervised classi-
fication scheme has shown the complementarity of both data
types permits to discriminate refined features that cannot be
observed from separate analysis (Ferro-Famil et al. 2003).
The use of polarimetric interferometric representation statis-
tics, derived in Ferro-Famil and Neumann (2008), in the
frame of already existing robust and powerful supervised/
unsupervised classification algorithms (Ferro-Famil et al.
2006, 2003; Kurvonen and Hallikainen 1999), permit to
reach higher levels of performance and robustness over a
wide range of vegetation types (Ferro-Famil et al. 2006).

2.2.2.2 Methodology

The employed methodology for unsupervised forest mapping
is illustrated in Fig. 2.5. The PolSAR image is first segmented
using the Wishart H /A /a statistical segmentation technique.
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An identification of basic scattering mechanisms is then run
over each pixel of the image, from specific polarimetric
indicators derived from the eigenvector decomposition of
coherency matrices, as described in Ferro-Famil et al.
(2003): according to the number of scattering mechanisms
detected within pixel using the H and A parameters, specific
procedures are run to assign the pixel under observation to
the volume diffusion, single- or bouble-bounce class. In order
to reduce the random aspect of the mapping and increase its
robustness with respect to arbitrarily fixed decision
boundaries, a global decision is taken over statistically com-
pact clusters obtained from the Wishart H/A /@ segmentation
using a winner-takes-all decision strategy. As mentioned
earlier, such a mapping approach may lead to some false
alarms over complex and dense volumetric areas, like urban
environments observed at L-band, and PolInSAR coherence
optimization may be used to refine the PolSAR map.
Parameters built from the PolInSAR optimal coherence set
are used to determine the number of coherent scattering
mechanisms from which is derived an indicator of the level
of volumetric scattering. This information is then combined
with the PoISAR result in order to obtain a refined forest map
(Ferro-Famil et al. 2003, 2006).

Forest classification is performed here as a statistical
supervised process which comprises two stages: a learning
phase during which user-selected groups of data are used to
learn the statistics of the different classes to be discriminated,
and a classification phase which assigns a class label to each
pixel on an image according to a statistical metric or to a
specific decision rule whose parameters have been learned
during the preceding phase. Here again, the random aspect of
classification results may be reduced by taking global
decisions over statistically compact clusters obtained from
an unsupervised segmentation map.

This Section compares results obtained using the whole
PolInSAR information, i.e. statistics of the (6 x 6) coherency
matrix, or using reduced but more robust information
consisting of the three optimal PolInSAR coherences.

2.2.2.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest mapping
and classifications are summarized in Table 2.4 and further
described in the Appendix.

The complexity of the SAR scene over the Traunstein
forest may be appreciated from the Pauli color-coded image
shown in Fig. 2.6. This site is composed of forested areas,
pasture fields with scattered farms and isolated buildings and
an urban area at the center left part of the image. The unsu-
pervised Wishart classification given in Fig. 2.6 provides
some useful indications on the PolSAR properties of this
data set:
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Fig. 2.5 Synopsis of the unsupervised forest mapping approach

Table 2.4 Test sites and corresponding radar and validation data selected for the generation of showcases on forest classification

Application/product Test site — Radar data
Forest mapping and

classification

Traunstein forest, Germany
5-image PolInSAR data set
Spatial baselines: 0, 5, 10 m
Temporal baselines: 10 min,
15 days

 the different types of environments cannot be separated
using their PolSAR statistics since many classes are
spread over the whole image;

* one may observe a clear distribution of the classes in the
range direction, related to the dependency of the
backscattered intensity on the incidence angle, and to the
predominance of the span over other polarimetric
indicators. This aspect may be highly limiting for discrim-
inating media located at different range positions.

Classification results shown in Figs. 2.6 and 2.7 indicate
that PollnSAR data sets can be efficiently used in a
supervised way to discriminate between different forest spe-
cies and grow states or between different levels of biomass.
The principal basic features of the ground information can be
retrieved in the classification results whose spatial distribu-
tion is more heterogeneous than the provided reference map.
This variability is mainly due to the fact that ground informa-
tion is generally delivered under the highly simplified form of
compact and homogeneous clusters, whereas forest stands are
in general not homogeneous. A qualitative comparison
between the ground information map and an aerial photo-
graph revealed that some areas, considered as homogeneous
in the ground maps, could indeed contain zones with varying

Reference data

Maps of tree species, growth state and biomass derived from ground
inventories

tree densities, forest paths, clear cuts etc. On the other hand,
some specific forest parcels belonging to slightly different
types or having close biomasses may have very close
PolInSAR responses that cannot be discriminated using sta-
tistical or hierarchical approaches. The overall performance
of the biomass classification approach was evaluated over
trusty locations, in terms of homogeneity, and a correct
classification rate higher than 75% was found. The classifica-
tion of forest type and growth states led to slightly lower
rates.

As it has been mentioned earlier, single-pol techniques are
mentioned in the literature for forest mapping and classifica-
tion in the frame of marginal approaches, mainly based on
texture and temporal analysis, in order to investigate the
potential of existing spaceborne data sets for such
applications. As reported in many studies, single polarization
SAR data acquired at high frequency (L-band and higher)
cannot be used in a robust way for mapping and classifying
forested areas in general configurations, i.e. without a large
amount of a priori information. The use of dual-pol data is not
recommended either, due to the fact that the cross-pol HV
channel is essential for accurately mapping and discriminat-
ing volumetric media with different physical features. Being
this channel uncorrelated with other co-polarized
measurements over the major part of natural environments,
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Fig. 2.6 Left: Pauli color-coded image of the Traustein site; right: result of the unsupervised PolSAR Wishart classification into 16 classes
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Fig. 2.7 Left: simplified forest biomass map, where medium biomass (B) means 200 t/ha < B < 310 t/ha; right: biomass classification result

volumes and surfaces, a (2 x 2) co- and cross-pol covariance
matrix would not bring sufficient information for applying
the technique proposed here. A co-pol covariance matrix,
e.g. built from the HH and VV channels, can be used for
forest mapping through the analysis of its eigenvalues, but
with a significant loss of performance and additional
ambiguities compared with the fully polarimetric case. Such
a configuration leads to a significant reduction of the contrast
between the elements of the optimal PolInSAR coherence set
involving a severe loss of performance for classifying differ-
ent types of forested areas or different levels of biomass.
The following comparison aims to show that over forested

areas, single image polarimetry, i.e. classical SAR

polarimetry, can be highly misleading for characterizing
dense volumetric environments at L-band. This fact is due
to the saturation of the polarimetric response, i.e. the covari-
ance matrix tends to be proportional to the identity matrix,
which strongly limits the potential of analysis of polarimetry
and to the high dependence of the backscattered energy,
i.e. the polarimetric span, on the scene geometry in general
and the local incidence angle in particular. As one may note
in Fig. 2.8, classification results obtained from PolSAR only
data are largely influenced by the spatial distribution of the
backscattered intensity over the whole scene, which may be
appreciated over the Pauli color-coded image displayed in
Fig. 2.6. Due to its interferometric aspect, PolInSAR-based
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Fig. 2.8 Forest type classification results. Left: using the Wishart statistics of the POISAR coherency matrix T; mid: reference map; right: using the

proposed PolInSAR approach

Fig. 2.9 Biomass classification using various temporal (B;) and spatial
(By) baseline configurations. Legend as in Fig. 2.7. Color coded images
of the optimal Pol-inSAR coherence set are given (central panel).

technique permits to overcome this saturation effect. Being
based on the statistics of span-independent quantities, it
presents greatly enhanced features, whose distribution is
tightly linked to the kind of forest under observation and
not the angular dependence of the span.

Another illustration of this effect is given in Fig. 2.9 where
classification results, obtained using the Wishart statistics of
the full PolInSAR coherency matrix, are compared for vari-
ous temporal and spatial baselines. The Wishart PollnSAR

Results obtained using the statistics of the full PollnSAR coherency
matrix are plotted in the top panel, and the ones obtained by using the
statistics of the optimal PolInSAR coherence set are in the bottom panel

classifier output maps are quasi-insensitive to the level of
interferometric correlation between the images. This obser-
vation shows that the volumetric analysis through interfero-
metric coherence properties play a very little role during the
classification, whereas the PolISAR part, saturated and
strongly influenced by the span, predominates, leading to
classification results poorly related to forest properties and
perturbed by the scene topography or the acquisition geome-
try. Oppositely, the proposed approach, based on the
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statistics of the optimal coherence set, fully exploits the
relative interferometric coherence information, and for a cor-
rect spatial and temporal configuration, provides results
intrinsically related to forest properties and less affected by
potential changes of incidence angle.

2.2.2.4 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
Polarimetry plays a key role for applications related to forest
mapping or classification using SAR images. Despite the fact
that single polarization intensity value depends, up to a
certain extent, on forest geophysical properties such as bio-
mass or tree age, high performance mapping or classification
of forested areas can generally not be achieved by
thresholding backscattered intensity due to the large
variability of SAR image information, to the potentially
important influence of factors related to the scene topography
or to the acquisition geometry, and to the saturation of the
relation relating intensity to biomass at L- or higher fre-
quency bands.

SAR polarimetry offers the possibility to measure this
saturation from indicators related to the number of effective
scattering mechanisms estimated within each pixel. Media
with a polarimetrically saturated responses are associated to
complex volumes, hence to forests. Such an approach works
well over most environments, but may lead to false alarms
over highly heterogeneous zones, mainly urban areas. This
problem may be overcome by further measuring the presence
of dense volume using PolInSAR parameters. Here again,
polarization plays an essential role as it permits to separate
media whose interferometric coherence may vary depending
on the chosen polarimetric channel.

Due to the saturation of the polarimetric response of an
environment in the presence of volume, classical SAR polar-
imetry, i.e. based on a single PolSAR image, cannot be used
to classify forested areas with a sufficient accuracy, and one
has to use PolInSAR data sets. However, this showcase
clearly demonstrates that using the whole PolInSAR infor-
mation for classifying forested areas can be counter-
productive, as a significant part of this information can be
dominated by factors unrelated to the nature of biomass
features of the observed forest. Instead, using a set of
elaborated parameters that concentrates the relative part of
the PolInSAR information provides interesting results and
limits the effects of artefacts encountered with usual or direct
approaches.

In conclusion, polarimetry represents a very useful and
efficient mode of diversity for forest mapping and classifica-
tion, and needs to be coupled to interferometric
measurements for characterizing complex volumetric
environments. Pre-processing steps, aiming to separate
sources of potential perturbations, linked to the acquisition
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geometry or other parameters unrelated to forest from the
useful part of the signal should be implemented.

2.2.3 Detection of Fire Scars

2.2.3.1 Introduction, Motivation and Literature
Review

Canada is home to 10% of the world’s forests. Accounting of
annual carbon emissions from forest fire events and monitor-
ing changes in Canada’s forests are important activities at
Natural Resources Canada (NRCan). In 2004, NRCan
initiated a joint project between the Canadian Forest Service
(CFS) and the Canada Centre for Remote Sensing (CCRS) to
create a system, the Canadian Wildland Fire Information
System (CWFIS), used to estimate direct carbon emissions
from Canadian wildfires (Groot et al. 2007). Accurate knowl-
edge of burned areas is required to produce burned area
estimates at the national level for post fire mapping. Cur-
rently, optical remote sensors, like SPOT-VGT and Landsat,
are used to map burned areas at low resolution (1 km) and
high resolution (30 m) respectively. A final burned-area
output is used as an input to the National Forest Carbon
Monitoring, Accounting and Reporting System (NFCMARS)
(Kurz and Apps 2006) to estimate national carbon emissions.
However, for producing such burned area estimates, the
earliest possible cloud-free satellite images are critical.
Because of adverse weather, cloud and illumination
conditions in the Canada North, the limitation of remote
sensing images from these optical sensors is evident.

Advanced space-borne Synthetic Aperture Radar (SAR)
systems, such as Japanese ALOS-PALSAR, the German
TerraSAR-X, and the Canadian RADARSAT-2, can contrib-
ute specially to this estimation effort. Over previous sensors,
these offer better spatial resolution, shorter revisiting times,
availability of polarimetry, and all-weather data acquisition
capability. Therefore, considerable polarimetric SAR
research in forest applications has been conducted at CFS
with support of the Canadian Space Agency (CSA) and
NRCan. One of the motivations is to determine whether
polarimetric SAR information can be used to detect fire
scars effectively in forest lands and offer alternative to tradi-
tional sketch mapping methods and optical sensors.

Historic burned area estimates, created from sketch
mapping from small planes, GPS mapping from helicopters,
and photo interpretation (Fraser et al. 2000, 2004), are avail-
able from provincial and territorial forest fire agencies.
Because the management and protection of these data
resources fall under provincial and territorial jurisdiction,
GIS wildfire polygon data varies in quality due to the
limitations of the traditional GIS technologies available at
the time. Several Canadian provinces maintain GIS wildfire
polygon data for managed forests from the 1940s to the
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present day. Generally, the older the data the less reliable it
becomes. Fire perimeters derived from these traditional
methods often include unburned “islands” and may overesti-
mate burned areas. Moreover, the distribution of remote wild
fire events and environmental conditions make them a chal-
lenge to accurately map.

Research has been conducted in mapping forest fire scar
using SAR, which can be used to provide measurements of
post-fire ecosystem changes in forest structure, ground sur-
face exposure and soil moisture patterns (Landry et al. 1995;
Bourgeau-Chavez et al. 1997). In Bourgeau-Chavez’s studies
based on radar backscatter analysis, he demonstrated that fire
scars were detectable in a range of boreal ecosystems across
the globe using C-band SAR and showed that the length of
viewing time of fire scars with ERS or RADARSAT-1 data
was between 3 and 7 years in Alaska and Canada (Bourgeau-
Chavez et al. 2002).

In previous studies, it was discovered that, using the
airborne Convair 580 C-band quad-pol data, it is possible to
detect a historical fire scar, more than 50 years old, over our
study site in Hinton, Alberta (Goodenough et al. 2006). Here,
we focus on the detection of two roughly 9 years old fire
scars, using ALOS-PALSAR L-band and RADARSAT-
2 C-band quad-pol data data. The analysis includes data
pre-processing, decomposition analysis and classification
methodologies. The aim of the approach is to provide new
fire-scar mapping methodologies from SAR quad-pol data in
support of CWFIS and NFCMARS.

2.2.3.2 Methodology

Three techniques used to analyze space-borne quad-pol data
for fire scar detection include polarimetric decomposition,
scattering model, and classification. Decomposition
approaches, such as the entropy-alpha decomposition
(Cloude and Pottier 1997) and three component decomposi-
tion (Freeman and Durden 1998), provides various
parameters showing different scattering characteristics of
objects on the ground. Scattering model, such as the Ori-
ented-Volume-over-Ground (OVOG) (Cloude 2009),
estimates secondary parameters for volume and surface scat-
tering components. The classification technique utilizes these
scattering characteristics from the decomposition and
modelling, performs image classification and extracts fire
scars. Two latest classification methods employed here are a
coherence-based geometrical detector described in Marino
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and Cloude (2010) and a data driven multi-dimensional clus-
tering approach, i.e. the K-Nearest Neighbors (KNN)
(Richardson et al. 2010).

Compact polarimetry (compact-pol) architecture is a new
hybrid SAR mode and is proposed for the future Canadian
RADARSAT Constellation Mission (RCM). The compact-
pol mode transmits single circular polarization (left/right) and
receives  simultaneous  coherent orthogonal linear
polarizations. The advantages of this mode are wide-swath
coherent polarimetric information, low data rate, and rela-
tively simple transmitter architecture (Raney 2007). These
advantages plus shorter satellite revisiting intervals are par-
ticularly attractive for forest applications. Therefore, it has
become essential to quantitatively assess this new mode.
RADARSAT-2 quad-pol data were used to simulate RCM
compact-pol data and new compact-pol parameters using
compact-pol decomposition theories were introduced
(Cloude et al. 2012) to investigate whether the loss of infor-
mation through the compact-pol projection affects the quality
of detection of forest fire scars. A rule-based classifier based
on the physical interpretation of the compact parameters was
constructed. A detailed description of this classification
approach is provided in Cloude et al. (2013).

2.2.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on fire scar detection
are summarized in Table 2.5 and further described in the
Appendix.

The L-band data set was first corrected for any Faraday
rotation, a low frequency distortion arising from trans-
ionospheric propagation from the satellite to the ground.
Because all data sets provided were in single-look complex
format, multi-looking in azimuth and range directions were
performed to reduce speckle. Next, a box car filter was used
to generate the 3 x 3 PolSAR coherency matrix. To further
reduce topography relief effects on the polarimetric SAR
data, polarization orientation shifts introduced by terrain
slopes in the azimuth direction were detected and corrected
to generate reflection symmetry in the coherency matrix of
the polarimetric SAR data for the next stage of analysis.

The coherence-based geometrical detector was performed
on the PALSAR quad-pol data over the Keg River site.
Figure 2.10 is a Pauli RGB composite of the PALSAR
scene. The variety of colours indicates the wide diversity of

Table 2.5 Test sites and corresponding radar and validation data selected for the generation of showcases on fire scar detection

Application/

product Test site — Radar data

Fire scar Keg River, Alberta, Canada
detection ALOS-PALSAR (08.06.2009)

Reference data

Fire scar polygons (government of Alberta), Google Earth maps,
field knowledge

6 RADARSAT-2 acquisitions (between Nov. 2010 and

June 2011)
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Fig. 2.10 Keg River, ALOS-PALSAR acquisition: Pauli RGB

Fig. 2.11 Keg River, ALOS-
PALSAR acquisition: supervised
coherence detector

Supervised
Detector

Fig. 2.12 Keg River, ALOS-
PALSAR acquisition:
unsupervised coherence detector

Detector
=19
Delto=3.7¢

UnSupervised
Alpha

Fig. 2.13 Keg River, ALOS-PALSAR acquisition: KNN (K = 55, 22 clusters)

landcover types in this area. Figure 2.11 is the result of a fire
scar coherence detector using a supervised approach, i.e. with
training on a known fire scar region. Figure 2.12 is the result
for an unsupervised fire scar detector, both of which showed
good detection and low false alarm rates. Figure 2.13
illustrates the fire scar detection and clustering result from
the KNN classification, using H/A/a from the entropy-alpha
decomposition as input. Both of the coherence-based detector
and the KNN classifier showed very good fire scar results for
the PALSAR L-band Keg River scene.

A rule-based classifier was applied on simulated C-band
compact-pol data with imagery dimension 29 km x 27 km,
and the scene is shown in Fig.2.14. One issue was the
temporal variability of the simulated compact data due to
environmental changes. To avoid threshold values depending

partly on the data set and meet the time-invariant classifier
requirements, six simulated compact data sets in different
seasons were combined to form a co-registered data stack.
Each pixel was averaged in time across the whole stack to
create a time averaged Stokes vector. Four decomposition
parameters used for the rule-based classification were the
compact minimum volume, the degree of polarization, the
a-angle and the compact phase. Figure 2.15 is a pseudo
colour classification map of the averaged compact data. The
fire scars are dark grey areas and outlined by the GIS fire
polygons (red). The output fire scars from the rule-based
classification are shown in Fig. 2.16. In Bourgeau-Chavez
et al. (2002), Bourgeau-Chavez showed that fire scars
between 3 and 7 years in Alaska and Canada were detectable
with ERS or RADARSAT-1 single polarization data.



Fig. 2.15 Keg River, RADARSAT-2 average acquisition: rule-based
compact classification

However, because their approach is a manual interpretation
method based on the backscatter intensity, the accuracy of
fire scar detection results were largely affected by human
error, seasonal variations, topography effects, and environ-
mental conditions.

In this Section, we demonstrated that the strong signature
embedded in quad-pol SAR data provided much better
capabilities for fire scar detection and monitoring. The fire
scar detection results from quad-pol and simulated compact-
pol data showed the improved mapping of historical fire scars
in this age category. With such method, the fire scar detection
now is much more reliant on polarization information, toler-
ant of topographic variations and robust to absolute changes
in backscatter due to environmental conditions, which is
complementary to optical remote sensing and current fire
scar mapping techniques.
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Fig. 2.16 Keg River, RADARSAT-2 average acquisition: fire scar
identification

2.2.3.4 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
This Section focused on utilizing the phase information
contained in polarimetric SAR data to increase the sensitivity
of SAR measurement for scar identification. ALOS-
PALSAR and RADARSAT-2 data were processed and
analyzed over the study site in Keg River, Alberta. The
results showed that it is feasible to clearly map historical
fire scars of approximately 9 years of age with polarimetric
SAR data from both sensors. The coherence-based geometri-
cal detector and KNN classification results are encouraging,
showing the potential and effectiveness of such methodology
in segmenting and classifying polarimetric SAR data for fire
scar detection.
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Compact polarimetry provides a new wide-swath multi-
channel coherent mode for radar imaging. However, the loss
of information through projection and high entropy for vege-
tation scattering pose challenges for use in fire scar detection.
Here, compact polarimetry decomposition and classification
were employed. The degree of polarization, minimum-over-
time-volume, and compact phase were very useful
parameters for the rule-based classification, especially when
supported by the a-angle. With carefully defined threshold
values and the use of extended time series of simulated
compact data, the historical fire scars in this study area were
clearly detected. The false positives outside the fire scar
region in simulated compact-pol data can be further reduced
by using area filters. These results support the idea that, in
absence of an operational quad-pol mode, the compact mode
would be a good mode to use for wide area land-use moni-
toring and change detection.

2.3  Forest Height Estimation

2.3.1 Introduction, Motivation and Literature
Review

Forest height is one of the most important parameters in
forestry along with basal area and tree species or species
composition. It provides information about stand develop-
ment and/or site index and describes dynamic forest develop-
ment, modeling and inventory. Forest height is an (standard)
indicator for the site dependent timber production potential of
a stand, and is closely related (through allometric relations) to
forest biomass (see Sect. 2.5.1). Furthermore, accurate forest
height measurements allow concluding on the successional
state of the forest and can be used to constrain model
estimates of above ground biomass and associated carbon
flux components between the vegetation and the atmosphere.
The distribution of forest heights within a stand can be further
used to characterize the disturbance regime while high (spa-
tial and temporal) resolution forest height maps can be used
for detecting selective logging activities (Kohler and Huth
2010; Dubayah et al. 2010; Thomas et al. 2008; Hurtt et al.
2010).

When it comes to characterize dynamic forest processes
the (accurate) estimation of forest height change is even more
important than static forest height measurements. Forest
height change can be directly used to characterize forest
growth, mortality and deforestration and to conclude about
the associated carbon fluxes without the need of assumptions
(or knowledge) about the successional status (Kohler and
Huth 2010; Dubayah et al. 2010).

Being a standard parameter in forest inventories, forest
height is hard to be measured on the ground and typical
estimation errors are around 10% accuracy, yet increasing
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with forest height and density. In terms of remote sensing
techniques, lidar configurations have been today established
as the reference (in terms of vertical and spatial resolution
and/or accuracy) for measuring on local and regional scale
vertical and horizontal distribution of vegetation structure
components including vegetation height. Lidar estimation
methodologies have been developed and validated through
a variety of airborne and speceborne measurements and
experiments (Lefsky 2010). However, the rather small
footprints of spaceborne lidar configurations do not allow
global forest height (and structure) monitoring with reason-
able temporal resolution.

The introduction of polarimetric SAR interferometry
(PolInSAR) at the end of the nineties was a decisive step
towards developing remote sensing applications relevant to
forest structure. The inherent sensitivity of the interferometric
coherence to the vertical structure of volume scatterers com-
bined with the potential of SAR polarimetry to interpret and
characterise the individual scattering processes at different
structural components allows a qualitative and quantitative
determination of relevant (structure) parameters from SAR
measurements. Today, PolInSAR is an established technique,
allowing investigation of the 3-D structure of natural volume
scatterers.

The fundamental interferometric measurement is the com-
plex interferometric coherence, which comprises the interfer-
ometric correlation coefficient, as well as the interferometric
phase. For a given spatial baseline (indicated by the vertical
interferometric wavenumber k,) and a given polarization
(indicated by the unitary vector w (Cloude 2009; Marino
and Cloude 2010)) the complex interferometric coherence is
obtained by forming the (normalized) cross-correlation
between the corresponding interferometric images S;(W)
and S»>(w):

B <Si(w)S(w) >
) = S s < s ™

| exp (jo).

The measured coherence depends on the system and imag-
ing geometry, as well as on the dielectric and structural
parameters of the scatterers within the scene. A detailed
discussion of system induced coherence contributions can
be found in Lefsky (2010). After calibration of system
induced decorrelation contributions and compensation of
spectral decorrelation in azimuth and range the estimated
interferometric coherence can be decomposed into three
main decorrelation processes (Zebker and Villasenor 1992;
Bamler and Hartl 1998; Moreira et al. 2013):

y ke, w) = Y TempV SNR Vvoi (ks W) (2.5)
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* ysyg known as the Signal-to-Noise Ratio (SNR)
decorrelation is introduced by the additive white noise
contribution on the received signal;

* Y7emp 1S the temporal decorrelation caused by dynamic
changes in the scene occurring in the time between the
two acquisitions. It depends on the structure and the tem-
poral stability of the scatterer, the temporal baseline of the
interferometric acquisition and the dynamic environmen-
tal processes occurring in the time between the
acquisitions;

e The volume decorrelation yy,,(k,, w) is the decorrelation
caused by the different projection of the vertical compo-
nent of the scatterer reflectivity spectrum into the two
interferometric SAR images. It contains therefore infor-
mation about the vertical structure of the scatterer (Cloude
2009; Bamler and Hartl 1998). Indeed, yy,/(k,, w) is
directly related to the vertical distribution of scatterers F
(z, w) in the medium through a (normalized) Fourier
transformation relationship (Bamler and Hartl 1998;
Papathanassiou and Cloude 2001)

hy
[ F(Z,w)exp (jk.Z')dZ
Pvailke W) = exp (jkzn)

[ F(Z,w)dzZ
0

(2.6)

where hy indicates the height (or depth) of the volume.
k, = (m - 2z - AGQ)/[A - sin (O)] is the effective vertical
(interferometric) wavenumber that depends on the imaging
geometry (A6 is the incidence angle difference between the
two interferometric images induced by the baseline and 6, the
local incidence angle) and the radar wavelength 4. zj is a
reference height and ¢, = k.z, the associated interferometric
phase. For monostatic acquisitions m = 2, while for bistatic
acquisitions m = 1.

Accordingly, yv,/(k,, W) contains the information about
the vertical structure of the scatterers and allows to estimate
F(z, w) (and/or associated structure parameters) from
measurements of yy,/(k,, w) (or y(k,, w)). Indeed, for the
estimation of F(z, w) (and/or associated structure parameters)
from yy,i(k,, w) measurements at different polarisations,
frequencies and/or (spatial) baselines two approaches have
been explored in the literature:

1. The first one is to parameterise F(z, w) in terms of geo-
metrical and scattering properties and to use then yy,/(k.,
w) measurements at different spatial baselines and/or dif-
ferent polarisations to estimate the individual model
parameters. In this case, the scattering model is essential
for the accuracy of the estimated parameters. On the one
hand the model must contain enough physical structure to
interpret the inreferometric measurements, while on the
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other hand it must be simple enough in terms of
parameters in order to be determinable with the available
(in general limited) number of observations (Cloude 2009;
Papathanassiou and Cloude 2001; Cloude and
Papathanassiou 2003).

2. The second approach to estimate F(z, w) is to approximate
it by a (normalized) polynomial series or another orthogo-
nal function basis P,(z) (Cloude 2009; Cloude 2006):

F(z,w) = an(W)Py(2) (2.7)

and to use then yv,(k,, w) measurements to estimate the
coefficients a,(w) of the individual components. The advan-
tage of this approach is that there is no assumption on the
shape of F(z, w) required, allowing the reconstruction of
arbitrary vertical scattering distributions (Cloude 2006).

2.3.2 Methodology

2.3.2.1 Random-Volume-Over-Ground Inversion
For vegetation applications two layer statistical models,
consisting of a vertical distribution of scatterers Fy(z, w)
that accounts for the vegetation scattering contribution, and
a Dirac-like component mg(w)d(z — zo) that accounts for the
scattering contribution(s) with the underlying ground
(i.e. direct surface and dihedral vegetation-surface
contributions) have been proven to be sufficient in terms of
robustness and performance especially at lower frequencies
(Cloude 2009; Moreira et al. 2013; Papathanassiou and
Cloude 2001):

F(z,w) = Fy(z,w) + mg(w)d(z — o) (2.8)
where ms(w) is the ground scattering amplitude. Substituting
(2.8) into (2.6) leads to the model:

i Pl W) + p(w)

Vvl (kzs W) 11 p(w) v (ks W)
hy
[ Fv(z,w)exp (jk.2)dZ
=2 - . (2.9)
J Fy(z,w)dz

0

The ratio p(w) = mG(w)/f:VFv(z, w)dz is the effective
ground-to-volume amplitude ratio.

For modelling the vertical distribution of scatterers in the
vegetation layer Fy(z, w), or equivalently 7, (k,, w), different
models can be used. A widely and very successfully used
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model for F(z, w) is an exponential distribution of scatterers
(Moreira et al. 2013; Papathanassiou and Cloude 2001):
Fy(z,w) = exp[26(w)z/ cos (6p)] (2.10)
where o(w) is a mean extinction value for the vegetation layer
that defines the attenuation rate of the profile. Besides the
exponential profile, that appears to fit better higher
frequencies, Gaussian, or Linear scattering distributions
have been proposed especially at lower frequencies
(Garestier and Le Toan 2010a, b; Kugler et al. 2009).
Equation (2.9) comprises four unknowns: the forest height
hy, the extinction o(w), the ground topography phase ¢, and
the ground-to-volume amplitude ratio y(w) and cannot be
inverted by a single-channel (i.e. single polarisation) interfer-
ometric acquisition that provides only one (complex) yvi(k.,
w) estimate. In order to invert (2.9), one has to increase the
dimensionality of the observation space introducing:

» Baseline diversity: the dependency of yv.i(k;, W) on the
vertical wave number is essential as it allows to increase
the observation space in an effective way (i.e. without
increasing the number of unknown parameters) as F
(z, w) does not change with k, (Treuhaft and Siqueira
2000). At the same time, the choice of the vertical wave
number allows to optimize the inversion performance
(Krieger et al. 2005). However, the limitation of
multibaseline inversion approaches arises when the acqui-
sition of additional spatial baselines is associated with
non-zero temporal decorrelations (i.e. when they are not
acquired simultaneously).

e Polarimetric diversity: the variation of yv(k,, w) with
polarization is due to the polarization dependency of F
(z, w). The fact that certain components of F(z, w) have a
stronger polarised (scattering) behaviour than others
allows to use the polarimetric dependency of yv.(k,, W)
for the estimation of F(z, w) (Papathanassiou and Cloude
2001; Cloude and Papathanassiou 2003). Looking on the
two layer model of (2.8), while the ground scattering
component is strongly polarized and therefore has to be
assumed to be polarization dependent, the volume scatter-
ing component can be both: in the case of oriented
volumes (OV) the vertical distribution of scatterers in the
volume is polarization dependent, while in the case of
random volumes (RV), the vertical distribution of
scatterers in the volume is the same for all polarisations,
ie. Fy(z, w) = F\(2).

In forest applications random volumes have been
established so that a single polarimetric baseline allows the
inversion of the Random-Volume-over-Ground (RVoG)
model (Cloude 2009). Oriented volumes are more expected
to be important in agriculture applications where the
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scatterers within the agriculture vegetation layer are in
many cases characterized by an orientation correlation
introducing anisotropic propagation effects and differential
extinction (Treuhaft and Cloude 1999; Ballester-Berman
et al. 2005).

In the absence of temporal decorrelation (i.€. yremp = 1)
and assuming a sufficient high SNR (i.e. ysyg = 1), from
(2.5) follows:

7(kz W) = yyor(kz W). (2.11)
The inversion problem for the quad-pol single-baseline case
is balanced with six unknowns (hy, o, 1, _ 3, ¢o) and three
measured complex coherences [y(k,, wy) y(k,, w2) ¥
(k,, w3)] each for any independent polarization channel

V(kz’wl) Tvor(hy, o, 1y |k;)
min v (kz, w2) Yvorlhv, o, polks) ||| (2.12)
hv, o, p;, ¢o N
7 (kz, w3) Yvor(hv, o, psk:)

with 7yq (hy, o, y;lk;) modelled as in (2.9) and under the
RVoG assumption.

However, Eq. (2.12) does not have a unique solution for a
single baseline. Uniqueness can be established in terms of a
single baseline only by regularisation (Cloude 2009; Flynn
et al. 2002). A very efficient regularisation approach is to
assume no response from the ground in one polarization
channel (i.e., u3 = 0) (Papathanassiou and Cloude 2001;
Cloude and Papathanassiou 2003). This way, one obtains
an inversion problem with five real unknowns (hy, o,
U1 _ 2, @) and three measured complex coherences each
for any independent polarization channel (Papathanassiou
and Cloude 2001):

y(kz,wi) Vvol(hv, o, u |k;)
min }’(kz, Wz) - 7vol (hV’ o, ﬂ2|kz)
hy, 6, 1 @ _
}/(Zaw?:) Yvol (hv’a’/’l?) = O|z>

(2.13)

Equation (2.13) has now a unique solution in terms of &y,
and o: each {hy, o} pair for a given baseline (i.e. vertical
wavenumber k) and ¢ phase is mapped through (2.10) into
aunique yy,, (k;) value. However, the validity of this assump-
tion is not expected to be universal. Deviations of the real
vertical structure from the modelled one degrade the inver-
sion performance of (2.12) and (2.13). Two situations where
such a reality/model mismatch becomes obvious are:

1. In low extinction forest scattering situations given in
sparse forests the assumption that u3 = 0 is not valid,
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i.e. all polarizations are affected by a significant ground
scattering contribution. Also underlying topographic
variations within the scene can increase the ground scat-
tering contribution in all polarization channels. The pres-
ence of a residual u3 in (2.13) biases the inversion results
(usually causes an overestimation of forest height and/or
an underestimation of the extinction coefficient). For a
single-baseline inversion scenario, one way to still obtain
a solution is to fix the extinction value. However, the
relative strong variation of ¢ in forest environments limits
the inversion performance obtained in many forest
environments.

2. Inverse scattering distributions, i.e. cases where more
effective scatterers are located in the lower forest layers
than on the higher ones. This can be the case in sparse
forest environments with more or less distinct
understorey, or at lower frequencies when the effective
scatterers become larger and therefore located lower
within the forest architecture. In this case, the exponential
decay of Fy(z) as assumed in (2.11) is no longer valid
resulting in an underestimation of forest height and/or an
overestimation of extinction.

However, quantitative model based estimation of forest
height by means of (2.13) based on a single frequency, fully
polarimetric, single baseline configuration has been success-
fully demonstrated at different frequencies, from P- up to
X-band. Several space and airborne experiments
demonstrated the potential of Pol-InSAR techniques to esti-
mate with high accuracy forest height over a variety of
natural and commercial; temperate, boreal and tropical sites
characterized by different stand and terrain conditions (Lee
et al. 2010, 2013; Lavalle et al. 2012).

2.3.2.2 Non-volumetric Decorrelation
Contributions

Equation (2.9) accounts only for the volume decorrelation
contribution while other non-volumetric decorrelation effects
are ignored. Any decorrelation contribution reduces the inter-
ferometric coherence, and increases the variation of the inter-
ferometric phase. Furthermore, one has to distinguish
between real and complex decorrelation contributions:
while the expectation value of the interferometric phase
remains invariant in the case of real decorrelation
contributions, complex decorrelation biases the interferomet-
ric phase.

The most prominent decorrelation contribution in the case
of non-simultaneous acquisitions (repeat pass system) is tem-
poral decorrelation. It is caused by changes within the scene
occurring in the time between (or even during) the two
acquisitions. Such changes affect the location and/or the
(scattering) properties of the scatterers within the scene
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inducing in the most general case a complex decorrelation
(Lee et al. 2010, 2013; Lavalle et al. 2012).

In terms of the RVoG model (2.2), temporal decorrelation
may affect both the volume component that represents the
vegetation layer and the underlying ground layer and can be

accounted for by introducing yrep, w ) as complex temporal

decorrelation coefficient in (2.11) (Lee et al. 2010):

Y(kz’ W) = VTemp (W) }/Vol(kz’ W)

Fy(ke) + u(w)

) (2.14)

= exXp (jkzZO)yTemp (W)

It is expected that decorrelation processes within the vol-
ume layer differs from temporal decorrelation of the ground
layer, to account for this ¥emp(W) needs to be split into a
volume part and a ground part (Lee et al. 2010):

(ke w) = exp (jk.20)

» rrv(W)ry (k) + rrg(wW)p(w)
L+ u(w) '

(2.15)

yrv{w) describes the temporal decorrelation of the volume
layer and y75(w) the temporal decorrelation of the underlying
surface scatterer. Note that in general the decorrelation pro-
cesses within the volume layer occur at much smaller time
scales than the decorrelation processes on the ground (which
includes both surface and dihedral scattering) (Lee et al.
2010, 2013). As indicated, both coefficients may be
polarisation dependent and complex. For example, changes
in the dielectric properties of the canopy or ground layer lead
to (complex) polarisation dependent temporal decorrelation
contributions y(w) and y75(w) (Lee et al. 2010). Changes
in the vertical distribution of scattererers lead to complex
decorrelation contributions.

From the parameter inversion point of view now, the
RVoG model (2.14) with general temporal decorrelation
contributions cannot be solved under any (repeat-pass) obser-
vation configuration. Any additional measurement of y(k_, W)
at a different spatial baseline and/or polarisation introduces
the same number of unknowns (y7v and y75) as observation
parameters. However, even if the general temporal
decorrelation scenario leads to an underdetermined problem,
special temporal decorrelation events may be accounted
under certain assumptions. The most common temporal
decorrelation over forested terrain is wind-induced
decorrelation due to the (wind-induced) movement of the
scatterers (e.g. leaves and/or branches) within the canopy
layer. In terms of the RVoG model, this corresponds to a
change of the position of the scattering particles within the
volume in the two acquisitions that introduces a
non-volumetric decorrelation. However, in this case the
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scattering amplitudes as well as the propagation properties of
the volume remain the same. Assuming further that the scat-
tering properties of the ground do not change in the time
between the two acquisitions (2.12) reduces to:

}/Temp7V (kZ) + ﬂ(W)
L+ p(w)

Pvor(kzs W) = exp (jk.20) (2.16)

YTemp describes the real temporal decorrelation of the volume
scatterer. The inversion of PolInSAR coherences
contaminated by temporal decorrelation using (2.13) leads
to overestimated forest height as the RVoG model interprets
the lower coherence by an increased forest height. Note that
the estimation bias increases with increasing level of tempo-
ral decorrelation and is significantly larger for low(er) than
for tall(er) forests stands. The effect of yremp decreases with
increasing spatial baseline (Lee et al. 2013).

As indicated by (2.5), y(k,, w) may include several non
volumetric decorrelation contributions ypeco SO that:

Y(kz’ W) = 7DecoyVol(kZ’ W) (2 17)
In this sense, Eq. (2.9) becomes:
_ . Tv (kz) + ,u(W)
}/(kz’w) - exp( ](p0>yDeco 1 —‘rﬂ(W) . (218)

The inversion of (2.18) requires apart from polarimetric
also baseline diversity (Lee et al. 2010). Assuming ypeco to be
polarisation independent, at least a second baseline is
required for height inversion. Each baseline provides three
measured coherences [y(Wilk,;) y(Walkz) y(wslky)]:

Yv(kei) + u(w)

T 0w (2.19)

Y(w|kz,i) = exp ( j(pO,i)yDeco,i

where i = 1, 2 indicate the two spatial baselines. Assuming
u(w3z) = 0 the polarisation with the lowest ground contribu-
tion becomes:

7(W3 kz,i) = exp ( j(pO,i)yDeco,i7V(kz,i)' (220)
Equation (2.19) can be inverted in two steps. First, for each

baseline all possible triplets {Ay, 6, ¥peco, i} fulfilling (2.20)
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are estimated. Then the triplets with common height/extinc-
tion pairs {hy, o} are projected into each individual baseline
and hy, o are estimated according to

[y(W3|kz,l)1 _ |‘yDECO’17VEkZ’1;‘| H (221)

min
hy,o

7(W3 |kz,2) yDeco,Z?V kz,2

The advantage of (2.18) is that it can be inverted in a
multi-baseline sense without requiring absolute (i.e. residual
geometric, ionospheric and/or atmospheric) phase
corrections.

2.3.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest height
estimation are summarized in Table 2.6 and further described
in the Appendix.

The results achieved at L-band over the temperate
Traunstein site are presented in Fig. 2.17. The L-band HV
intensity image of the Traunstein forest site is shown on the
left. In the middle and on the right of Fig. 2.17 forest height
maps derived from Pol-InNSAR data acquired at L-band in
2003 (middle) and 2008 (right) are shown. Comparing the
two forest height maps a number of changes within the forest
become visible: the logging of individual tall trees as a result
of a change in forest management between 2003 and 2008
(marked by the green box); the damage caused in January
2007 by the hurricane Kyrill which blew down large parts of
the forest (marked by the orange box); and finally forest
growth on the order of 3-5 m over young stands as seen
within the area marked by the white circle. The validation
plot against the lidar reference data, shown in Fig. 2.18,
indicates correlation coefficient of 0.95 and a root mean
square error (RMSE) below 2 m.

The inversion results achieved at P-band over the tropical
Mawas site are shown in Fig. 2.19. The HH amplitude image
is shown on the top. The river crosses the left part of the
image embedded in secondary riverine forest. The lidar strip
is superimposed on the amplitude image. Forest height along
the Lidar strip is constant within =5 m around 27 m with
lower heights in the parts close to the river and the disturbed
forest areas. The PolInSAR forest height map is shown on the

Table 2.6 Test sites and corresponding radar and validation data selected for the generation of showcases on forest height estimation

Test site — Radar data

Krycklan, Sweden
TanDEM-X dual-pol (HH VV)
Traunstein, Germany

Application/product
Forest height

Mawas, Indonesia

Airborne E-SAR L-band repeat-pass quad-pol data 2003/2008

Airborne E-SAR P-band repeat-pass quad-pol data 2004

Reference data

Airborne lidar measurements
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Fig. 2.17 E-SAR L-band HV intensity image of the Traunstein test site (left). Forest height map computed from PolInSAR data in 2003 (middle)
and 2008 (right)

bottom. In the forested part the logging trails caused by
logging activities 10-15 years ago appear clearly. On the
top right the validation plot against the lidar reference data
is shown characterized by a correlation coefficient of 0.94
and a RMSE of clearly below 2 m, indicating an estimation
accuracy better than 10% of the mean forest height.

2.3.4 Comparison with Single/Dual
Polarimetric Data

The RVoG model, as given in (2.9) and assuming F(z,
w) = F(z), can be inverted by means of a dual-polarimetric
interferometric configuration that provides only two polari-
metric channels w; and w,. Assuming a zero ground-to-
volume amplitude ratio for one polarization (i.e. u(w,) = 0)
leads to a balanced inversion problem with unique solutions
for four unknowns, i.e. the forest height 4y, the extinction o,
the ground topography phase ¢, and the ground-to-volume
amplitude ratio u(w):

. y(kz, wi)
min o
hv.oupso|| | y(kg, Wa)

Pvor(hy, 0, p(wi)[k:)

Tvai(hv, o, p(w2) = Olk;)
(2.22)

Indeed, the inversion scheme of Eq. (2.22) has been used
to invert airborne but also space borne dual-pol interferomet-
ric configurations (Cloude 2009; Kugler et al. 2014). Com-
pared to the quad-pol case the performance of the dual-
polarimetric inversion has a reduced performance in terms of:

1. Biased estimation results which are obtained when the
assumption of a zero ground-to-volume amplitude ratio is
violated, i.e. when the ground scattering contribution is
significant in all polarisations. This can be the case at
lower frequencies and/or sparse forest conditions. With
respect to the zero ground-to-volume amplitude ratio
assumption, conventional dual-polarimetric configurations
acquiring a co- and a cross-polarised channel are in favour
when compared to dual-polarimetric configurations
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Fig. 2.18 Validation plot of forest height estimates at L-band over

Traunstein (2008) against the lidar reference

acquiring the two co-polarised channels. However, even
the cross-polarised channel can be affected by a significant
ground scattering contribution especially in the presence of
terrain slopes.

2. Larger variance of the obtained forest height estimates

when compared to the inversion results achieved by
using the full polarimetric information as only a polari-
metric subspace is available for performing the inversion.
This affects the conditioning of the inversion problem and
the accuracy of the obtained estimates. For the Traunstein
site the performance of two dual-polarimetric interfero-
metric configurations, HH and HV as well as HH and VV
has been evaluated and compared to the quad-polarimetric
case. While the forest height estimates obtained from both
dual-polarimetric configurations do not show any signifi-
cant bias, their variance is significantly higher across all
validation stands than the variance of the forest height
estimates obtained from the quad-polarimetric configura-
tion as indicated in Fig. 2.20.

3. Larger amount of (forest) points with no RVoG solution.

This is, in most cases, also the result of a non-zero ground
scattering contribution in the estimated yy,(k,, W) = yy(k;)

(v
(=]

Radar Height (m)

Fig. 2.19 Top: P-band HH intensity image of the Mawas test site. Bottom: Forest height map from PolInSAR data. Top right: associated validation

plot against the lidar reference
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Fig. 2.20 Increase of forest height standard deviation (expressed in %
of absolute forest height) for the dual-pol inversion case (blue: HH and
HV, red: HH and VV) when compared to the quad-pol case for each
validation stand of the Traunstein 2008 L-band

level that moves the y(k.) values out of the 7, (k;, hy, o)
solution space. In the case of Traunstein, both dual-
polarimetric inversion configurations have 15% more
non-invertible forest points than the quad-polarimetric
configuration where 95% of all forest points could have
been inverted.

In the case of a single-polarimetric interferometric configura-
tion that provides a single polarimetric channel w, the
parameterisation of the measured interferometric coherence in
terms of the RVoG model requires four parameters: forest height
hy, extinction o, ground topography phase ¢(, and ground-to-
volume amplitude ratio x(w). Even neglecting the ground scat-
tering contribution is not anymore sufficient to obtain a balanced
inversion problem. In this case, the inversion relies on additional
assumptions or external (a-priori) information on extinction or
on ground topography. Fixing the extinction ¢ has been proved
to compromise the inversion performance as it restricts the
ability of the RVoG model to interpret the spatial variability of
forest structure (Hajnsek et al. 2009).

A significant better performance is achieved by using an
external digital terrain model (DTM) to estimate the ground
topography phase exp(ip,) (Kurvonen and Hallikainen 1999;

Dobson et al. 1996). In this case y(KZ,W) can then be

inverted for forest height £y and extinction o as.

min || y(kz, W) exp (—jgo) = 7v(hv,0.p = Olk:) || (2.23)

hy,o

Figure 2.21 compares the two approaches using single-
and dual-polarimetric TanDEM-X data sets acquired over
Kryclan. The lidar-derived reference forest height map is
shown on the top left. The corresponding single- and dual-
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pol forest height maps are on top middle and top right
respectively. The associated validation plots are shown on
bottom middle and bottom right. Compared to the single-pol
inversion characterized by a correlation coefficient equal to
0.91 and a RMSE of about 1.6 m the dual-pol estimates is
noisier, in particular for the taller forest stands, but the overall
correlation coefficient equal 0.86 and a RMSE of 2.02 m
remains convincing. On the bottom left, the single-pol forest
height estimates are plotted against the dual-pol forest heights
estimates. A correlation coefficient equal to 0.93 in combina-
tion with a RMSE of 1.44 m underlines the consistency of the
results obtained by the two approaches.

2.3.5 Discussion on the Role of Polarimetry,
on the Maturity of the Application
and Conclusions

Single-pol interferometric data at a single baseline do not
provide enough measurables to invert forest height without
a-priori information e.g. on terrain topography. A single-pol
inversion is possible when multiple baselines are available, but
the performance might be compromised by the presence of
temporal decorrelation and the ratio of the spatial baselines.
On the other hand, forest height inversion is possible with dual-
pol interferometric data taking into account a reduced estima-
tion performance when compared to the quad-pol case. The
availability of quad-pol interferometric measurements, that
allows the implementation of adaptive optimisation technique,
is critical when algorithm robustness and performance matters.

Forest height estimation matured and developed in the last
years from a pre-operational to an operational PolInSAR prod-
uct that has been validated in the frame of several campaigns
over a wide range of forest, terrain and environmental
conditions. The overall obtained estimation accuracy is on
the order of 10% or better. Uncompensated non-volumetric
decorrelation contributions, such as temporal or additive noise
decorrelation, are the most critical error sources. The
limitations of the individual inversion approaches and the
error propagation through them are today well understood as
well as the options available to compensate for them.

24  Forest Vertical Structure Estimation
Using Multi-baseline Polarimetric SAR
Acquisitions

2.4.1 Polarimetric SAR Tomography

2.4.1.1 Introduction, Motivation and Literature
Review

The vertical structure of forest is widely recognized to be an

indicator of the above-ground biomass, whose knowledge is

crucial for understanding the carbon cycle. Moreover, the
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Fig. 2.21 X-band single and dual-polarimetric inversion results. Top: Forest height maps. Lidar H100 map (left), single-pol forest height map
(middle), dual-pol forest height map (right). Bottom: Validation plots: dual-pol (right), single-pol (middle), single- vs dual-pol (left)

knowledge of the vertical structure can reduce effects of
saturation in the measurement of biomass by means of remote
sensing systems. Through vertical structure it is possible to
characterize the state of a forest ecosystem, for instance
relatively to local/global climate change. Biodiversity in a
forest environment depends on its vertical structure (Pretszch
2009).

Forest structure and biomass are still too poorly quantified
across most part of the planet. For this reason, the estimation
of forest vertical structure has become a very important
research topic within the remote sensing community. Much
work has been done in recent years in order to characterize
the 3-D structure of the vegetation layer, as demonstrated on
the one hand by the employment of lidar sensors, and on the
other hand by the attention paid by different research groups
to SAR systems. Especially the processing of SAR data
results to be particularly appealing in forest observation. In
fact, the unique ability of low frequency (P-/L-band) waves to
penetrate into and through even dense vegetation and thus to
interact with the different vegetation layers, provides

sensitivity to vegetation structure. On the other hand, space
borne SAR systems can acquire data continuously and pro-
vide the related products with high spatial and temporal
resolution at a global scale.

A way to obtain the vertical structure of forests from SAR
data consists in making use of SAR tomography (TomoSAR)
techniques, which combine coherently (i.e. amplitude and
phase) more than two acquisitions separated by horizontal
and/or vertical displacements (baselines). The resulting
cross-track baseline diversity allows to produce an aperture
synthesis along the vertical plane to get full 3-D imaging
through elevation beamforming for each given range-azimuth
cell. The main result of this imaging process is a profile of the
backscattered power as a function of the height. The size of
the 3-D resolution cell is determined by pulse bandwidth
along the slant range direction, and by the lengths of the
synthetic apertures in the azimuth and cross-range directions.
This concept is sketched in Fig. 2.22. It is worth noting that,
provided a sufficient number of baselines, while polarimetric
diversity per se is not required for obtaining forest profiles,
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Fig. 2.22 Left panel: pictorial view of a tomographic SAR system; right panel: cross range and slant range extent of the TomSAR resolution cell

polarimetric information is essential to characterize the indi-
vidual scattering processes resolved in height. Such an
enhanced representation results in the possibility to (1) extend
from 2-D to 3-D all the classes of polarimetric estimation/
decomposition techniques; (2) provide new estimation/
decomposition techniques that are explicitly based on the
joint exploitation of tomographic and polarimetric data.

The development of TomoSAR started with single-pol
data. In parallel to the development of PollInSAR, TomoSAR
for forest observation was demonstrated with an L-band
airborne multibaseline (MB) experiment (Reigber and
Moreira 2000) carried out by the DLR E-SAR platform
over the Oberpfaffenhofen site. The possibility was shown
to gain insights about the 3-D nature of the scattering
mechanisms. However, two main limitations of SAR Tomog-
raphy for forests were apparent since the beginning, namely
the usually low number of images available for processing to
avoid large acquisition times and the consequential temporal
decorrelation, and the difficulty of obtaining ideal uniformly
spaced parallel flight tracks due to navigation/orbital
considerations. The baseline non-uniformity causes
distortions in the imaging point-spread function along height,
preventing from employing a simple Fourier-based focusing
due to anomalous side and quasi-grating lobes.

In order to mitigate the effects of acquisition
non-idealities, most of the subsequent research on (single-
pol) TomoSAR investigated different imaging solutions.
With particular reference to forest scenarios, a significant
model-free advancement was reported in Lombardini and
Reigber (2003), in which an adaptive beam forming tech-
nique based on the Capon spectral estimator was proposed
and tested. The adaptive beam forming allows a reamarkable

improvement in terms of both sidelobe level and resolution,
and it has become a state-of-the-art technique in TomoSAR.
Model-based alternatives were investigated as well, such as
the multiple signal classification (MUSIC) (Nannini et al.
2009) and multi-baseline inversion approaches based on the
covariance matching principle (Tebaldini 2010). These
techniques have been extended in order to handle different
polarimetric channels (Sauer et al. 2011; Huang et al. 2012;
Ferro-Famil et al. 2012; Frey and Meier 2011). Many
experiments carried out with real data have shown that the
use of polarimetric information not only increments the num-
ber of observables, but it also improves the accuracy of height
estimation of scatterers, increase height resolution, and
allows to estimate a vector of complex coefficients describing
the scattering mechanism at each height. Moreover, the com-
bination of multibaseline polarimetric data can also be used
to separate ground and canopy scattering, and to estimate
their vertical structures by following a relatively simple alge-
braic approach based on the sum of Kronecker products
(Tebaldini 2009) that extends with continuity the PollnSAR
concept. Other authors have also shown the possibility to
separate different contributions in the multibaseline
PolInSAR coherences in order to estimate structural
parameters associated e.g. to tree morphology (Neumann
et al. 2010).

In this Section, the application of TomoSAR techniques to
the estimation of the forest vertical structure is demonstrated
with real data acquired in the framework of relevant (repeat-
pass) airborne SAR campaigns. It is shown that the employed
methodologies can separate different scattering layers and
can estimate the distribution of the radar backscattered
power along height, being such profile a proxy for a biomass
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distribution profile. Moreover, the role of polarimetry in
improving and enriching the tomographic processing output
will be emphasized and discussed.

2.4.1.2 Methodology

In order to estimate a vertical profile of the backscattered
power, as already mentioned in Sect. 1.6, a plain Fourier-
based 3-D focusing suffers from inflated sidelobes and poor
height resolution (Lombardini and Reigber 2003). For this
reason, in this Section the adaptive beam forming (from here
on indicated with the acronym ABF for brevity) solution is
considered. In this Section, we recall the ABF principle,
while details can be found in Chap. 1.

In the classical single-pol TomoSAR, it is assumed to
process data from an equivalent cross-track array of
K phase centers, each of them corresponding to one of the
K repeated flight tracks of the SAR sensor over the area of
interest. As usual in SAR imaging and interferometry, after
focusing in the range-azimuth plane, the images are assumed
to be coregistered and properly compensated for the flat-earth
phase. Moreover, N independent looks (here formed from
multiple adjacent pixels) are used for processing. For each n-
th look, the complex amplitudes of the pixels observed in the
K SAR images at the same range-azimuth coordinate are
collected in a number of K X 1 complex-valued vectors
corresponding to the number of polarimetric channels
(Sauer et al. 2011). If fully polarimetric data are available,
without losing generality, they can be combined in the Pauli
basis. The resulting MB data vectors can then be stacked one
on top of the other in order to form the 3K-dimensional
MB-polarimetric data vector yp(n), which is statistically
characterized by the MB-polarimetric covariance matrixRp.

In forest scenarios, the scatterers at a given height z are
characterized by a random polarimetric behaviour, and they
are more properly described by means of a 3 x 3 polarimetric
covariance matrix T(z) rather than by a deterministic (coher-
ent) target vector (Ferro-Famil et al. 2012). In this way, the
scattering mechanism at the generic z will contribute to Rp
with T(z) & [a(z)a’™ ()], in which “®” denotes the
Kronecker product and a(z) is the K x 1 MB steering vector.
At the generic z, the ABF processor maximizes the total
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polarimetric power, and at the same time minimizes the
interfering power contributions coming from heights differ-
ent than z. By repeating this procedure for all the heights of
interest, a stack of estimated polarimetric covariance matrices
T(z) can be obtained. In this way, the polarimetric informa-
tion can be exploited for a full 3-D characterization of the
scattering, allowing for instance the use of incoherent polari-
metric decompositions, as well as the application of physical
scattering models for the 3-D identification of the single
scattering components.

The Kronecker product representation discussed before
can be specialized to express two-layer scattering models
like the ones that are commonly used to describe model
scenarios in the PolInSAR framework. A ground and a vol-
ume scattering layer will then contribute to Rp with 3 x 3
polarimetric covariance matrices T and Ty and with struc-
ture matrices (i.e. baseline-dependent only) Rs; and Ry,
respectively. As a consequence, under the RVoG assumption,
the MB-polarimetric covariance matrix Rp can be modelled
as a sum of Kronecker products as follows (Tebaldini 2009):

Ry = CG®RG+CV®RV.

It is worth noting that if only one baseline is available, then
Eq. (2.24) reduces to the classical PollInSAR model of (2.9),
and therefore it constitutes its consistent multibaseline exten-
sion. The form of (2.24) allows to separate ground and
volume scattering by means of algebraic techniques
(Tebaldini 2009).

(2.24)

2.4.1.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest structure
estimation are summarized in Table 2.7 and further described
in the Appendix.

To begin with, Fig. 2.23 shows a tomographic profile
obtained in the range-height plane by processing both the
L- and P-band Traunstein data with the full rank ABF at the
same (fixed) azimuth coordinate. Polarimetric TomoSAR
results have been derived from the selected data set by
using a square multilook cell in the range-azimuth plane

Table 2.7 Test sites and corresponding radar and validation data selected for the generation of showcases on forest structure estimation

Application/

product Test site — Radar data

Remningstorp, Sweden

Airborne E-SAR P-band repeat-pass
quad-pol data 2007

Krycklan, Sweden

Airborne E-SAR P-band repeat-pass
quad-pol data 2008

Traunstein, Germany

Airborne E-SAR L/P-band repeat-pass
quad-pol data 2009

Forest structure
estimation

Reference data

Airborne lidar measurements (ground topography and forest height), biomass
profiles extracted from ground measurements
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Fig. 2.23 Traunstein data set: tomographic slices obtained in the range-height plane at a fixed azimuth with the full-rank ABF. Estimated powers in
the three Pauli channels are RGB-coded (Red: HH-VV, Green: 2 HV, Blue: HH + VV). Top panel: L-band; bottom panel: P-band

measuring around 25 m X 25 m. This cell corresponds to
more than 100 independent looks, which is enough to guar-
antee a well-conditioned inversion of the MB-polarimetric
covariance matrix. The slant range coordinate spans an inter-
val of approximately 1.7 km, while the height varies in an
interval of 160 m around 650 m above the sea level. The
powers estimated in the three Pauli channel (i.e. the values on
the diagonal of the estimated T(z)) have been RGB-coded, as
usually done for polarimetric SAR images. Height resolution
capabilities are apparent, allowing to distinguish different
scatterers at different heights in the same cell, and do not
worsen significantly from near to far range, being robust to
the variation of the incidence angle. Bare ground areas can be
distinguished from forested areas. Moreover, the ground
scattering is located in correspondence of the lidar ground
height, and it is more powerful at P-band than at L-band. In
addition to height position, from the profiles of Fig. 2.23 a
first insight of the occurring scattering mechanisms can be
gained. For instance, in the forested areas, it is possible to
distinguish mixed surface and double-bounce components at
the ground level, as it is reasonable to expect from direct
ground backscattering and tree trunk-ground interactions.
Moreover, double-bounces are clearer at P-band, while at
L-band their polarimetric signature looks more affected by

the propagation through the canopy and/or the presence of
understorey, although some estimation bias can have been
induced by the volume due the limited height resolution and
number of baselines. At the increase of the height, volumetric
contributions (in green) start to appear at some range
coordinates, sometime mixed to multiple (even or odd)
bounce scattering contributions. They are always visible at
L-band, while they are semi-transparent for many stands at
P-band.

The following examples show how ground and volume
scattering can be separated. One way to achieve this, is to
exploit the ABF PolTomoSAR focusing. Using simple itera-
tive MB-polarimetric techniques (Pardini and Papathanassiou
2013), the ground height has been retrieved from the data
with an estimation accuracy of around 2 m at L-band and
1.5 m at P-band. Once the ground height is available, a simple
separation between ground and volume can be performed.
Figure 2.24 shows the Pauli RGB image of the ABF powers
in correspondence of the estimated ground height at both L-
and P-band. Double-bounce and direct surface scattering
contributions are predominant, as expected, with a few
contributions in the third Pauli channel due to residual
understorey vegetation and possible orientation effects due
to azimuth slopes. Notice that the ground scattering is more
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Fig. 2.24 Traunstein data set: Pauli images of the ground scattering isolated from the canopy (volume) scattering. Azimuth coordinate is on the
horizontal axis. Color coding is as in Fig. 2.23. Left panel: L-band; right panel: P-band

powerful at P-band than at L-band, as it is reasonable to
expect. The availability of the polarimetric covariance matrix
T apr(z) at each imaged height allows also to characterize the
scattering by means of conventional incoherent decomposi-
tion tools developed in SAR polarimetry. A demonstration of
this capability can be found in Fig. 2.25, in which the joint
distribution of the entropy and @ angle are plotted in corre-
spondence of the forested areas and for both ground and
canopy contributions in isolation. The majority of the ground
scattering (Fig. 2.25a, b) presents in general moderate
entropy, with @ angles around 45°, as it typical for vegetated
surface imaged after propagation through a forest canopy
with relatively small baseline aperture, therefore with some
volume-induced bias. Notice that the P-band ground scatter-
ing shows an increased number of low-entropy surface
contributions with respect to L-band. Concerning the volume
(Fig. 2.25¢c, d), an entropy/a diagram characteristic of a
random volume is obtained, although with entropy values
lower at P-band than at L-band.

Ground and volume scattering can also be extracted by
referring to model (2.24) and by using algebraic techniques.
This possibility is shown experimentally here after
processing the P-band Remningstorp and Krycklan data
sets. With reference to the Remingstorp data set, the two
profiles in the left panels of Fig. 2.26 were obtained by
processing the HH (top left) and HV (bottom left)
polarizations independently. The most apparent feature in
these panels is that the strongest scattering contributions
appear at the ground level, not only in HH polarization but
in HV polarization as well. This observation was interpreted
as a result of double bounce interactions between the vegeta-
tion and the terrain, which determined cross-pol contributions
at the ground level. In this situation, the vertical resolution
capabilities granted by TomoSAR do not suffice for the aim
of separating ground and volume scattering, as both occur at
the ground level. The results of the separation between
ground and volume scattering are shown in the right panels
of Fig. 2.26. In the profile relative to ground scattering the
backscattered power is associated with the ground level only,
as witnessed by the excellent agreement with lidar terrain

height. The profile relative to volume scattering yields a
much more uniform backscattered power distribution as com-
pared to HV, and also provides an excellent agreement with
lidar forest height.

The same procedure was applied to the aim of a large scale
characterization of the forested area within the Krycklan river
catchment. Figure 2.27 displays maps of the heights at which
the estimated backscattered power for volume-only scattering
undergoes a loss of 0 dB (i.e., no loss), 3 dB, 5 dB, and 7 dB
with respect to the peak value (which corresponds by defini-
tion to the phase center height). Lidar heights are displayed in
Fig. 2.27b to help the interpretation of the results. Forest
height was assessed through a direct investigation of the
shape of the backscattered power distribution. The estimation
was found to be unbiased for forest height values larger than
about 8 m. Standard deviation was assessed in about 3 m.
Results are shown in Fig. 2.27c. Another effective way to
characterize the forest vertical structure at large scale is to
display the ground-to-volume backscattered power ratio at
different polarizations, see Fig. 2.28. These maps are sensi-
tive to both forest height and terrain topography, and may be
used to assess the impact of multiple reflections on SAR
images.

The analysis carried out up to now has assessed the quality
and the information content of tomographic products. More-
over, some simple examples have been shown about the
validity of the resulting polarimetric information for scatter-
ing interpretation. A further qualitative experiment can be
carried out to understand if a correspondence exists between
the ABF spectral components and the biomass components at
different heights. For this validation, a few representative
biomass profiles calculated from ground measurements
have been selected, and the ABF full-rank profiles have
been estimated in the same coordinates.

Figure 2.29a shows six different biomass profiles (first
row) which refer to stands taller than 30 m. These profiles
mainly present a biomass contribution close to the top (tree
crown and stems) and an additional one close to the ground
(tree trunk). Starting from the left, in the third and the last two
profiles some understory vegetation can be noticed. In
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Fig. 2.29b the L-band ABF profiles are reported in the three
Pauli channels. Qualitatively, it is apparent the agreement
between the backscattered radar power and the biomass
distributions already by processing a relatively low number
of images (7) with a short total baseline (30 m), therefore
resulting into a vertical Rayleigh resolution around 15 m for
the profiles under analysis. It is worth noting that different

polarimetric channels are sensitive to (slightly) different bio-
mass components, as the profiles show variations from chan-
nel to channel. From this example, it is therefore possible to
conclude that polarimetric diversity is crucial for a complete
characterization of the mapping of biomass components into
radar scattering components.
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2.4.1.4 Comparison with Single/Dual

Polarization Data
The ABF profiles obtained by processing single polarization
MB data in the lexicographic basis are plotted in Fig. 2.29¢c. It
is apparent that one single power profile makes difficult the
interpretation of the scattering from the different vegetation
components. For instance, with this (realistic) baseline distri-
bution it is not possible to discriminate the presence of
understory vegetation without ambiguities. A way to circum-
vent this inconvenient could be to increase the number of
baselines and at the same time to increase the height resolu-
tion in order to be able to separate many more power
components. However, this may not be feasible depending
on navigation/orbital  considerations and temporal
decorrelation problems. As a consequence, the polarimetric
information, beyond the increased number of outputs,
becomes crucial (1) to relax the acquisition requirements,
and (2) to enhance profile interpretation by the application
of physical scattering models.

A second comparison is in order. Supposing to have full
polarization data available, one could also select a basis
different from the lexicographic one and to process the new
MB data independently from channel to channel. An example
is shown (again in correspondence of the reference profiles)
in Fig. 2.29d. Comparing them with the profiles in Fig. 2.29b,
the polarization-coherent full-rank ABF can resolve slightly
better different scattering components by keeping fixed the
total baseline length. Clearly, the presence of volume
scatterers reduces the contribution of polarimetry to any
increase of vertical resolution, differently from e.g. urban
scenarios. Not to be forgotten is of course the difference in
the output. While a polarization-incoherent processing only
outputs three real-valued profiles, the polarization-coherent
approach outputs an entire polarimetric coherence matrix.

2.4.1.5 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
In this Section the application of PolTomoSAR algorithms
has been demonstrated for the estimation of the vertical
structure of forests. The scattering can therefore be described
in 3-D by means of a stack of polarimetric covariance matri-
ces estimated at each height of interest, or by focusing on
certain layers. Experiments have been carried out with a P-
and an L-band MB-fully polarimetric data sets acquired by
the DLR E-SAR platform. Both data sets are characterized by
a relatively low number of baselines and an height resolution
in the order of magnitude of 10 m. The goodness of the
extracted polarimetric signatures has been qualitatively
assessed, and the estimated power distributions have been
compared with the corresponding biomass profiles derived
from ground measurements. A general agreement has been
found.
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To summarize, from the results of the experimental analy-
sis, the crucial role of polarimetry in the coherent processing
of MB data has been individuated in the following aspects:

1. Increased amount of structural-dependent information in
output, allowing the physical interpretation of the
estimated profile;

2. Enhanced possibility to separate scattering contributions
at different heights beyond the height resolution limit
imposed by both the total baseline length and the tomo-
graphic processor;

3. Higher height resolution in the profiles extracted in each
channel of the polarimetric basis;

4. Higher accuracy in the estimation of vertical structure
parameters.

Point (2), in turn, allows to relax constraints on the relative
acquisition tracks displacements, and might be of help for
forest vertical structure monitoring with non-optimal baseline
distributions. Point (3) has been shown here also by compar-
ing the coherent MB-polarimetric ABF with an adaptive
processing incoherent in the polarization channels. Point
(4) is out of the scope of this Section, but experimental
examples can be found e.g. in Sauer et al. (2011) and
Huang et al. (2012).

3-D (Pol)TomoSAR imaging requires additional efforts
compared to traditional 2-D SAR products and PolInSAR,
due to the need of gathering multiple viewpoints and to
employ more sophisticated processing techniques. Also,
compare to single-pol TomoSAR, a small disadvantage of
TomoSAR is the need for a larger multilook cell in order to
obtain a reliable and well-conditioned estimate of the
MB-polarimetric covariance matrix. Nevertheless, this issue
is mitigated in SAR sensors with very high range-azimuth
resolution, for which a satisfactory multilook degree for a
stable ABF inversion can be achieved without increasing
dramatically the horizontal resolution cell of the output
products. With reference to forest monitoring and
applications, this has an impact on the resolution of forest
structure products, and on the way in which they are able to
describe (dynamic) phenomena that may occur at very differ-
ent scales depending on the kind of forest.

Another limitation peculiar of forest scenarios is the tem-
poral decorrelation of the scattering. This factor has limited
until now the tomographic forest monitoring from space
borne platforms due to the large revisit times. Very recently,
the possibility to track scattering changes has been shown in
the so-called differential tomographic framework, which
combines in a synergic way spatial and temporal spectral
analysis. However, although promising and extended in a
polarimetric sense in Lombardini et al. (2010), these
techniques are in a very early stage of experimentation.
Nevertheless,  space  borne  implementations  of
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(Pol)TomoSAR will benefit from repeated single-pass (Pol)-
InSAR implementations, in which a temporal-decorrelation-
free PolInSAR coherence is available for each satellite pass.

PolTomoSAR is quite well developed and mature from
the signal processing point of view. Many alternative
techniques are continuously being investigated and their per-
formance characterized. In particular, the adaptive processing
in general represents a state-of-the-art, model-free, yet well-
performing algorithm. Modern techniques based on compres-
sive sensing are being investigated as well. A still underde-
veloped element is the physical interpretation of profiles. The
link between the obtained profiles that depend in general on
frequency, polarization and acquisition geometry and physi-
cal forest structure parameters is essential for establishing
potential applications and is today not well understood,
although intensively investigated.

2.4.2 Estimation of Vegetation Structure
Parameters

2.4.2.1 Introduction, Motivation and Literature
Review

Forest structure and biomass are important components in
terrestrial ecosystem carbon and water cycles and provide
significant controls on land—atmosphere interactions. The
present estimate by IPCC (Intergovernmental Panel on Cli-
mate Change) is that deforestation amounts to between 10%
and 30% of the total anthropogenic carbon flux. The range of
uncertainty is large due to the lack of accurate measurement
techniques. SAR observations can help to better quantify
terrestrial carbon stocks and fluxes in forest biomass,
providing several advantages over other techniques: indepen-
dence of the time of the day (in comparison to optical remote
sensing), cloud cover penetration (using selected low
frequencies), large coverage (in comparison to lidar), and
high resolution (in comparison to radiometers).

Early remote sensing attempts to estimate biomass were
originally based on regression from microwave backscatter
signal (possibly combining multiple frequencies and
polarizations). However, methods based on radar backscatter
signals are limited by saturation and loss of sensitivity to
biomass for high biomass levels (maximum at about
80-200 tons/ha), depending on the wavelength, polarization,
and incidence angle. In addition, the saturation is dependent
on forest type, ground topography, and environmental
conditions. Due to spatial and temporal forest variability
and the signal dependence on instrument parameters, the
regression approach poses difficulties to generalize over
extended areas.

Recent advances in Lidar and InSAR enabled the estima-
tion of vertical forest structure. To a large extent, forest
biomass is determined by tree structure, which makes the
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vertical structure information a powerful indicator for bio-
mass. Lidar illuminates the forest with laser rays and allows
the reconstruction of vertical structure profile from the
returned signal (waveform). Especially the recently devel-
oped small-footprint lidars provide unprecedented means
for high-resolution structure estimation. However, lidar cov-
erage is limited, disallowing global forest monitoring based
on this technology alone.

On the other hand, the developments in InSAR, PolInSAR
and TomoSAR enable large coverage and independence of
cloud cover. Acquiring SAR signals from two (or more)
slightly displaced flight trajectories (possibly using the
same platform in a repeat pass configuration) and exploiting
the effect of interference of coherent waves enables InSAR to
estimate several phase centers inside of the forest, and thus
the important parameters of forest structure extent. Polarime-
try plays an important role by helping to decompose different
scattering processes from the ground and the canopy. In order
to further improve the accuracy of forest structure and bio-
mass estimation, multibaseline (MB) approaches are consid-
ered. This showcase demonstrates the application of
MB-PolInSAR to airborne SAR data over temperate and
boreal forests estimating forest structure, biomass, tree mor-
phology and ground scattering related parameters.

Interferometric decorrelation in volumetric media such as
canopy, snow and ice has been modeled to measure vegeta-
tion depth and extinction for the first time in 1995-1996
(Hagberg et al. 1995; Treuhaft et al. 1996). The model
resembles a simple sparse-medium water cloud model
(Treuhaft et al. 1996). In 1997-1998 time frame, authors in
Cloude and Papathanassiou (1998) and Papathanassiou and
Cloude (2001) proposed to combine polarimetry with inter-
ferometry to discriminate ground scattering from volume
scattering in the canopy. This enables to estimate forest
height by differentiating the InSAR phase centers from dif-
ferent polarizations, or to invert the complex coherence
model accounting for the extinction. PolInSAR coherence
optimization in single- and multi-baseline configurations
has also been used to reduce phase uncertainty and to deter-
mine the polarization with lowest/highest InNSAR phase noise
(Cloude and Papathanassiou 1998). Also extensive
PolInSAR scattering models for random and oriented scatter-
ing in the canopy and single- and double-bounce scattering at
the ground level were derived and evaluated in Treuhaft and
Siqueira (2000). Since then, the PolInSAR approach to mea-
sure volumetric media properties has been extended and
applied to other volumetric media (such as snow, ice, and
agriculture (Lopez-Sanchez et al. 2007)) and to complex
multi-scattering environments in urban areas. Polarimetry
demonstrated to be a key factor in distinguishing physically
different scattering centers inside individual resolution cells.

Alternative radar approaches to estimate forest structure
are based on tomography (Reigber and Moreira 2000), multi-
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baseline InSAR estimation (Treuhaft et al. 2009), and polari-
zation coherence tomography (Cloude 2006). The first aims
to reconstruct the reflectivity profile of the volume by using
conventional or adaptive beam forming techniques (see Sect.
2.4.1). The last two rely on structure models, which are fitted
using coherences from different baselines, and which
corresponds to probing the medium with different Fourier
frequencies.

Another approach (Neumann et al. 2010), as presented in
this Section, aims to further decompose the MB-PolInSAR
data into ground and volume sources related to polarimetric
scattering, vertical profile structure and temporal change. On
the one hand, this improves the understanding of the involved
processes, and on the other, providing e.g. tree morphology
parameters would enhance tree species characterization and
biomass estimation.

The limitations of PolInSAR are governed by the geomet-
ric configuration of the interferometer (structure sensitivity)
and the ambiguities related to vertically non-homogeneous
structure, spatial variability of the forest, temporal
decorrelation in repeat pass acquisitions, and possibly other
minor (but usually well understood) noise sources (thermal
noise and other instrument/system induced effects) (Krieger
et al. 2005).

Height sensitivity and accuracy is varying with environ-
mental and acquisition configuration parameters. On one
side, airborne acquisition geometry causes variation in height
sensitivity along the swath, and on the other side, the optimal
acquisition geometry depends on the actual forest height. One
proposed approach was to combine height estimates from
multiple single-baseline PolInSAR data sets, if they are avail-
able (Hajnsek et al. 2009).

Acquiring SAR data in repeat pass configuration leads to
illuminating possibly changed targets. Recent airborne and
ground-based studies confirmed several common sources of
temporal change in PolInSAR observables, including wind,
growth, and changes in soil and vegetation water content.
Initially, temporal decorrelation has been modeled by a
Gaussian process. Over a short temporal scale (sub-hour
level), wind effects appear to be the dominating source of
decorrelation. Therefore, in Askne et al. (1997), the authors
incorporate change in the Gaussian motion with height, argu-
ing that thinner branches (higher in the canopy) are stronger
effected by the wind than thicker branches and the trunk
(closer to the ground). Soil moisture effects have been
observed to affect the interferometric coherence and phase.
Diurnal variability of vegetation water content is as well
expected to affect the temporal decorrelation, as recently
observed in ground-based radar measurements (Hamadi
et al. 2013).

Recent important contributions to PolInSAR statistical
properties and estimation approaches promise further
advances. Tests of common physical assumptions, such
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scattering symmetries and stationary behavior, were initially
derived in Ferro-Famil and Neumann (2008). The singular
value decomposition based “Sum of Kronecker Products”
(SKP) provides an elegant way to decompose the
MB-PolInSAR covariance matrix into a parametric form of
independent contributions (Tebaldini 2009). This work was
recently updated by deriving a maximum likelihood estima-
tor for the linear structure of two independent layers, as
presented in [R7].

2.4.2.2 Methodology

The MB-PolInSAR approach of this Section consists of com-
bining a physical model-based polarimetric decomposition
with the PollInSAR Random Volume over Ground (RVoG)
coherence model for the vertical forest structure. The goal is
to enhance vertical structure estimation and to permit the
retrieval of morphological vegetation parameters as well as
ground parameters under the vegetation. The temporal
change is taken into account in order to compensate for the
caused decorrelation.

The models used in PolInSAR are usually based on the
two-layer model, where it is assumed that the signal can be
decomposed into independent and distinctive layers,
representing the ground and the volume. The “distinc-
tiveness” can be based on three orthogonal principles:
(1) polarimetric scattering, (2) vertical extent, and (3) tempo-
ral processes (compare Fig. 2.30). Though the layers are
considered independent, they can affect each other. For
instance, the volume layer attenuates the ground scattering,
possibly modifying the ground scattering polarization by
means of refraction. The double-bounce is caused by scatter-
ing in both layers, though structurally it is attributed to the
ground layer.

The modeled ground contribution consists of attenuated
surface scattering from the soil, the double-bounce scattering
between the soil and tree elements such as trunk and
branches, and volumetric scattering from a low layer of
understory. The volume layer is dominated by diffuse vol-
ume scattering from the canopy elements, including multiple
scattering effects. Forest canopy is expected to be a sparse
medium, attenuating the signal with the distorted Born
approximation. The vertical profile is represented by an
effective scattering profile F(z), which takes into account
extinction and the distribution of the scattering elements.
Different forms were proposed for F(z) in the literature,
including a uniform attenuated, Gaussian, or represented by
Fourier or Legendre series. In this example, to represent the
temperate and boreal forests, F(z) is characterized by two
parameters, extinction o, and the canopy-fill-ratio r,, as
outlined in Fig. 2.31.

The polarimetric coherency matrix of the volume compo-
nent is characterized by two parameters related to the polari-
zation entropy in the canopy (called orientation randomness
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Fig. 2.31 PolInSAR model and
retrieval representation in the
coherence plane

in Neumann et al. (2010), as it is more constrained than the
generic entropy) and the effective scattering mechanism type.
The particle anisotropy characterizes the effective shape of
the average particle in the polarization plane in dependence
of the particle and background permittivities The orientation
randomness characterizes the width of the distribution of
particle orientation angles in the polarization plane
(Neumann et al. 2010). The polarimetry of the volume com-
ponent can range from purely randomly oriented collection of
scatterers with high polarization entropy to a less diffuse form
with ordered branch structure.

Prior to parameter retrieval, data preparation consists of
the following steps, starting with a stack of single-look com-
plex (SLC) data sets for multiple acquisitions and
polarizations: flat earth removal, range spectral filtering,
polarimetric calibration, MB-PolInSAR covariance matrix
estimation including pre-summing and speckle filtering,

— canopy-free

radiometric calibration, SNR compensation, polarimetric sta-
tionary calibration, local orientation angle compensation,
ground topography phase shift, natural media (reflection
symmetry) assumption, forest/non-forest pre-classification.
In the retrieval phase, most crucial is the estimation of the
ground elevation phases and the linear ground-volume struc-
ture. Using one of the recently proposed least squares or
maximum likelihood approaches (Tebaldini 2009) provides
a parametric decomposition of the MB-PolInSAR covariance
matrix. The determination of the decomposition parameters
(which characterize the ground to volume ratio and the polar-
ization responses at both layers) is based on a set of
assumptions. Common assumptions are based on physical
insights into the ground-volume distinctiveness and can
include metrics on polarization entropy, scattering mecha-
nism type, ranges for forest height and ground elevation,
and temporal effects. The constrained optimization problem
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is solved in a least squares sense determining the decomposi-
tion of the MB-PolInSAR covariance matrix into two layers,
providing the ground and volume PolSAR matrices, and a
MB series of coherences for the ground and volume
components. The physical structure indicators are extracted
from the PolSAR matrices, such as canopy orientation
randomness, scattering mechanism types, ground-to-volume
ratio, etc. The final estimation of the vertical structure profile
is performed in an additional step by fitting the coherence sets
for the ground and volume to a model of the verticals struc-
ture distribution.

For the demonstration of biomass estimation, different
regression frameworks (multiple linear regression (LR), sup-
port vector machines (SVM), and random forests (RF)) were
evaluated by using field measurements of above-ground-bio-
mass. Validation is performed using leave-one-out approach.

2.4.2.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on forest parameter
estimation are summarized in Table 2.8 and further described
in the Appendix.

MB-PolInSAR modeling and inversion provide many
retrievable parameters including: forest height, ground eleva-
tion topography, vertical structure characterizing parameters
(attenuation, canopy-fill-factor, differential extinction), tem-
poral decorrelation, ground-to-volume ratio, individual
power contributions, ground and volume scattering mecha-
nism types and orientation randomness. For the Traunstein
2003 data, only the forest height can be related to the valida-
tion data, as projected from the 1998 inventory. In the fol-
lowing, we will present several retrieved forest structure
parameters from the Traunstein 2003 data as obtained in the
study (Neumann et al. 2010). Estimates are plotted in
Fig. 2.32.

1. Vertical forest structure: forest heights are estimated close
to projected field measurements with an average stand-wise
root mean square error (RMSE) of about 5 m and standard
deviation of 4.3 m. The heights were underestimated by
1.5 m. However, in some stands, the forest heights vary
continuously, indicating non-homogeneity inside of the
stands. Figure 2.33a shows the forest heights and the
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individual canopy layer depths for the 20 evaluation stands.
The red and green lines in this plot represent the field
measured and PolInSAR estimated forest heights, respec-
tively. The brown line delimits the canopy layer from the
non-canopy layer above the ground and represents the
canopy-fill-ratio, normalized to the total vegetation height.
It is notable that the smallest error corresponds to the most
homogeneous forest stand #2, which is largely dominated
by a single species, Northern Spruce (bias: —0.3 cm;
RMSE: 1.5 m). The highest errors correspond to stand
#20: the heights are underestimated by 5 m with an
RMSE of 7.6 m. However, examining the optical data,
one can observe several clear cuts and roads inside of this
forest stand, which we initially assumed to be homogenous.
This indicates significant changes in the spatial structure of
this forest stand between the forest inventory in 1998 and
the date of radar acquisition in 2003.

2. Temporal decorrelation: using the full model inversion

allows us to estimate the total amount of temporal
decorrelation, which varied significantly with forest
stand and baseline between 0.5 and 0.95, as presented in
Fig. 2.33b. The temporal decorrelation of the volume at
these time scales is mostly caused by wind, which is
non-stationary, neither temporally nor spatially. These
results indicate that the temporal decorrelation is more
correlated with the forest height and the spatial baseline
and less with the time separation at the given sub-hour
level.

3. Orientation randomness: Fig. 2.32d shows the estimated

degree of orientation randomness over the whole scene.
The standard deviation of orientation randomness is low,
and the distinctiveness is high, which permits discriminat-
ing between the different evaluation stands. As discussed
in the theoretical part, this parameter depends mostly on
the morphology of the tree structures and the incidence
angle. The incidence angle dependence is clearly observ-
able in the scatter plot in Fig. 2.33d. Forest species type
effects on orientation randomness were well visible.
While coniferous tree canopies caused lower orientation
randomness, down to 0.65, the highest orientation
randomness was observed for deciduous trees, and in
particular for the maple dominated forest stand #3 in the
center of the image.

Table 2.8 Test sites and corresponding radar and validation data selected for the generation of showcases on forest structure estimation

Test site — Radar data

Krycklan, Sweden

Airborne E-SAR L-band repeat-pass quad-
pol data 2008

Traunstein, Germany

Airborne E-SAR L-band repeat-pass quad-
pol data 2003

Application/product

Vegetation parameter
estimation

Reference data

Airborne lidar measurements (ground topography and forest height),
forest inventory data
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4. Particle scattering anisotropy: The effective particle scat-

tering mechanism type seems to be insensitive to the
evaluation stand and the incidence angle. In contrast, the
particle anisotropy phase has a large dynamic range of
about 70 degrees over the different evaluation stands.
These findings were surprising and still need to be con-
firmed by rigorous analysis.

. Extinction and canopy fill factor: Extinction o, (average at
0.15 dB/m) and the canopy-fill-ratio (average at 0.6) pro-
vide additional degrees of freedom for the adaptation of
the model to the given forest structure. However, these
estimates were found to be partly correlated with each
other, which indicates that the used forest structure
model and inversion approach are still ambiguous and a
better representation should be found.

6. Differential extinction and coherence: Based on the

estimated structure (extinction) and the PolSAR

Fig. 2.32 Traunstein test site: optical image, POISAR image with delineated forest stands, estimated forest height, and orientation randomness

covariance matrix, we estimated the differential extinction
in the canopy between HH and VV polarizations to be up
to 0.06 dB/m. This tree canopy orientation induced effect
changes the PolInSAR coherence for the canopy. The
induced effect on coherence magnitude and phase is at
the order of 0.005° and 1°, respectively.

. Ground level contributions: Next to ground topography

elevation, PolInSAR allows to estimate the ground-to-vol-
ume ratio (estimated to be in average about 0.2) and the
individual PolSAR covariance matrices for the ground and
volume contributions. We observed noteworthy cross-
polarized contributions (about 20%) at the ground level,
but the major scattering power at the ground was observed
in the Pauli HH-VV component (about 50%). Though
HH-VV is dominant, these results suggest that a simple
first-order models for the ground component are insufficient
to reliably represent the ground scattering inside the forest.
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Figures 2.34 and 2.35 represent the Krycklan catchment
area and show forest structure parameters retrieved from
MB-PolInSAR data: polarimetric image in Pauli matrix
basis (2.34a), lidar top forest height (h100) (2.34b), forest
height (2.34c), biomass using SVM regression (2.34d),
ground and volume orientation randomness (2.35a, b) and
ground and volume scattering mechanism types (2.35c, d).
Investigating regression techniques using a combination of
PolInSAR retrieved forest structure parameters allowed us to
improve biomass estimation at both, L- and P-band
frequencies. On the one hand, providing more structure-
related input parameters naturally improves the regression.
However, due to spatial and temporal forest variability this
regression usually does not generalize over large forest areas.
We evaluated three approaches (Multiple Linear Regression
(LR), Support Vector Machines (SVM), and Random Forests
(RF)) using up to 14 parameters, independently at both
frequencies. Using  “leave-one-out”  cross-validation
approach, the best biomass RMSE were 19.7 and 22.7 t/ha
at L- and P-band, respectively, using either SVM or LR. For
comparison, without providing any forest structure

information, the best RMSE values were 27.3 and 28.5 t/ha
at L- and P-bands (both using SVM).

These were initial results on biomass regression from selected
MB-PolInSAR forest structure estimates. It is to expect, that the
results can be improved by more systematically evaluating the
entire available parameter space and by performing a better
regularization of the regression frameworks.

2.4.2.4 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
This Section demonstrated a MB-PolInSAR approach for
forest structure and biomass estimation on two airborne
data sets at L- and P-band frequencies. We presented a
model to characterize polarimetric interferometric radar
response from vegetation. For the volume component, a
novel polarimetric model was used to allow varying degrees
of orientation randomness and scattering anisotropy inside
the canopy.

The forest height estimation performance has been

evaluated on real airborne L-band SAR data over the
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Fig. 2.34 Krycklan catchment. From left: L-band PolSAR image, Lidar height (th100), PolInSAR height and biomass estimates

Traunstein forest. Using three baselines, the forest height has
been underestimated with an average bias of 1.51 m and
RMSE of 4.97 m. In addition, polarimetric parameters and
backscattered powers were estimated for both layers, the
ground and the canopy. On the other hand, the estimations
of the extinction and the canopy—fill-factor were not satisfac-
tory, as there seems to rest a level of ambiguity and correla-
tion between these two parameters. Furthermore, differential
extinction and temporal decorrelation were estimated.

The same methodology was applied to boreal forest in the
Krycklan Catchment to estimate forest structure parameters
and to successively estimate biomass via regression. The
combination of polarimetric canopy and ground indicators
with estimated forest structure information (consisting of
forest height and ground-to-volume ratio) improved the
RMSE of biomass estimation up to 27% and 43% at L- and
P-bands, respectively.

The limitations for the presented parameter retrieval
framework are determined by model assumptions. Only a
simplified vegetation structure is taken into account assuming
vertically uniform and horizontally homogeneous layers.

Next it is assumed, that the average effective particle shape
is representative for all particles, and independent of height
and polarization orientation. The variation of extinction with
polarization is assumed to be insignificant for parameter
retrieval. Also, a plane of reflection symmetry is assumed to
exist for the illuminated vegetation area. The possibility to
estimate the degree of temporal coherence over vegetation
provides new opportunities for PolInSAR time series analy-
sis, which might lead to competitive multi—temporal moni-
toring of ecosystem dynamics. However, further theoretical
and experimental investigations need to be conducted to
improve the understanding and to examine the possibilities
and limits of radar remote sensing of the temporal behavior
and the forest structure.

Interferometry and polarimetry provide complementary
information on the illuminated forest and we only start to
explore the potentials for forest monitoring using these
techniques. Though, it is an actively developing field and
over the last few years several important breakthroughs in
information content understanding and processing were
reported which should help making this technique operational.
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Fig. 2.35 Krycklan catchment. From left: Ground and volume orientation randomness, and ground and volume scattering mechanism types

2.5 Biomass Estimation

2.5.1 Biomass Estimation: A Review

2.5.1.1 Introduction, Motivation

Biomass is defined as the quantity of living organic matter
per unit volume and is usually given as a mass, or a mass per
unit area. Forest biomass refers to living and dead organic
material of plants and trees in the forest including roots, stem,
stump, branches, bark, seeds and foliage. Above ground
forest biomass defines to the forest biomass above the soil
(e.g. excluding the roots). About half of the forest biomass is
carbon, so that biomass is often used as proxy for carbon and
its spatial distribution characterises the distribution of carbon
in the biosphere (Houghton et al. 2009; Houghton 2005;
IPCC good practice guidance for land use, land use change
and forestry 2003). Dynamic variations in the biomass are
therefore a direct measure of the exchange of carbon between
the terrestrial ecosystem and the atmosphere (GCOS 2003,
2004; GOFC-GOLD 2016). In this context, biomass was
identified by the UNFCCC as an Essential Climate variable
(GCOS 2003), whose determination is of great importance to

reduce the uncertainties in our knowledge of the climate
system. The importance of biomass manifests itself not only
due to its role as a carbon sink or carbon source (Canadell
et al. 2007; DeFries et al. 2002), but also due to its relevance
for characterising forest or ecosystem productivity (Keeling
and Phillips 2007).

Biomass inventories and biomass dynamics in local,
regional and global scales are essential, though, up to now,
largely unknown initialisation parameters of current climate
models. A precise determination (on the order of 20%) of the
spatial distribution of forest biomass would be sufficient to
match the inaccuracy of terrestrial carbon fluxes to the other
components of the carbon cycle (IPCC good practice guid-
ance for land use, land use change and forestry 2003).

The significance of an accurate knowledge of biomass is
further underlined by the increased importance of two other
aspects: (1) the increasing use of biomass for generating
energy and the resulting increase in the proportion of green-
house gases emitted from biomass (Fargione et al. 2008), and
(2) the increased interest in reducing greenhouse gases by
preventing deforestation and forest damage (UNFCCC 2016;
UN-REDD Programme 2008; Herold and Johns 2007).



100

Despite its importance, estimations of biomass at local,
regional and global scales are today very inaccurate. One
reason for this is the large effort required for a precise
estimation of forest biomass. Direct biomass measurements
are destructive and therefore costly in terms of resources,
effort and time (Chave et al. 2003). Usually, biomass is
estimated on a single tree basis from a number of
measurements such as tree height and/or diameter and the
use of appropriate allometric relationships (Chave et al.
2005). The stand biomass levels are then obtained by sum-
ming up the single tree biomass levels up. In heterogeneous
forests, this procedure is very arduous and often inaccurate,
meaning that ground measurements of biomass in natural
forests are never better than 20% (Chave et al. 2003). Partic-
ularly in tropical forest ecosystems there are large deviations
also induced by allometric deviations. On larger scales, apart
from the uncertainties arising from forest complexity, the
different definitions, measurement protocols and used
generalisation methods introduce additional inconsistencies
in regional and national inventories and data bases. Finally,
the Intergovernmental Panel on Climate Change (IPCC)
recognises the lack of exact spatial forest biomass data (the
measurement errors often exceed the estimated mean value)
as one of the largest uncertainties in the global carbon budget.

Figure 2.36 demonstrates the actual stand of uncertainty. It
compares four biomass maps of the Brazilian Amazon basin:
on top left the Saatchi et al. 2007 map (Saatchi et al. 2007a),
top right the Saatchi et al. 2011 map (Saatchi et al. 2011a),
bottom left the Nogueira et al. 2008 map (Nogueira et al.
2008) and bottom right the Baccini et al. 2012 map (Baccini
et al. 2012). All four are generated by combining ground and
remote sensing data. However, each of them is using a
different set of remote sensing data, different approaches to
interpolate ground and remote sensing data, and/or different
allometric relations. It is quickly evident that the four maps
deliver strongly deviating mean biomass values, spatial dis-
tribution patterns and spatial biomass trends.

Biomass is an integrative forest parameter that depends on
multiple tree or stand attributes. Starting from a single tree,
the above ground stem biomass AGB7 is given by the prod-
uct of the stem volume V7 with the (species specific) wood
density p7:

AGBy = Vipy = lHTDBH%FTpT

I (2.25)

where Hr is the (top) tree height, DBH7 the diameter at breast
height, F7is a (species dependent) form-factor accounting for
the deviation from a pure cylinder shape. The wood density
pr typically varies between 0.5 and 0.69 g/cm > (GOFC-
GOLD 2016). The so-called biomass expansion factor
(BEF) is used to account for the total above ground biomass
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including branches, understorey, etc. contributions (Canadell
et al. 2007).

However, single-tree measurements are ineffective for
large areas and global applications. In contrast, forest stand
parameters are an option with great potential as remote sens-
ing systems can measure them globally. In order to develop
methodologies that use forest stand parameter to estimate
aboveground biomass, new allometric relationships account-
ing for stand rather single tree parameters need to be derived
and investigated. In this sense, moving from a single tree to a
stand, the above ground stand biomass AGB is obtained by
summing up the biomasses of the N individual trees in the
stand
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(2.26)

Substituting in (2.26) the basal area BA, that describes the
amount of the stand area occupied by tree stems, the mean top
height H,, and a mean wood density p,,

N N
_1 2 _ 1
BA = ;DBHTi,HM = ;an,

1 Y 1 &
=N ZFTL"/’M =N Zﬂn (2.27)
i=1 i=1
follows

Equation (2.28) makes clear that an accurate estimation of
stand biomass relies on the knowledge of three key
parameters: the tree height and density (expressed for exam-
ple by the basal area in (2.28)) which both together define the
woody volume of the stem and the wood density. Today there
is no remote sensing configuration able to measure directly
all three parameters.

Radar, and particular SAR remote sensing techniques for
the estimation of above ground forest biomass, can be
divided into three categories: (1) direct, (2) model-based,
and (3) allometric techniques. Direct techniques use empiri-
cal or statistical relationships to relate directly the radar
observables (primarily radar backscatter measurements at a
single or different polarisations but also polarimetric or inter-
ferometric correlations) to above ground forest biomass
values. Model based approaches rely on electromagnetic
scattering models to interpret the SAR data and to establish
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Fig. 2.36 Four different biomass classification maps for the Brazilian Amazon. Top left: Saatchi et al. (2007a), top right: Saatchi et al. (2011a),

bottom left: Nogueira et al. (2008), bottom right: Baccini et al. (2012)

the relationship to biomass. Finally, in allometric techniques,
the radar observables are used for the estimation of one or
more physical forest parameters, as for example forest height,
and then these parameters are related to forest biomass
through allometric relations. The different approaches and
techniques will be reviewed in the following.

2.5.1.2 Methodology

2.5.1.2.1 Direct Biomass Estimation

The first approaches to estimate forest biomass directly from
backscatter measurements at different frequencies and
polarisations date back to the early days of SAR remote
sensing, and are today still an active research area. The
basis of these approaches is the fact that with increasing
forest biomass the (measured) backscatter intensity increases.
Accordingly the backscattered intensity from a young forest
with low biomass is in general weaker than the backscattered
intensity from an old taller forest with high biomass. This has

been observed, investigated and reported in the frame of
airborne SAR experiments (at different frequencies and
polarisations) already back in the eighties — early nineties
(Le Toan et al. 1992; Rignot et al. 1994b; Imhoff 1995b;
Dobson et al. 1995; Kasischke et al. 1995; Rauste et al. 1994
Harrell et al. 1995) These early results initiated a big interest
in exploring SAR measurements for forest biomass estima-
tion. Following experiments and work focused on studying
and establishing (empirical) relations between biomass and
SAR intensity measurements at the conventional HV, VV
and HV polarisations.

A number of experiments performed over different forests
and at different frequencies, indicated that the HV polarised
(back-) scattering coefficient is strongly correlated to bio-
mass, that this is often the case also for the HH scattering
coefficient, while the correlation between biomass and VV
scattering coefficient is often weak. However, at lower
frequencies and/or sparse forest conditions the HH scattering
coefficient is contaminated by dihedral scattering
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contributions (characterised by a strong directional backscat-
tering behaviour) and is therefore stronger affected by topo-
graphic variations. Accordingly, HV is identified as the best
polarisation for biomass inversion because it is less affected
by the disturbing ground scattering contributions. Figure 2.37
shows P-band HV backscattering coefficient plotted against
aboveground biomass for four different sites. Calibration
factors of 5 dB and —3 dB have been added to the datasets
from La Selva and Remningstorp, respectively. The solid line
is the regression curve derived from the combined data
(Le Toan et al. 2011).

However, even if the experimental results appear in many
cases convincing the theoretical interpretation relationships
used where rather weak and largely based on simple forest
scattering models. Today is known that that there are three
critical limitations common to these studies/approaches:

1. Atevery frequency (and polarisation) the sensitivity of the
backscattered SAR intensity decreases with increasing
biomass level. This effect is often referred as ““saturation”
and imposes a maximum limit for which a biomass esti-
mation is possible within a given accuracy. The sensitivity
and with it the saturation limit increases with increasing
wavelength (decreasing frequency). Authors generally
agree upon that L-Band saturates between 40 t/ha and
100 t/ha, and P-band between 120 t/ha and 200 t/ha.
Longer wavelengths like VHF as provided by the Swedish
VHF sensor CARABAS are sensitive to biomass levels
beyond 200 t/ha.

2. The empirical and semi-empirical relationships between
backscattered SAR intensity and biomass depend on site
conditions, and forest type and structure.

Fig. 2.37 P-band HV
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3. The fact that the backscattered SAR intensity depends also
on the acquisition geometry, terrain topography, seasonal
and environmental (dielectric) conditions make the inter-
pretation of the backscattered SAR intensity in terms of
biomass levels ambiguous.

In order to overcome these limitations model-based
approaches have been developed.

2.5.1.2.2 Model-Based Estimation

Model-based approaches use electromagnetic scattering
models to establish the relation between SAR observables,
primarily the (back-) scattering coefficients at one or more
polarisations, and biomass. The main motivation behind their
development was twofold: to better control the dependency
of the biomass relation on the individual site characteristics
by parameterising propagation and scattering processes and
to reduce the distortion due to non-vegetation scattering
contributions by decomposing the total scattering into ele-
mentary scattering contributions.

While they have been many approaches investigated and
proposed addressing model based biomass estimation one
can distinguish two different model families: The first family
of models develop from the so called Water Cloud Model
(Attema and Ulaby 1978), are in general two layer models
(i.e. volume and ground layer) and are applicable primarily at
higher frequencies where canopy attenuation is relevant
(Henderson and Lewis 1998); The second one is derived by
means of radiative transfer modelling, accounting in general
up to three layers (i.e. grown, trunk and ground layer) and
appears more suited for the lower frequency range (Saatchi
and McDonnald 1997; Saatchi and Moghaddam 2000;

backscattering coefficient plotted

against aboveground biomass for

four different sites. (Le Toan et al.
2011)
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Mitchard et al. 2011). Both approaches rely on the separation
(or interpretation) of volume and ground (including surface
and/or dihedral) scattering contributions either by means of
polarimetric scattering coefficients or covariance matrices.
This allows, depending on the implementation, to incorporate
topographic corrections.

However, there are two critical points that constrain the
applicability and/or performance of these models: the first one
is the large number of model parameters required in relation to
the low dimensionality of conventional SAR observation
spaces. This results in a large number of parameters/
coefficients that have to be a-priori known or estimated from
forest biomass reference data. The second one is the rather
poor integration of the effect of forest biomass into EM scat-
tering models at relevant frequencies. This is primarily
because of our inability to describe in a realistic way the
complex scattering interactions occurring within a forest
under different conditions and at different scales. The fact
that forest biomass by itself depends on a number of forest
parameters makes this task even more complex.

The advantage of using multitemporal SAR acquisitions
to improve the performance of biomass estimators was
already recognized at a very early stage (Kurvonen et al.
1999). The availability of multiple SAR acquisitions
increases the sensitivity of the SAR backscattered intensity
to biomass and allows an estimation even beyond the satura-
tion point as recent studies demonstrated (Santoro et al. 2011,
2013). More than 100 acquisitions per year are used to derive
biomass estimates from C-band radar backscatter. Averaging
across large number of acquisitions, performed under slightly
different incidence angles in different environmental
(i.e. weather) and seasonal conditions allows to overcome
the saturation appearing in single image relationships. The
price to be paid is the low spatial resolution resulting from the
large number of samples required to obtain robust estimates.
This has been demonstrated in Santoro et al. (2011) with a
stock volume map of the boreal zone from ENVISAT-ASAR
data with a resolution of 1 km x 1 km. Up to 300 m’/ha
(approx. 150 tons/ha) no saturation effect could be detected.

The introduction of SAR interferometry in the late nineties
had a significant impact on forest applications by improving
the performance of existing applications when introducing
both interferometric coherences and/or interferometric phases
or triggering the development of new ones.

The interferometric coherence has been explored in terms
of its temporal as well as in terms of its volumetric
contributions. As the temporal decorrelation contribution
dominated the early C-band repeat-pass interferometric
spaceborne data available the first attempts where based on
empirically relating the amount of change (i.e. temporal
decorrelation) estimated in the interferograms to the biomass
(or the stock volume, or the height) of the individual stands
(Koskinen et al. 2001; Pulliainen et al. 2003; Eriksson et al.
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2003b). In Wagner et al. (2003) ERS interferometric coher-
ence in combination with JERS backscattering was used with
success to classify the biomass levels across Siberia. The
availability of repeat-pass space borne interferometric
acquisitions with smaller temporal baselines and/or at longer
wavelengths (L-band) with weaker temporal decorrelation
contributions allowed the development of more physical
interpretation and inversion models for the interferometric
coherence able to distinguish between temporal and volume
decorrelation contributions. This helped to improve biomass
estimation and to obtain more robust estimates, especially in
boreal forests (Santoro et al. 2002; Askne and Santoro 2009;
Askne et al. 2013).

Besides the interferometric coherence, interferometric
phase measurements have been also used to support biomass
estimation in cases where the coherence level was allowing
meaningful phase reconstruction. The so-called scattering
center height, i.e. the height of the interferometric phase
center with respect to the underlying ground has been used
as a proxy for forest height in different biomass estimation
schemas (Solberg et al. 2010, 2013; Treuhaft et al. 2015).
However, the dependency of the phase center location on the
acquisition geometry and terrain topography as well as on
seasonal and environmental variation constrains its robust-
ness especially at lower frequencies.

2.5.1.2.3 Allometric Biomass Estimation
Accurate forest height measurements can be used as a proxy
for aboveground biomass estimates, especially in high bio-
mass regions (Mette et al. 2003, 2004a, b). Differently than
the conventional biomass estimates at stand level obtained by
multiplying stock volume with mean wood density, biomass
estimates from forest height measurements rely on the use of
allometric relationships (Mette et al. 2003). A first approach
in this direction was introduced in Mette et al. (2003) where a
simple power law allometric relationship was proposed
AGB = [,(1.66H)". (2.29)
where AGB is the stand biomass (Mg/ha), H is the forest
dominant (top) height or H100 (height of the 100 largest trees
per hectare (Reigber and Moreira 2000)), b is the allometric
exponent and /, a scaling factor known as allometric level. The
allometric level accounts primarily for differences in stand
densities but also tree species and site conditions and decreases
from climax tree species to pioneer tree species. For estimating
AGB from height measurements in the context of (2.29) the
allometric level needs to be known. On regional (i.e. landscape)
scale a mean allometric level can be assumed (under the
assumption of similar tree species composition, logging
practices, management concepts and growth conditions).
Height-to-biomass allometric relationships proved to be
robust and able to provide accurate AGB estimates from
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forest height in homogenous forest conditions. This has been
demonstrated for a number of boreal, and temperate sites with
different conditions. However, the approach meets its
limitations in forest of heterogeneous structure and density.
This is shown in Fig. 2.38 where the height (i.e. H100) to
biomass relationship for four European forest test sites. The
results have been achieved by using a common allometric
exponent of 0.52 and site adapted values for the allometric
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level. The three more heterogeneous sites, namely
Traunstein, Ebersberger Forst and the Nationalpark
Bayrischer Wald, are characterised by a lower height-bio-
mass correlations indicating the insufficiency of a fixed allo-
metric level to represent the height to biomass relationship.
On the other hand, the more homogeneous, in terms of
horizontal and vertical structure, boreal forest in Krycklan
is well described by a single allometric level. The
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Fig. 2.38 Height to biomass allometry for four European forest test sites. Top left: Traunstein Site in Germany; top right: Ebersberger Forst in
Germany; bottom left: Bayrischer Wald in Germany; bottom right: Krycklan in Sweden
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correspondences obtained for the four test sites between the
biomass estimated from ground measurements and using the
height to biomass allometry are shown in Fig. 2.39.

The high correlation between forest height and biomass
has been explored in Torafio-Caicoya et al. (2016a) to use
forest height estimated from TanDEM-X interferometric data
to estimate successfully biomass at boreal forests by means of
(2.29).

In order to improve the performance of the conventional
forest height to biomass allometry that degrades in structur-
ally heterogeneous forests the direct or indirect use of forest
structure information in (2.29) has been proposed and is
currently investigated by several groups. The forest structure
information can be obtained from inventory data or even
more relevant from 3-D radar reflectivity reconstructed
from tomographic measurements. One such example has
been recently presented in Torafio-Caicoya et al. (2015)
where the use of vertical structure information derived from
3-D radar reflectivity reconstructed at L-band by means of
tomographic SAR techniques has been used to improve the
performance of the height to biomass allometry. First the
vertical reflectivity profile F(z) is expressed in terms of a
Legendre polynomial series

F(z) = anPu(z) where a,

zzn;—l/_llF(z)Pn(z)dz

(2.30)

where P,(z) are the Legendre polynomials and a, the
associated Legendre coefficients. The first four Legendre
coefficients (ay, ...as) are then used to define a structure
ratio Sy, that allows to distinguish between different allome-
tric levels

|ai]

= 2.31
|az + az + aa| ( )

S, rat

The lower frequency contribution, expressed by the first
Legendre coefficient (a), is associated to the stem compart-
ment while the higher frequency components, represented by
the higher order coefficients a,, a3 and a4 are associated to the
crown/canopy compartment. Accordingly, the structure ratio
S,ar Spae May be used as a proxy to stand density to improve
the allometric biomass estimation (Torafo-Caicoya et al.
2016b)

AGB = 75%8H?.

rat

(2.32)

Thus, for a constant height, if the numerator of the ratio
increases (indicating a higher proportion of stem biomass),
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biomass increases, and if the denominator increases
(indicating a higher proportion of crown biomass) biomass
decreases. Figure 2.46 shows the improvement achieved by
using (2.35) instead of (2.32). The high variance produced by
the “height to biomass” allometric relation in (2.32) can be
corrected with the inclusion of forest structure information.

2.5.1.3 Experimental Results

Test sites and corresponding radar and validation data sets
selected for the generation of showcases on biomass estima-
tion are summarized in Table 2.9 and further described in the
Appendix.

Biomass maps have been obtained in the two selected test
sites in two steps: first by estimating forest height from
interferometric TanDEM-X and second by estimating bio-
mass from height using following allometric relation
provided by the Swedish National Forest Service Inventory
(SLU)

AGB = 0.3H. (2.33)
Results are shown in Fig. 2.40.

The accuracy of the estimated biomass depends on two
error sources: the accuracy of the estimated height-to-bio-
mass relationship (AAGB) and the accuracy of the forest
height estimates (AH). AAGB is defined by the forest
conditions and can only be improved when additional forest
parameters (like forest density, structural parameters, etc.) are
included in the allometric estimation process. Under the
assumption of homogenous stand conditions across the
boreal region, AAGB can be assumed constant and it is
estimated from the bias observed in the height-to-biomass
relationship applied to the reference data. AH depends on
forest height estimation methodology and performance. Air-
borne lidar measurements provide height estimates with
sub-meter accuracy and are therefore used as a reference.

For forest heights obtained from TanDEM-X data, AH
depends, in general, on the acquisition mode (single-pol,
dual-pol, dual-baseline) the number of available acquisitions
(see Sect. 2.2) and on the associated range of spatial baseline.

Accordingly, the total biomass estimation sensitivity
(AABG,,) can be expressed as

0AGB

AAGB = a—HAH + AAGB. (2.34)
Using (2.33) in (2.34) it follows:
AAGB; = 0.6HAH + AAGB. (2.35)

AH and AAGB determine the accuracy of biomass estima-
tion. However, assuming the allometric error AAGB to be
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Fig. 2.39 Height and structure to biomass allometry for four European forest test sites. Top left: Traunstein Site in Germany; top right: Ebersberger
Forst in Germany; bottom left: Bayrischer Wald in Germany; bottom right: Krycklan in Sweden

independent from H, the biomass estimation accuracy is
driven by AH only.

Figure 2.41 shows classification performance obtained by
means of (2.33) for a relative height error of 0% (top left) and
10% (top right), and 1 (bottom left) and 3 m (bottom right)
absolute errors. The real biomass is plotted on the y-axis, the
estimated biomass, for a 90% confidence interval, is plotted
on the x-axis in 10 Mg/ha biomass steps. The blue dashed
lines indicate the class boundaries, estimated at the point in

which two biomass intervals do not overlap. Assuming an
error free height measurement (AH = 0), up to 9 biomass
classes can be obtained. This is the best performance that can
be achieved, due to the residual error in AAGB. In case of a
10% height error five classes can be distinguished. For height
errors larger than 20% only two biomass classes can be
separated reducing the classification to a forest/non forest
classification.
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The analysis above makes clear that the biomass estima-
tion performance reacts very sensitive to height errors. Con-
sequently, reliable and robust biomass estimates require
accurate and robust height estimates which again strongly
depend on the polarimetric configuration of the observation
space. The performance shortcomings of dual-polarimetric
observations in terms of:

1. biased estimation results due to the lack of appropriate
observation dimensionality to account for ground
depolarisation (especially at lower frequencies and/or
sparse forest conditions);

2. larger amount of forest types/samples with model mis-
match (due to the over constrained model);

3. larger variance of the obtained forest height estimates
when compared to the inversion results achieved by
using the full polarimetric information;

can be widely compensated by using quad-polarimetric
observations.
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Fig. 2.46 Scatter plot for model R1. For each stand/plot, all available
acquisitions are shown
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2.5.1.4 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
Single-pol data interferometric data at a single baseline do not
provide enough measurable to invert forest height from inter-
ferometric data without a-priori information on terrain topog-
raphy. A single-pol inversion is possible when multiple
baselines are available but the performance is compromised
by the presence of temporal decorrelation and the ratio of the
spatial baselines. On the other hand, forest height inversion is
possible with dual-polarimetric interferometric data taking
into account a reduced estimation performance when com-
pared to the quad-polarimetric case. The availability of quad-
polarimetric interferometric measurements - that allows the
implementation of adaptive optimisation techniques - is criti-
cal when algorithm robustness and performance matters.

2.5.2 Biomass Estimation from Semi-empirical
Relationships

2.5.2.1 Introduction, Motivation and Literature
Review

Understanding the terrestrial carbon cycle and predicting
future climate changes are important topics in climate
research. One of the major uncertainties in the current carbon
cycle models lies in terrestrial ecosystems, mainly forests
(Solomon et al. 2007). Rather than estimating forest carbon
directly, biomass can be used instead since about 50% of
biomass is carbon. Furthermore, above-ground biomass
B [t/ha] is often used as a proxy indicator which is estimated
from remote sensing measurements, e.g. using P-band
(ca 450 MHz) SAR as discussed in this Section. B is here
defined as dry weight and includes stem, bark, branches, and
needles/leaves, but excludes stump and roots.

Several studies of using P-band SAR for forest biomass
retrieval have been performed in the past. The early studies
(Ranson and Sun 1994; Imhoff 1995a; DeFries et al. 2002;
Rauste et al. 1994; Beaudoin et al. 1994; Rignot et al. 1995)
concluded that HV-polarized backscatter shows highest cor-
relation with biomass. In later studies (Hoekman and
Quifiones 2000; Rignot et al. 1995; Santos et al. 2003),
retrieval models were extended to other polarisation
channels, showing improved retrieval results. In Saatchi
et al. (2007b, 2011b) and Sandberg et al. (2011), the need
for topographic corrections was pointed out and models were

Table 2.9 Test sites and corresponding radar and validation data selected for the generation of showcases on biomass estimation with allometric

relationships

Application/product

Biomass estimation with allometric relationships

‘ Test site — Radar data

Krycklan and Remningstorp, Sweden
TanDEM-X dual-pol data HH-VV

| Reference data

Inventory biomass maps
Lidar forest height measurements
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Fig. 2.40 Biomass estimation
using forest height-tobBiomass
allometry. Left panel: Krycklan,
TanDEM-X (27.02.2011),

13.5 x 18.8 km; right panel:
Remningstorp, 9.3 x 11.3 km,
30.12.2011. From top to bottom:
single look complex amplitude,
coherence scaled from 0 (black) to
1 (white), forest height map scaled
from O to 40 m, and biomass
(classification) map. The

5 biomass classes are colored
from light to dark green according
to the mean biomass (center
value) of each class

Legerd
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T
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Fig. 2.41 Biomass estimation performance based on (2.36) for a 90% confidence interval for relative height errors on the top panel (0 left and 10%
right) and absolute height errors on the bottom (1 m left and 3 m right) panel

improved. In Neumann et al. (2012), polarimetric and inter-
ferometric SAR observables were also used. Complementary
approaches include polarimetric SAR interferometry (Cloude
and Papathanassiou 1998; Papathanassiou and Cloude 2001;
Cloude and Papathanassiou 2003; Neumann et al. 2010) or
SAR tomography (Cloude 2006; Reigber and Moreira 2000;
Tebaldini 2010). Although the models presented in the men-
tioned articles show promising results, the analysis were

limited to a single test site and the diversity of the data was
low. Therefore, the extrapolation capabilities of the models
remain untested.

2.5.2.2 Methodology
Biomass retrieval using the following two polarimetric SAR
models is analysed:
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Table 2.10 Test sites and corresponding radar and validation data selected for the generation of showcases on biomass estimation

Application/

product Test site — Radar data

Biomass Krycklan, Sweden

estimation Airborne E-SAR P-band repeat-pass quad-pol data

2008
Remningstorp, Sweden
Airborne E-SAR P-band repeat-pass quad-pol data

Reference data

In-situ measurements (stem diameters, stem volume maps, tree
heights)

2007
(MI) InB =3.280 + 0.138 [y} ] , + 0.7 360 ~=7 10
(M2) InB = 3.129 + 0.093[rpy] 5 + (C s i
.
" I R -
: 'L
e ]
The coefficients were estimated by least squares using &~ I
the 97 circular plots in Krycklan (for each plot, four data é 200 . ' lidar stands ||
points representing each flight heading were used). The first .2 * field plots
model is a linear combination of the three like-pol backscatter g 186
channels. The second model is a model proposed in Sojaetal. & |
(2013), which includes HH/V'V ratio (which was found to be E -_—
less susceptible to temporal and topographic changes), and '
the ground-slope angle u, which introduces a first-order topo- .
graphic correction. The models were tested in Solomon et al. 50 RMSE: 39%
(2007) for sensitivity to site, topography and temporal |
change. Furthermore, the models were evaluated using two 06 50 160 150 200 250 300 350 400

sets of test data from two different test sites. The test sites are
located 720 km apart and represent two different cases of
boreal forest. Models fitted to data from one test site are
evaluated on the other. In this manner, the model is validated
independently of the training data set.

Biomass retrieval using a third model is also analysed,
i.e. the single-pol model according to

(R1) InB = Cy + C, ([ygv} . 0.766) (2.37)

where Cy = 3.8914 and C; = 0.1301 (Le Toan et al. 2011).

2.5.2.3 Experimental Results
Test sites and corresponding radar and validation data sets
selected for the generation of showcases on direct biomass
estimation with semi-empirical relationships are summarized
in Table 2.10 and further described in the Appendix.
Averaged, stand-wise backscatter data were extracted
from the geocoded SAR images for all stands and plots in
both Remningstorp and Krycklan. A 50 x 50 m DEM was
used for geocoding and normalisation. Although high-
resolution lidar DEMs were also available for both test
sites, they were not used because the evaluation scenario
would be less realistic as comparable DEM resolutions are

Reference biomass [tons/ha]

Fig. 2.42 Scatter plot for model M1. For each stand/plot, all available
acquisitions are shown

not available on global scale. All normalisation procedures
were performed before averaging, that is on high-resolution
SAR data. A buffer zone of 10 m was also added to avoid
border effects.

Quantitative results for model M1 are shown in Fig. 2.42.
Scatter plots for biomass for the 58 lidar stands and 10 field
plots in Remningstorp are shown. Model parameters were
extracted in Krycklan. As it can be seen in the figure, biomass
is overestimated by 25-50 t/ha. Root mean square error
(RMSE) for all data (all acquisitions at all headings and all
dates) is measured to 39% of the mean biomass of 181 tons/
ha (RMSE is estimated for field plots, for which biomass
estimation error is a few per cent). For model M4, the
corresponding results are shown in Fig. 2.44. RMSE is
25%, and bias is much lower than for model M1. It is thus
concluded, that the inclusion of the HH/VV ratio and topog-
raphy notably improves retrieval performance.

Biomass maps for model M1 and M4 are shown in
Figs. 2.43, 2.44, and 2.45. For M1, overestimation can be
observed in many places in the maps. For M4, overestimation
can be observed in some limited regions. This overestimation
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Fig. 2.43 Remningstorp:
biomass maps for model M1. One
single image for the 179-degree
heading was used for each date to
create SAR-based biomass maps
(IDs: 0110, 0206, and 0412,
March to May, respectively)
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Fig. 2.44 Scatter plot for model M4. For each stand/plot, all available
acquisitions are shown

can been explained by physical scattering properties; see
(Le Toan et al. 2011).

100

200 300 400

Biomass [tons/ha]

In Figs. 2.46 and 2.47, quantitative results and biomass
maps are shown for single-pol model R1. The model
overestimates biomass gravely for almost all stands and is
thus not suitable for across-site biomass retrieval.

2.5.2.4 Discussion on the Role of Polarimetry,

on the Maturity of the Application

and Conclusions
The inclusion of polarimetry significantly improves biomass
retrieval performance for regression-based models. Using the
HH/VV-ratio, the geophysical variability common for both
HH and VV is eliminated (for example, moisture, topography
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Fig. 2.45 Remningstorp:
biomass maps for model M4. One
single image for the 179-degree
heading was used for each date to
create SAR-based biomass maps
(IDs: 0110, 0206, and 0412,
March to May, respectively)
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Fig. 2.47 Remningstorp:
biomass maps for model R1. One
single image for the 179-degree
heading was used for each date to
create SAR-based biomass maps
(IDs: 0110, 0206, and 0412,
March to May, respectively)
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Table 2.11 Summary of presented application, methods and preferred system configurations for forest monitoring

Application Methods and used frequency (P/L/C/X) Radar data preference/requirements/comments
Classification | Using PoISAR observables, Hoekman Preferred frequency: P/L
decomposition (P/L/C) Inc. angle ~45°
Linear polarization suffice
HV needed
Using PolInSAR coherences (L) HV needed
Single-pass/short revisit time
Fire scar Using polarimetric decompositions (L/C) High resolution and wide swath desirable — compact-pol is a good trade-off
detection
Stand height | PolInSAR dual-baseline inversion (P/L/X)
Vertical Estimation of 3-D power distribution and Preferred frequency: P/L
structure polarimetric scattering characterization (P/L) Space borne implementation: single-pass systems are preferred. Repeat-pass
Ground/Volume separation and parameter configuration benefit from long wavelengths like at P-band
estimation (P) (e.g. BIOMASS) but also L-band depending on time differences among
Estimation of structure parameters from acqullsmons . . .
PolInSAR scattering models (L) Multilook needed: high resolution desirable
Above- Allometric relationships from forest height (P/L/
ground X)
biomass Semi-/Empirical relationships from Preferred frequency: P
backscattering (P)

and structure). Using the slope angle u, the influence of
topography is reduced.

26 Summary
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