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WEIGHTED MOURRE’S COMMUTATOR THEORY,
APPLICATION TO SCHRODINGER OPERATORS WITH
OSCILLATING POTENTIAL

GOLENIA, SYLVAIN AND JECKO, THIERRY

ABSTRACT. We present a variant of Mourre’s commutator theory. We apply it
to prove the limiting absorption principle for Schrodinger operators with a per-
turbed Wigner-Von Neumann potential at suitable energies. To our knowledge,
this result is new since we allow a long range perturbation of the Wigner-Von
Neumann potential. Furthermore, we can show that the usual Mourre theory,
based on differential inequalities and on the generator of dilation, cannot apply
to the mentioned Schrédinger operators.
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1. INTRODUCTION.

Since its introduction in 1980 (cf., [Mo]), many papers have shown the power of
Mourre’s commutator theory to study the point and continuous spectra of a quite
wide class of self-adjoint operators. Among others, we refer to [BFS, BCHM, CGH,
DJ, FH, GGM1, GGo, HuS, JMP, Sa] and to the book [ABG]. One can also find
parameter dependent versions of the theory (a semi-classical one for instance) in
[RoT, Wa, WZ]. Recently it has been extended to (non self-adjoint) dissipative
operators (cf., [BG, Roy]).

In [GJ], we introduced a new approach of Mourre’s commutator theory, which is
strongly inspired by results in semi-classical analysis (cf., [Bu, CJ, Jel, Je2]). In
[Gé], C. Gérard showed that it can be followed using traditional “energy estimates”.
This approach furnishes an alternative way to develop the original Mourre Theory
and do not use differential inequalities.

The aim of the present paper is to present a new theory, which shares common goals
with Mourre’s commutator theory but relies on different assumptions. It is inspired
by the approach in [GJ] and in [Gé]. It is actually new since we can produce an
example for which it applies while the strongest versions of Mourre’s commutator
theory (cf., [ABG, Sa]) with (variants of) the generator of dilation as conjugate
operator cannot be applied to it.

Our example is a perturbation of a Schrédinger operator with a Wigner-Von Neu-
mann potential. Furthermore we can allow a long range perturbation which is not
covered by previous results in [DMR, ReT1, ReT2]. A similar situation is considered
in [MU] but at different energies.

Let us now briefly recall Mourre’s commutator theory and present our results. We
need some notation and basic notions (see Section 2 for details). We consider two
self-adjoint (unbounded) operators H and A acting in some complex Hilbert space
. Let || - || denote the norm of bounded operators on 7. With the help of A, we
study spectral properties of H, the spectrum o(H) of which is included in R. Let
Z,J be open intervals of R. Given k € N, we say that H € C‘]}(A) if for all X €
C>(R) with support in 7, for all f € 2, the map R > t — e*AX(H)e A f ¢ A
has the usual C* regularity. Denote by Ez(H) the spectral measure of H above Z.
We say that the Mourre estimate holds true for H on Z if there exist ¢ > 0 and a
compact operator K such that

(1.1) Er(H)[H,iA|Ez(H) > Ez(H) (c + K) Ez(H),

in the form sense on (D(A)ND(H)) x (D(A) ND(H)). In general, the Lh.s. of
(1.1) does not extend, as a form, on J# x J¢ but it is the case if H € C,(A)
and Z C J (cf., [Sa, GJ]). We say that the strict Mourre estimate holds true
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if the Mourre estimate (1.1) holds true with K = 0. In the first case (resp. the
second case), it turns out that the point spectrum of H is finite (resp. empty) in
compact sub-intervals Z' of Z if H € C%(A) and Z C J. The main aim of Mourre’s
commutator theory is to show, when the strict Mourre estimate holds true for H
on Z, the following limiting absorption principle (LAP) on compact sub-intervals
T’' of Z. Given such a 7’ and s > 1/2, we say that the LAP, respectively to the
triplet (Z', s, A), holds true for H if
(12) sup [[(A) 7 (H — 2)7HA) | < oo,

Rez€Z’,Imz#0
where (t) = (1+[t|?)'/2. In that case, it turns out that the spectrum of H is purely
absolutely continuous in Z’ (cf., Theorem XIII.20 in [RS4]). Notice that (1.2) holds
true for s = 0 if and only if Z’ No(H) = 0.
In [ABG, Sal, such LAPs are derived under a slightly stronger regularity assumption
than H € C%(A) with Z C J. Actually, stronger results are proved. In particular,
in the norm topology of bounded operators, one can defined the boundary values
of the resolvent:
(1.3) T 2 A lim (A) 75 (H — X\ —ig) 1 (A)~*

e—0+

and show some Hoélder continuity for them.
Implicitly in [GJ] and explicitly in [Gé], one can derive, using H € C%(A) with
Z C J, the LAP (1.2) on compact sub-intervals Z' of Z from the Mourre estimate
(1.1) with K = 0 via a strict, weighted Mourre estimate:

(1.4) Ez(H)[H,ip(A)Ez(H) > ciBr(H)(A)™'"Ez(H),

where ¢ = 2s — 1 > 0 and ¢ is some appropriate non-negative, bounded, smooth
function on R. Note that the Lh.s. of (1.4) is a well defined form on 7 x . Tt
seems that the use of such kind of inequality to derive resolvent estimates appears
in [Jel] for the first time.

Our new idea is to take the strict, weighted Mourre estimate (1.4) as starting point,
instead of the strict Mourre estimate. This costs actually less regularity of H w.r.t.
A. Precisely, we show

Theorem 1.1. Let Z be a bounded, open interval of R and assume that H € CX(A).
Assume that, for some g > 0, for any € € (0;e¢], there exists some real borelian
bounded function ¢ such that the strict, weighted Mourre estimate, i.e. (1.4), holds
true. Then, for any s > 1/2 and for any closed sub-interval I' of Z, the LAP (1.2)
for H respectively to (Z',s, A) holds true.

Remark 1.2. Notice that the LAP (1.2) for H respectively to (Z’, s, A) implies the
LAP (1.2) for H respectively to (Z’,s’, A), for any s’ > s. Therefore, it is enough
to prove Theorem 1.1 for s close to 1/2.

Remark 1.3. Using Gérard’s energy method in [Gé], we can upper bound the size of
the Lh.s. of (1.2) in terms of the constant ¢; appearing in (1.4). See Corollary 3.7.

Actually Theorem 1.1 will follow from the more general result obtained in Theo-
rem 3.4. The new theory that we present here and that we call “weighted Mourre
theory” is essentially a part of the variant of the Mourre theory in [Gé, GJ]. As
such, it is simpler than the usual Mourre theory (it does not use differential in-
equalities). However, we do not know if such approach gives continuity results on
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the boundary values of the resolvent (1.3). We shall give two (almost equivalent)
ways to view the new theory (cf., Subsections 3.2 and 3.3).

As announced above, we want to derive the LAP (1.2) (for some A) on carefully
chosen intervals 7’ for a certain class of Schrédinger operators. Let d € N* and let
Hp be the self-adjoint realization of the Laplacian —A, in L2(R%). Given ¢ € R*
and k > 0, the function W : R — R defined by W (z) = ¢(sink|z|)/|z| is called
the Wigner-Von Neumann potential. We consider another real valued function V'
satisfying some long range condition (see Section 4 for details) such that the opera-
tor Hy := Hy+ W 4V is self-adjoint on the domain of Hy. This is the Schrodinger
operator with a perturbed Wigner-Von Neumann potential that we consider. It
is well known that its essential spectrum is [0; +oo]. Now we look for an interval
I’ C]0; oo on which we can get the LAP (1.2). As operator A, it is natural to
choose the generator of dilation Ay, the self-adjoint realization of (z-V,+V-x)/(27)
in L2(RY). Indeed, when W is absent, such LAPs have been derived. As mentioned
above, the pure point spectrum o,,(H1) of H; has to be empty in 7.

There are many papers on the absence of positive eigenvalue for Schrodinger op-
erators: see [Ka, Si, Ag, FHHH2, FH, 1J, RS4, CFKS]. They do not apply to the
present situation because of the behaviour of the Wigner-Von Neumann W. One
can even show that k?/4 is actually an eigenvalue of H; for a well chosen, radial,
short range potential V' (cf., [RS4] p. 223 and [BD]).

In dimension d = 1, the eigenvalue at k?/4 is preserved under suitable perturba-
tion (see [CHM]). Furthermore it is proved in [FH, FHHHI] that, if |¢| < k, the
usual Mourre estimate (1.1) holds true on compact intervals Z C]0; +oo[ and there
is no eigenvalue in ]0; +oc[, and otherwise that, on compact Z C]0; +o0o[\{k?/4},
no eigenvalue is present and the usual Mourre estimate (1.1) holds true. Actually
if k2/4 is an eigenvalue of H; then the usual Mourre estimates cannot hold true
on a compact neighbourhood of k2/4, with the generator of dilation as conjugate
operator. This follows from the arguments of the proof of Corollary 2.6 in [FH].
Thus the eigenvalue k2 /4 is a threshold.

We focus on compact intervals Z satisfying {0,k2/4} N Z = () and, when d > 1,
T C]0; k?/4]. Using pseudodifferential calculus and recycling arguments from [FH],
we prove the usual Mourre estimate (1.1) on such Z, the operator A being Aj,
yielding the finiteness of the pure point spectrum o,,(H;) in Z. Then, in Theorem
4.15, we derive a strict, weighted Mourre estimate (1.4) and show that Theorem 1.1
applies, leading to the LAP (1.2) for H;. For short range perturbation V', we par-
tially recover results from [DMR, ReT1, ReT2] but, in contrast to these papers, we
are able to treat a long range perturbation V. We mention that in [MU], for high
enough energies, one proves a LAP for long-range perturbations of a larger class of
oscillating potentials. In this situation, the Laplacian is a priori “stronger” than
the potential, in contrast to the present case.

As already mentioned, the LAP for H; implies the absence of singular spectrum
over Z. This result seems to be new, even in dimension 1. Concerning this question
for potentials, which are “decaying at most like 1/x at infinity”, we refer to [Ki, Re]
and references therein.

Finally we show that H; does not have the required regularity w.r.t. (variants of)
A to apply the usual Mourre theory from [ABG, GGM1, Sa]. For the same reason,
the derivation of the strict, weighted Mourre estimate (1.4) for H; from the corre-
sponding strict Mourre estimate, i.e. (1.1) with K = 0, along the lines in [Gé], is
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not allowed. If one removes the oscillating potential W and keeps our assumptions
on V = Vi, + Vi (see Assumption 4.13), the situation is well-known. However,
to obtain a LAP with the traditionnal Mourre theory, one needs some strong and
quite involved versions as in [ABG, Sal. In particular, the results in [Mo, Gé] do not
apply in this case, while our arguments here gives the LAP (1.2) on any compact
interval Z CJ]0; +o0[ (cf., Remarks 4.5 and 4.16 below).

We did not optimize our study of Schrédinger operators with oscillating potential.
We believe that we can handle more general perturbations. Because of a difficulty
explained in Remark 4.5, we did not consider intervals Z above k?/4 for d > 1.
However we believe that a variant of the present theory is applicable in this case.
We think that a general study of long range perturbations of the Schrédinger opera-
tor with Wigner-Von Neumann potential is interesting in itself and hope to develop
it in a forthcoming paper.

The paper is organized as follows. In Section 2, we introduce some notation and
basic but important notions. In Section 3, we show a stronger version of Theo-
rem 1.1, namely Theorem 3.4. In Section 4, we study Schrodinger operators with
perturbed Wigner-Von Neumann potentials. In Subsection 4.3, we derive usual
Mourre estimates below the “threshold” k?/4. In Subsection 4.4, we essentially ap-
ply Theorem 1.1 to Schrodinger operators. In Section 5, we prove that they cannot
be treated by the usual Mourre theory in [ABG, Sa]. In Appendix A, we prove a
key pseudodifferential result to control the behaviour of the Wigner-Von Neumann
potential (extending a result by [FH] in dimension one). In Appendix B, we review
functional calculus for pseudodifferential operators (cf., [Bol]). In Appendix C, we
establish the boundedness of some operator using interpolation. Finally, in Appen-
dix D, we present, in dimension one, a simpler proof of Lemma 5.5, this lemma
being used to show that the regularity assumption of the usual Mourre theory is
not satisfied by the Schrédinger operators studied here.

Acknowledgement: The authors thank Jean-Michel Bony, Vladimir Georgescu,
Ira Herbst, Andreas Knauf, Jacob Schach Mgller, Nicolas Lerner, Karel Pravda-
Starov, and Erik Stibsted for fruitful discussions.

The authors apologize to Jacob Schach Mgller for not citing his paper [Mg] in their
previous work [GJ] when they proved Proposition 2.6 and 2.7 below. They did not
realize the presence of the corresponding result in [Mg].

2. BASIC NOTIONS AND NOTATION.

In this section, we introduce some notation and recall known results. For details,
we refer to [ABG, DG, GJ, Sa] on regularity and to [H63, Bol, Bo2, BC, Le] on
pseudodifferential calculus.

2.1. Regularity. For an interval Z of R, we denote by Z (resp. I) its closure (resp.
its interior). The scalar product (-,-) in J# is right linear and || - || denotes the
corresponding norm and also the norm in B(J#), the space of bounded operators
on 7. Let A be a self-adjoint operator. Let T be a closed operator. The form
[T, A] is defined on (D(A) ND(T)) x (D(A) N D(T)) by

(2.1) (f,[T,Alg) == (T"f, Ag) — (Af, Tg).
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If T is a bounded operator on % and k € N, we say that T € C¥(A) if, for all
f € A, the map R > t s e*4Te 4 f ¢ # has the usual C* regularity. The
following characterization is available.

Proposition 2.1. ([ABG, p. 250]). Let T € B(J). Are equivalent:

(1) T e C'(A).

(2) The form [T, A] defined on D(A) x D(A) extends to a bounded form on
A x A associated to a bounded operator denoted by adly(T) := [T, Al,.

(3) T preserves D(A) and the operator TA — AT, defined on D(A), extends to
a bounded operator on J€.

It follows that 7 € C¥(A) if and only if the iterated commutators ad’(T) :=
[ad%”"(T), A]o are bounded for p < k. In particular, for T € C'(A), T € C*(A) if
and only if [T, A], € C1(A).

Let H be a self-adjoint operator and Z be an open interval. As in the Introduction
(Section 1), we say that H is locally of class C¥(A) on I, we write H € Ck(A), if,
for all o € CX(T), (H) € CF(A).

It turns out that 7€ C¥(A) if and only if, for a z outside o(7T'), the spectrum of T,
(T — z)~t € C*(A). Tt is natural to say that H € C*(A) if (H — 2)~! € C¥(A) for
some z € o(H). In that case, (H — z)~! € C*(A), for all z ¢ R. This regularity is
stronger than the local one as asserted in the following

Proposition 2.2. ([ABG, p. 244]) If H € CK(A) then H € Ck(A) for all open
interval T of R.

Next we recall Proposition 2.1 in [GJ] which gives a sufficient condition to get the
C!(A) regularity for finite range operators.

Proposition 2.3. ([GJ]) If f,g € D(A), then the rank one operator |f){g| : h —
(g,h)f is in C1(A).
For p € R, let 8” be the class of functions ¢ € C*°(R) such that
(2.2) VE e N, Ci(p) :=sup () "TFp® ()| < .
teR

Here ¢(%) denotes the kth derivative of ¢. Equipped with the semi-norms defined
by (2.2), 8” is a Fréchet space. We recall the following result from [DG] on almost
analytic extension.

Proposition 2.4. ([DG]) Let ¢ € S” with p € R. There is a smooth function
o€ : C — C, called an almost analytic extension of ¢, such that, for all | € N,

(2.3) ¢ Ik =@, [02¢°(2)] < er(Re(2))?~ ! |Im(2)[',
(2.4) supp o C {z + iy; [y < e2(2)},
(2.5) ©C(z +iy) =0, if x & supp ¢,

for constants ¢1, co depending on the semi-norms (2.2) of ¢ in SP.

Next we recall Helffer-Sjostrand’s functional calculus (cf., [HeS, DG]). For p < 0,
k€N, and ¢ € 8, the bounded operators p*)(A) can be recovered by

(2.6) () = 1) /@ 020 (2) (= — A) " kdz  d,
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where the integral exists in the norm topology, by (2.3) with [ = 1. For p > 0, we
rely on the following approximation:

Proposition 2.5. ([GJ]) Let p > 0 and ¢ € S”. Let X € C°(R) with X = 1 near 0
and 0 < X <1, and, for R >0, let Xr(t) = X(t/R). For f € D((A)"), there exists

(k) _ —1-k
(2.7) WA f Rgrfoo QF/((%@XR z2)(z—A) fdzNdz.

The r.h.s. converges for the norm in . It is independent of the choise of X.

Notice that, for some ¢ > 0 and s € [0; 1], there exists some C' > 0 such that, for
al z=a+iy e {a+ib|0<|b| <cla)} (like in (2.4)),
(2.8) [(A)* (A= 2)7Y < Cla)® - [y~
Observing that the self-adjointness assumption on B is useless, we pick from [GJ,

Mg] the following result in two parts.

Proposition 2.6. ([GJ, Mg|) Let k € N*, p < k, p € S, and B be a bounded
operator in Ck(A). As forms on D((A)*~1) x D((A)k~1),

k—1
29) (A= Y 5o (A)ad)(B)
(2.10) + % /C(%gac(z)(z — A)7Fad%(B)(z — A)~tdz A dz.

In particular, if p < 1, then B € Ct(p(A)).

The rest of the previous expansion is estimated in

Proposition 2.7. ([GJ, Mg|) Let B € C*(A) bounded. Let ¢ € SP, with p < k. Let
I () be the rest of the development of order k (2.9) of [¢(A), B], namely (2.10).
Let s, > 0 such that s’ <1, s < k, and p+ s+ s < k. Then, for ¢ staying
in a bounded subset of S, (A)Y*Ir(p)(A) is bounded and there exists a A and @
independent constant C > 0 such that ||[(A)* I, (p)(A) || < C|lad’ (B)]|.

We refer to [BG]| for some generalization of Propositions 2.6 and 2.7 to the case
where B is unbounded and [A, B], is bounded.

2.2. Pseudodifferential calculus. In this subsection, we briefly review some
basic facts about pseudodifferential calculus that we need in the treatment of
Schrodinger operators. We refer to [H63][Chapters 18.1, 18.4, 18.5, and 18.6] for a
traditional study of the subject but also to [Bol, Bo2, BC, Le] for a modern and
powerful version. Other results are presented in Appendix A and B.

Denote by S(M) the Schwartz space on the space M and by F the Fourier transform
on R? given by

Fu(€) := (2m)~¢ /]Rd e~ Sy(x) dr
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for £ € R? and u € S(R?). For test functions u,v € S(RY), let Q(u,v) and Q' (u,v)
be the functions in S(R??) defined by

Qu, v)(,€) = v(z) Fu(€)e™*,

0)(w.8) = 2m) [ o= /2o -+ u/2e " dy,

respectively. Given a distribution b € S’(T*R?), the formal quantities
2n) [ u(ouly) dedyds.
R3d
) [ (o )2, ule)uly) dodyd
-

are defined by the duality brackets (b, Q(u,v)) and (b, ' (u,v)), respectively. They
define continuous operators from S(R%) to S’(R?) that we denote by Opb(z, D)
and b*(z, D, ) respectively. Sometimes we simply write Op b and b%, respectively.
Choosing on the phase space T*R? a metric g and a weight function m with ap-
propriate properties (cf., admissible metric and weight in [Le]), let S(m, g) be the
space of smooth functions on T*R? such that, for all k € N, there exists ¢ > 0 so
that, for all x* = (z,¢&) € T*R%, all (t1,--- ,t;) € (T*RY)*,

(2'11) |a(k) (X*) ) (t1, T atk)l < Ckm(‘r*)gm* (751)1/2 v (tk)1/2 .

Here, a®) denotes the k-th derivative of a. We equip the space S(m,g) with
the semi-norms || - ||¢,5(m,q) defined by maxo<x<eck, where the c; are the best
constants in (2.11). S(m, g) is a Fréchet space. The space of operators Op b(z, D)
(resp. b*(z, D,)) when b € S(m,g) has nice properties (cf., [H63, Le]). Defining
x* = (z,€) € T*R?, we stick here to the following metrics

(2.12) Gyr 1= % + % and  (go)x- := da? + %,

and to weights of the form, for p,q € R,

(2.13) m(x") == (x)"(§) .

The gain of the calculus associated to each metric in (2.12) is given respectively by
(2.14) B 1= ()~ (€)™ and ho(x") = ().

We note that S(m,g) C S(m,go) with continuous injection. Take weights my, mo
as in (2.13), let g be g or go, and denote by h the gain of §. For any a € S(mi, g)
and b € S(ma,g), there are a symbol a#,b € S(mima,§) and a symbol a#b €
S(myima, g) such that OpaOpb = Op (a#,b) and a®b® = (a#b)". The maps
(a,b) — a#.b and (a,b) — a#tb are continuous and so are also (a,b) — a#,b—ab €
S(mimah, §) and (a,b) — a#b — ab € S(myimah,§). If a € S(my,§), there exists
¢ € S(my,§) such that a® = Opc. The maps a — ¢ and a — ¢ — a € S(mimah, §)
are continuous. If a € S(1,§), a* and Op a are bounded on L2(R?). For a € S(1,g),
(2.15) Opa is compact <= a" is compact <= lim a(x*)=0.

|x*|—o00
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3. WEIGHTED MOURRE THEORY.

In this section, we present our new strategy to get the LAP (1.2). As in [GJ] (see
also [CGH]), we consider a more general version of the LAP, namely the LAP for the
reduced resolvent (see (3.1) below). First we make use of a kind of weighted Weyl
sequence introduced in [GJ], that we call “special sequence”. Then we present an
adapted version of the method introduced in [Gé] and based on energy estimates.
Both methods are quite close, the latter having the advantage to give an idea of
the size of the Lh.s. of (1.2) (resp. (3.1)).

3.1. Reduced resolvent. Let P be the orthogonal projection onto the pure point
spectral subspace of H and P+ =1 — P. For s > 0 and Z’ an interval of R, we say
that the reduced LAP, respectively to the triplet (Z', s, A), holds true for H if
(3.1) sup (A 5(H — 2)"'PH(A) % < .

RezeZ’ ,Imz#0
Let Z be an interval in R containing Z’ in its interior. Since (H — 2)~(1 — Ez(H))
is uniformly bounded for Re(z) € 7’ and Im(z) # 0, (3.1) is equivalent to the same
estimate with P+ replaced by Ez(H)P+. If no point spectrum is present in Z, then
(H — 2)"'Ez(H)P+ = (H — 2)~! for Rez € Z and (3.1) is equivalent to the usual
LAP (1.2).
In [CGH] and more recently in [FMS2], it is shown that the reduced LAP can be
derived from the Mourre estimate (1.1). In this case, it is well known that the
point spectrum of H is finite in Z (but non empty in general, see [ABG, Mo]). In
[GJ], the reduced LAP is deduced from a projected version of this Mourre estimate,
namely

(3.2) PYE;(H)[H,iAlEr(H)P* > cEz(H)P* + PTK P+,

for some compact operator K. In the proofs, one uses the compactness of K and
the fact that the strong limit

(3.3) s — lim Eps_sago(H)P+ =0,
—0

to derive from (3.2) a strict Mourre estimate (with K = 0) on all small enough
intervals inside Z. Notice that the traditional theory (cf., [ABG, Mo]) performs
the same derivation. So both methods rely on some strict Mourre estimate. Here,
to get the reduced LAP (3.1) as shown in Theorem 3.4 below, we also starts from
a convenient strict estimate namely a strict, weighted, projected Mourre estimate
like (1.4). We discuss the possibility to derive it from a more general one in Sub-
section 3.4. Since we work with projected estimates, we need some regularity of
Pt wat. A

3.2. Special sequences. We work in a larger framework.

Definition 3.1. Let C be an injective, bounded, self-adjoint operator. Let Z’ be
an interval of R.

(1) A special sequence (fn,zn)nen for H associated to (Z',C') is a sequence
(frsZn)n € (D(H) x C)N such that, for some n > 0, Re(z,) € I/, 0 #
Im(z,) = 0, |Cfnl — n, Plfn = fn, (H—=2n)fn € D(C_l)a and HC_l(H_
zn) full = 0. The limit 7 is called the mass of the special sequence.
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(2) The reduced LAP, respectively to (Z’, C'), holds true for H if

(3.4) sup |C(H — 2)7'P+C|| < 0.
Rez€Z’,Imz#£0

Notice that (3.4) for C' = (A)~* with s €]1/2;1] gives the LAP (3.1), thanks to
Remark 1.2.

Proposition 3.2. Let 7' be an interval of R. Take an injective, bounded, self-
adjoint operator C' such that, for some X, a bounded, borelian function on R with
X =1 near I', the operator CX(H)PL+C~" extends to a bounded operator. Let 0 be
a borelian function on R such that 0X = X. Then the reduced LAP (3.4) holds true
if and only if, for all special sequence (fn,zn)n for H associated to (I',C) such that
O(H) fn = fn for all n, the corresponding mass is zero.

Proof. Assume the LAP (3.4) true. Then, for any special sequence (fy,, z,,)n for H
associated to (Z’, C), for all n,

ICfall < IC(H = 2) T PECI - |CTHH = 20) full,

yielding n = 0. Now assume the LAP (3.4) false. Then there exists some complex
sequence (z,) such that Rez, € 7', Imz, — 0, and |C(H — z,)"'P+C|| — oc.
Since ((H — z,) "1 (1 —X)(H)) is uniformly bounded, we can find, for all n, nonzero
u, € H and 0 < k,, — 0 such that

IC(H = 20) ' X(H) P Cun| = [[unll/fin-

We set f,, = kin(H — 2,) "' X(H)P*+Cu,/||u,||. Notice that 0(H)f, = P+ f, = fn
and ||Cf,| = 1. Since CX(H)P+C~1 is bounded, X(H )P+ preserves D(C~1), the
image of C. Thus (H — z,)f, € D(C™1), for all n. We conclude by noticing that
ICTHH = zn) ful < #n - [CTIXH)PC = o(1). O

Proposition 3.3. Let Z',C be as in Proposition 3.2. Let (fn,zn)n be a special se-
quence for a self-adjoint operator H associated to (Z',C). For any bounded opera-
tor B, such that CBC~! extends to a bounded operator, lim,, o (fn, [H, B]f.) = 0.

Proof. Since (fn, zn)n is a special sequence and CBC~! is bounded, we obtain that
(H—=2n)fn, Bfn) = o(1) and ((H — 2,) fn , fa) = o(1). Therefore, 2iTmz, | fu||* =
Im((H — zn)fn, fn) = o(1). Hence

<fna [HaZB]fn> = <(H _%)fna ZBfn> - <B*fna 'L(H - Zn)fn>

= —2iImz, - (fn, iBfn) — 2Im{(H — z,,) fn, Bfn) = o(1). O
Theorem 3.4. Let 7 be an open interval and T' be a closed sub-interval of T.
Let B,C be two bounded self-adjoint operators, C being injective. Assume that,
for some bounded, borelian function X on R with X = 1 on I’ and suppX C Z,
CX(H)PLC~! and CBC~1 extend to bounded operators. Assume further that the
following strict weighted projected Mourre estimate

(3.5) PYE7(H)[H,iB|Ez(H)P* > PYEz(H)C?*E7z(H)P*+
is satisfied. Then the LAP (3.4) on I' holds true.
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Proof. Let (fn,zn)n be a special sequence for H associated to (Z',C) such that
Ez(H)fn = fn for all n. By Proposition 3.2, it suffices to show that the mass 7 of
the special sequence is zero. Letting (3.5) act on both sides on f,, we infer that

(fn, [H,iB]fn) > HCan2 Now Proposition 3.3 yields n = 0. O

Proof of Theorem 1.1. Thanks to Remark 1.2, we may assume that s €]1/2; 1] with
g:=2s—1¢€0;g]. If, for f € D(H) and for F € Z, Hf = Ef then, by (1.4), 0 >
cl||<A>_(1+8)/2f|\2 and f = 0. Thus Ez(H)P+ = Ez(H) and (1.4) may be rewritten
as (3.5) with B = ¢(A) and C = /c1(A)~(1+9)/2 = | /e7(A)~*. Notice that the
function of A, given by CBC~!, extends to a bounded operator. Let X € C°(Z)
such that X = 1 on Z'. Since X(H)P+ = X(H)Ez(H)P+ = X(H)Ez(H) = X(H)
and H € CL(A), X(H)P+ € C'(A). By Proposition 2.6, [X(H)P~, (4)%] extends to
a bounded operator. Thus, so does (A)“*X(H)P+(A)* = (A)~S[X(H)P*,(A)°] +
X(H)P+. This is also true for CX(H)P+C~!. By Theorem 3.4, (3.4) holds true.
Since Bz (H)P*+ = Ez(H), (H—2)"'P*+ = (H —z)~! for Rez € Z’. Therefore (3.4)
yields (1.2). O

3.3. Energy estimates. Here we extend a little bit Gérard’s method in [Gé]. We
work in the general framework of Subsection 3.2 and get the following improvements
of Theorem 3.4 and Theorem 1.1.

Theorem 3.5. Under the assumptions of Theorem 3.4, let o € {—1;1} and choose
a real p such that cB’ > 0 with B := B + u. Then

(3.6) sup |C(H —2)"'PLO|

RezeZ/,—olmz>0
< 2-[|ICB'CTH| - |CTIXH) PO + d7H 1= XL - O]
where d is the distance between the support of 1 — X and Z'.

Remark 3.6. Note that, for ¢ and B as in Theorem 3.5, one can always take
= ol||B] to ensure o(B + u) > 0.

Proof of Theorem 3.5. By functional calculus,
(3.7) IC(H = 2) (1 = X)(H)P=C|| < d™{|1 = X[l - [|C||.

For f € H and z € C with —oTmz > 0, let uw = (H — 2)"'X(H)P+Cf. Notice that
Ez(H)P*u = u. By (3.5) and a direct computation,

|Cul|* < (u, [H,iB'lu) = 2Im(Bu, (H — 2)u) + 20Imz{u, 0 B'u)
< 2Im(B'u, (H — z)u),

since 0B’ > 0. Recall that CX(H)P+C~! is bounded. Thus (H — z)u € D(C~1).
In particular, since CB'C~' = CBC~! + i is bounded,

27| Cul|? < Im{(CB'C~'Cu, C~Y(H — 2)u) < ||CB'C™Y| - ||Cul| - ||C™H(H — 2)ul,
yielding [|Cul| < 2||CB'C7Y|| - |C~X(H)PC| - ||f||. Together with (3.7), this
implies (3.6). O

By combining the proof of Theorem 1.1 at the end of Subsection 3.2 with Theo-
rem 3.5, we derive:
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Corollary 3.7. Under the assumptions of Theorem 1.1, take s > 1/2, o € {—1;1},
and X € CX(Z) with X = 1 on I'. Choose a real pn such that o(p(A) + u) > 0.

/

Then the Lh.s. of (1.2) is bounded by the r.h.s. of (3.6) for C' = \/ci(A)™° and
B'=p(A)+p with1/2 < s’ <1,2¢ —1<¢gp, and s’ <s.

3.4. Application. In practice, it is natural to try to derive a strict, weighted,
projected Mourre estimate (1.4) from a similar estimate containing some compact
perturbation. Precisely (1.4) should follow from

(3.8)  PEr(H)[H, ip(A) Bz (H)P*
> EI(H)PJ_<A>7(1+E)/2(C + K)<A>f(1+e)/2PJ_EI(H),

for some compact operator K and ¢ > 0. But to remove the influence of K using
(3.3), we need to commute P-Ez(H) (or a regularized version of it) through the
weight (A)~(1+€)/2 We are able to do this in the following situation.

Corollary 3.8. Let T be an open interval. Assume that, for all 6 € C(Z;C),
PL0(H) € C1(A). Let gy €]0;1]. Assume further that, for all ¢ €]0;e¢], there exist
¢ > 0 and a compact operator K such that, for all R > 1, there exists a real bounded
borelian function g such that the weighted projected Mourre estimate

(39) P Eg(H)[H.ipr(A/R)Ez(H)P*
> PLE(H){A/R)~0+9/(c + K)(A/R)~ 09/ By (H)P*

is satisfied. Then, for any s > 1/2 and for any compact sub-interval T' of T, the
reduced LAP (3.1) for H respectively to (Z', s, A) holds true.

Proof. By Remark 1.2, we may assume that s €]1/2; 1] such that ¢ := 2s—1 €]0; g¢].
By compactness of 7, it is sufficient to show that, for any A € 77, (3.1) holds true
with Z’ replaced by some open interval containing A. It is enough to get (3.1) with
A replaced by A/R, for some R > 1. Let A € Z’. Since K in (3.9) is compact, we
can use (3.3) to find X € C2°(Z;R) such that X = 1 near A and ||P-X(H)K|| < ¢/8
(where ¢ appears in (3.9)). Let Z; be an open sub-interval of 7/ containing A. From
(3.9), we get, for all R > 1,

(3.10) P+Er, (H)[H,ipr(A/R)|Ez,(H)P+ >
PEr (H)(A/R)=(F9)/2 . (3¢/4 + (1 — PAX(H))K(1 — P*X(H)))
ARy~ 2p (H)PL.
Since 1 — PAX(H) = (1 — X)(H) + PX(H),
PYEr, (H)(A/R)y~UF9/2(1 — PAX(H)) = —P+E7, (H)[(A/R)~ (92 pAx(H))
= —P' B, (H)(A/R)~ (%92 B,

where ||Bg|| = O(1/R) by Propositions 2.6 and 2.7 (with k& = 1). Taking R large
enough (but fixed), we derive from (3.10) the estimate

P Ex, (H)[H,ipr(A/R)Ez, ()P* = £ PLEx, (H)(A/R) ™~ Ez, (H)P*.

By Theorem 3.4, we obtain (3.4) with C'= (A/R)~* on some neighbourhood of A,
yielding (3.1) there with A replaced by A/R. O
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4. PERTURBED WIGNER-VON NEUMANN POTENTIALS.

In this section, we apply our new theory to some special Schrodinger operators
(see Theorem 4.15). As explained in Section 1, we want to derive, on suitable
intervals, a usual Mourre estimate (in Subsection 4.3) and a weighted, projected
Mourre estimate (in Subsection 4.4) for the Schrodinger operator Hy, see (4.1).

4.1. Definitions and regularity. Let d € N*. We denote by (-,-) and || - || the
right linear scalar product and the norm in L?(R9), the space of squared integrable,
complex functions on R?. Recall that Hy is the self-adjoint realization of the Laplace
operator —A in L2(R?) and that the Wigner-Von Neumann potential W : R — R
is defined by W(x) = g(sink|z|)/|x|, with & > 0 and ¢ € R*. Now we add to W
the multiplication operator by the sum V = V, 4+ W}, of real-valued functions, Vg,
has short range, and V), has long range. Precisely we require

Assumption 4.1. The functions Vi, (x)Vi, and the distribution x-VVi.(z) belong
to L>°(RY).

Under this assumption, on the Sobolev space H2(R%), the domain D(H,) of Hy,
(4.1) Hy:=Hoy+W+V =-A+4q|- | sinlk|-|) + Vi + Vic

is self-adjoint. Let P} be the orthogonal projection onto its pure point spectral
subspace and Pi- =1 — P.
Consider the strongly continuous one-parameter unitary group {W; }her acting by:

(4.2) W, f)(x) = e/ f(eta), for all f e L2(RY).
This is the Cy-group of dilation. A direct computation shows that
(4.3) Wy H2(RY) ¢ H3(RY), for all t € R.

The generator of this group is the self-adjoint operator Ay, given by the closure of
(Dy -z + - D;)/2 on C(R?) in L2(RZ). For these reasons, the operator A; is
called the generator of dilation.

The form [W,iA;] (defined on D(A1)xD(A;)) extends to a bounded form associated
to the multiplication operator by the function W — W7, where

(4.4) Wi(z) = qgkcos(klz]) = (gk/2)- (™7l + eikl=ly,
In particular, W € C(A;) by Proposition 2.1. Furthermore, we prove

Proposition 4.2. We have Hy € C?(A1). Moreover, under Assumption 4.1, the
form [Vs,iA1], defined on D(A1) N D(Hy), extends to a bounded operator from
HY(RY) to H-Y(RZ). In particular, Hy € C*(A;).

Proof. We use Section 5. As form on D(A;)ND(Hy), [Ho,iA1] = 2Hy. In particular,
(5.2) holds true with A = A; and H = Hy. By (4.3) and Theorem 5.2, Hy € C*(A;)
and [Hy,iA1]o = 2Hy. For z € R, Ro(z) := (Ho — 2)~! belongs to C!(A;). Using
(5.3) with A = A; and H = Hy, we see that the form [[Ro(z),iA1]o,7A1] on
D(A;) N D(Hyp) extends to bounded one. Thus Ry(z) € C3(A;) and Hy € C2(Ay).

Since D(H;) = D(Hy) by Assumption 4.1, H; € C'(A;) follows from (4.3) and
Theorem 5.2 if (5.2) holds true with A = A; and H = H;. We consider the form
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[H1,iA1] on D(A1) N D(Hp). Tt is the sum of [Hy,iA1] = 2Hp, of the bounded
terms [W,iA;] = W — W; and [V}, i4;] =z - VW, and of

<f7 [‘/Sr; ZA1]9> - <‘/Srf7 ZAlg> - <A1f; Z‘/srg>
(4.5) = ((2)Varf, ()7 (@ Vo + d/2)g) + {(2) 7 (@ Vo + d/2)f, (@) Varg) ,
for f,g € D(A1) N D(Hp). Since (x)Vi is bounded, (4.5) extends to a bounded

operator from H!(RZ) to H™1(R%) and also from H?(R%) to H-2(RZ). This gives
(5.2) for (H, A) = (Hy, A1). Thanks to (4.3) and to Theorem 5.2, H; € C'(A;). O

4.2. Energy localization of oscillations. To prepare the derivation of Mourre
estimates, we take advantage of some “smallness” of energy localizations of W; of
the form 0(Ho)W160(Hy), extending a result by [FH] in dimension one. As seen in
[FH], this term is not expected to be small if @ is localized near k% /4. Using pseudo-
differential calculus, one have the same impression if d > 2 and if 0 is supported in
|k%/4; +00] (see Remark 4.5). However, if § lives in a small enough compact interval
T C]0;k?/4], then the same smallness as in [FH] is valid as stated in Lemma 4.3
below. The proof combines an idea in [FH] with pseudodifferential calculus (see
Subsection 2.2 for notation). In the sequel, we shall write & for z/|x|.

Lemma 4.3. Let \ €]0;k2/4[. Recall that g is given by (2.12) and Wy by (4.4).
Take X1 € C"O(Rd) such that X1 = 0 near 0 and X1 = 1 near infinity, and set
ex(x) = Xy(x)eT el For § € C°(R) with small enough support about X, there
exist symbols by, bj , € S(x) &)™, g), for j € {1;2} and o € {+,—}, such that

(46) H(HO)W19(H0) = b’iu,_,’_eJr + b1lu,_€, + 9(H0)(€+bgi+ + S,bgi_) + bg) .
In particular, (A1)$0(Ho)W160(Ho) is compact on L2(R%), for e € [0;1].

Remark 4.4. In dimension d = 1, this result is proved in [FH] and it also holds true
if A > k%/4. Our proof below covers also this case.

Proof of Lemma 4.3. By pseudodifferential calculus, 0(H)(1 — X1)W10(Hp) = by
with by € S((x)~1(¢)71,g). By (4.4) and the proof of Proposition A.1, we can
find X3 € C(R?) such that X3 = 0 near 0 and X3 = 1 near infinity, and b;, €
S({z)~H&) 7L, g), for j € {0;2} and o € {+, —}, such that

2(qk:)_19(H0)X1W19(H0)
= 0(Ho) ((0(1¢ — kal*)Xs (@) "ex. + (01¢ + kal*)Xa(2)) e )
+ 0(Ho) (b yeq +bf _e— + ey by +e_by )

= (0(1€")0(¢ — k2 *)X3(2)) " ex + (0(IE*)O(IE + k2[*)X3(2)) e
(4.7) + 07 e + 07 e +0(Ho)(er by | +e-by ),

by composition. Now we choose the support of 6 small enough about A such that
0(1€12)0(|¢—k2|?) = 0 = 0(|¢|2)0(|€+k2|?), for all x # 0 and & € R?. This is possible
since 0 < A < k?/4, see Figure 1. Now (4.7) reduces to (4.6). By Appendix C,
(A1)¢(D,)~%(x)~¢ extends to a bounded operator. For b € S({x)~1(£)~!, g), there
exists b € S((z)°71(£)°~ 1, g) such that (x)°(D,)b* = b¥ and b¥ is compact by
(2.15). Using (4.6), this implies that (A,)0(Ho)W10(H,) is compact since we can
write O(Ho)e by, = 0(Ho)(x) ey (x)by , with (x)by , bounded and O(Hy)(z)~" =
bW with b e S((z) &)™, g). O
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supp 6(| - |*) supp 0(] - —k2[?)

0 kit /2 kg

FIGURE 1. supp 6 CJ0, k?/4].

supp 6| - 2)?ﬁmpp (|- —kz|?)
0 gz i

FIGURE 2. supp 0 C]k?/4, +ool.

Remark 4.5. If A > k?/4 and d > 1, the first two terms on the r.h.s. of (4.7) do not
vanish anymore, see Figure 2. In this case, our proofs of the Mourre estimate (cf.,
Proposition 4.8) and of the strict, weighted Mourre estimate (cf., Subsection 4.4)
do not work.

In dimension d = 1, we note that the first two terms on the r.h.s. of (4.7) do vanish
as soon as A\ # k?/4. See Figures 1 and 2 and recall that £ is co-linear to . We
recover a result in [FH].

4.3. Usual Mourre estimate. Now we derive the Mourre estimate (1.1) below
k? /4 under the following strengthening of Assumption 4.1:
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Assumption 4.6. The functions Vi, (x)Vi, and the distribution -V Vi, () belong
to L=(R%) and, as operator of multiplication, compact from H2(R%) to L2(RZ).
Lemma 4.7. Under Assumption 4.6, ¢(Hy) — @(Hy) is compact from H2(RZ) to
L2(RZ), for ¢ € C°(R).

Proof. Using (2.6), one has (¢(Hy) — ¢(Ho))(Ho) =
i /C 3z 0% (2) (2 — Hy) "X (W + Vir + W) (2 — Ho) ™ (Ho) dz A d=.

For z ¢ R, the integrand is compact. Using (2.8), the integral converges in norm.
Hence it is also compact. O

Proposition 4.8. Under Assumption 4.6, for any open interval T with T C
10; k2/4], the Mourre estimate (1.1) holds true for (H, A) = (Hy, A1). In particular,
the point spectrum oy, (H1) of Hy is finite in T.

Proof. Tt suffices to show (1.1) on some compact neighborhood of any A € Z. Take
such a A € Z and let § € C2°(Z; [0, 1]) such that § = 1 near \. Like in the proof of
Proposition 4.2, as form on D(Hp) N D(A;1) x D(Hy) ND(Ay),
[Ho + V,iA)] = 2Hy — x - VWi, = V - 2{z) "N 2)Vy — (2)Vir () "tz - V.
We recall that [W,i41]o = W — W;. Hence [Hi,iA1]o is bounded from D(Hy) =
H2(RZ) to D(Hp)* = H™2(RZ). Moreover, by Lemma 4.7, the bounded operator
0(H,)[Hy,1A1]o0(Hy) is equal to 0(Hp)(2Ho — W1)0(Hp), up to some compact op-
erator. By Lemma 4.3, we can choose the support of 6 such that 0(Hy)W10(Hy) is
compact. Thus, there exist ¢ > 0 and compact operators K, K’ such that
0(Hy)[Hy, A1]o0(Hy) > c0(Ho)* + K' > cO(Hy)* + K.
This yields the Mourre estimate (1.1) near A. O

As explained in Subsection 3.1, we need some information on possible eigenvalues
embedded in the interval on which the LAP takes place. Recall that P; denotes
the orthogonal projection onto the pure point spectral subspace of H;.

Proposition 4.9. Under Assumption 4.6, take an open interval T with T C|0; k> /4]
such that, for all p € T, Ker(Hy; — pu) C D(A1). Then Ex(Hy)Py € CH(Ay).

Proof. By Proposition 4.8, the point spectrum is finite in Z. Thus Ez(H;)P; €
C'(A1), by Proposition 2.3. O

We now explain how to check the hypothesis Ker(H; — 1) C D(A;). The abstract
Theorems given in [Ca, FMS1] do not apply here because of the low regularity of
Hy w.r.t. Aj, see the inclusions (5.6), the implication (5.7), and Proposition 5.4.
For j € {1;--- ;d}, the multiplication operator by z; in L2(R%) is also denoted by
x;. As preparation, we show, using a Lithner-Agmon type equality, the following

Lemma 4.10. Letn € N. Ifv € C3(RY) NnH2(R) ND((x)*") then Vv € D((z)").

Proof. Define ®(z) = nln(z) for € R? and let R > 1. Using Green’s formula, we
can show that

(4.8) / ‘V(e‘bv)‘Qd:c =a(R) + Re/ e**0(—Av + |VO|*v)dx,
|z|<R

|z|<R
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where the term a(R) contains surface integrals on {|z| = R} and tends to 0 as
R — 00, thanks to v € D((x)?") and v € C*(R?). Since v € H?(R%), the last term
in (4.8) converges as R — oo, yielding V(e®?v) € L%(R%). Since e®vV® € L?(RY),
(x)"Vv = Vv € LE(RY). O

Lemma 4.11. Under Assumption 4.6, let u € C*(RY) N H2(RY) and X\ €]0;k%/4]
such that (Hy — N)u = 0. Then u € D(A;). Moreover, if Vi, =0, then u = 0.

Proof. By Proposition 4.8, the usual Mourre estimate holds true near \. Thus,
one can apply Theorem 2.1 in [FH]. Therefore u € D((z)"), for all n € N. By
Lemma 4.10, D% € D({x)"), for all n and all o € N¢ with |a| = 1. In particular,
r-Vu € L2(RY) and u € D(A;1). If Vi, = 0, we can apply Theorem 14.7.2 in [H52)
to u yielding u = 0. O
Remark 4.12. If the potential V' = V,, + Vi, belongs to Cm(Rd) for some integer
m > d/2 then, by elliptic regularity, any eigenvector u of H; belongs to C?(R%).
In particular, by Lemma 4.11, Proposition 4.9 applies to any open interval Z such
that Z C]0; k2/4].

4.4. Weighted Mourre estimate. Here we establish for H; a projected, weighted
Mourre estimate like (3.9) in order to prove a limiting absorption principle (cf.,
Theorem 4.15). To this end, we use the following assumption, which is stronger
than Assumption 4.6.

Assumption 4.13. For some py €]0,1], the functions (z)P°Vi,, (z)!TPoV, and
the distribution (z)P°x - VWi (x) belong to L>°(R%).

We start by strengthening Lemma 4.7.

Lemma 4.14. Under Assumption 4.13, for e € [0; po| and ¢ € C°(R),

(4.9) (o(Hy) — @(Hp)){A1)¢ is compact from L2(RY) to H2(RY).

Proof. For z ¢ R, (z — Hop)™! = r¥ where 7, satisfies (B.3) with m = (£)2. By
composition, we can find, for all £ € N, Cy > 0 and N, € N such that, for all z ¢ R,

) () (€ Nlsye—rotgy—rg) < Cole) Ve Im(z) e
Now thanks to Assumption 4.13, (2.15) (2.3), (2.4), and (2.5), we infer that

() (p(Hy) — (Hy)) {z)° (D /&w H) (= — Hy)™!
<W+%+w»><@mu—%>@fwwMAﬁ

is a compact operator, as norm convergent integral of compact operators. To con-
clude, we recall (x)~¢(D,) ¢(A;)¢ is bounded by Lemma C.1. O

The main result on Schrodinger operators with oscillating potential is

Theorem 4.15. Let A\ €]0;k%/4] and suppose that Assumption 4.13 is satisfied.
Take a small enough, open interval T C|0;k?/4[ about X\ such that, for all p € T,
Ker(Hy — p) C D(Ay). Then, for any s > 1/2 and any interval T' C T’ C I, the
reduced LAP (3.1) for Hy respectively to (Z7,s, A1) holds true.
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Remark 4.16. Of course, a compactness argument shows that we can remove the
smallness condition on Z. We also get an estimate like in (3.6) in Theorem 3.5.

If d = 1, the proof of Theorem 4.15 works also if A\ > k?/4, by Remark 4.4.

Under Assumption 4.13, Theorem 4.15 ensures that H; has no singular spectrum
above Z. In dimension d = 1, for Vj; = 0 but under a weaker assumption on Vg,
this result was already obtained in [Ki, Re] (see references therein). Our long-range
result seems to be new, even in dimension 1.

If 7 contains an eigenvalue p of Hy, the condition Ker(H; — p) C D(Aq) is satisfied
if V.= Vg 4+ W, is smooth enough (cf., Proposition 4.9 and Remark 4.12).

If one sets ¢ = 0, i.e. if one removes the potential W, H; has no embedded eigenvalue
(cf., [FH]). The following proof of Theorem 4.15 works for each compact interval
Z' C (0,00) and gives the LAP (1.2) with (H, A) = (H;y, A1). This is a well-known
result that can be obtained by the involved versions of the Mourre theory which are
exposed in [ABG, Sa]. But the technics of [Mo, Gé] do not apply, since the needed
regularity condition H; € C?(A;) is not always satisfied under Assumption 4.13.

Proof of Theorem 4.15: Let 0,X,7 € C°(]0; k?/4]) such that 7X = X, X0 = 6, and
0 = 1 near Z. Later we shall adjust the size of the support of X. By Proposi-
tion 4.2 and (5.7), X(H1) € C*(A1). Since Ez(Hy)Py € C1(A;) by Proposition 4.9,
X(Hl)PlL = X(Hl) — X(Hl)EI(Hl)Pl belongs to Cl(Al)

Let s €]1/2;1[. As in [Gé], we define ¢ : R — R by

(4.10) P(t) ::/_ (u) ™2 du.

Note that ¢ € S° and is in particular bounded. Let R > 1. As forms, using the
fact that Hy7(H;) is a bounded operator and belongs to C'(A4;) and using (2.9),

F:= P{-0(Hy)[H1,it(Ay/R)|0(Hy) P~ = Pi-0(Hy)[Hym(Hy), i (A1 /R)|6(Hy) P
- / D= (=) PLO(H, ) (= — Ay/R)~\[Hyr(Hy),iAy/R).
27 C
(z— Ay /R)™'0(H,)Pj-dz A dZ .
Next to Pi-0(H;) we let appear X(H;)Pit and commute it with (z—A;/R)~!. Since

X(H1)Pi- € C(Ay), we obtain, using (2.3), (2.4), and (2.8), for some uniformly
bounded operator By w.r.t. R > 1,

F :% /C o= (2)P-0(H,)(z — Ay /R) "' PX(H)[H 7(Hy),iA1 )R],

(4.11) X(H,)Pi-(z — Ay /R)"Y0(H,)Pitdz A dz
+ Plo(Hy){A1/R)"*R™2B(A,/R)"*0(H,)P;-.

Let € := po/2. Using (4.9), notice that

G := P{"X(H,)[H\7(H,),iAy/R]oX(H,)Pj- = P{-X(H,)[H,iA,/R],X(H,)P;-
= P{*X(Hy)[Hy,iA1/R)oX(Ho)Pi- 4+ Pi-X(H,)K1R™*By(A;/R) P,
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where the operator Ky := 7(Hy)[Hy,iA1]o(X(H1) — X(Hp)){A1)® is compact and
By := (A1/R)%(A;)~¢ is uniformly bounded. Similarly, there is Ko compact so that

G =P{"X(Ho)[H,iA1/R]oX(Ho) P + P{"X(H)K1R ™' B2(A1/R)~° P{"
(4.12) + P{*(A1/R) "By Ky R X (Ho) P}~
We focus on the potential contribution in G. Choosing 7 appropriately and using

Assumption 4.13, we claim that there exist a compact operator K3 and an uniformly
bounded operator Bs such that

(4.13) X(Ho)[W 4 V,iA1/R])oX(Hy) = R™'X(Hy)K3Bs(A; /R) °X(H).

By Lemma 4.3, we take the support of 7 small enough to ensure the compactness
of 7(Ho)WiT(Hy)(A1)®. By writing

(W2 VVi)T(Ho)(A1)" = (W + 2 - VVi ) (@) - b - (2) 7" (D) = (A1),

with b € S({(z)=¢(&)71, 9), T(Ho)[W +Vir, i A1]oT(Hg) (A1 )® is compact by (2.15) and
Lemma C.1. Slmllarly, we prove the compactness of 7(Ho)[Vir, i A1]om(Ho)(A1)®,
making use of the fact that, by (4.5), (D)™ [Vir,iA1]o(x)?0 (Ds)~1 extends to a
bounded operator. This yields (4.13).

Taking advantage of [Ho,iA1]o = 2Hy, of (4.13), and of (4.12), we rewrite (4.11):

F = —/&w (2)P0(Hy)(z — A1 /R) "' P{-2R™ 1 HoX*(Hy)

(4.14) P (z — Ay /R)"Y0(H,)Pitdz A\ dz
+ P0(Hy){A1/R)"*(R™By + R™'Ky)(A1/R)™*0(Hy) P},

with compact K, such that, for some ¢; > 0,

(4.15) 1Kl < e (I1PEX(H) K| + | K2X(Ho) | + [IX(Ho) Ks])) -

Next we commute (z — A;/R) ™! with P{-2R™*HoX?(H)P;-. Recalling (2.6) with
k =1 and (4.10), there are By and Bs, uniformly bounded, such that

F = PLo(H ) (A1 /R)P-2R™ Y HoX?(Ho) PLO(H, ) Pi-
Pi-O(H1){A1/R)"*(R™°By + R™'K4)(A1/R)™*0(H1)P;-
= P{*0(H,)(A1/R) 2R~ HoX?*(Ho) (A, /R) ™ *0(H,)P{-
P{-0(Hy)(A1/R)™*(R™*Bs + R~ K4){A1/R)™0(H1) P,
> 2R ey PHO(Hy ) (A1 /R)*X?(Hy) (A, /R)~*0(H,)P;-
+ PO(Hy)(A1/R)™*(R™?Bs + R™'K4) (A1 /R)™*0(H, ) P}-

where ¢y > 0 is the infimum of Z. Finally, since K5 := X*(Hp) — X?(H}) is compact
by (4.9), we find an uniformly bounded Bg, such that

F > 2R ey PO(H, ) (A1 /R)“*X*(H,){A1/R)~*0(H,) P}
+ PO(H1)(A1/R)*(R™*Bs + R™' K4+ R™'K5)(A1/R)*0(H,)P{
> 2R ey PHO(HL ) (A1 /R)™2*0(H, )Pt + Pi-0(H,)(A;/R)~*
(R2Bs + R™'K, + R KsX(H,)PiH)(Ay /R)*0(H, )P .

To conclude, using (4.15), we decrease the support of X to ensure that ||K4| +
| KsX(H1)Pit|| < c2. Subsequently, we choose R > 1 large enough to guarantee
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F > R 'eaPit0(H1)(A1/R)=2°0(H,)Pi-. Letting act the projector Ez(H;) on
both sides of this inequality and recalling the definition of F', we get the projected,
weighted Mourre estimate (3.5) with H = Hy, P = P;, B = ¢(A1/R), and C =
c2/R(A1/R)~*. By Theorem 3.4, we obtain the result. O

5. USUAL MOURRE THEORY.

In this section, we explain why the usual Mourre theory with conjugate operator
Aj cannot be applied to Hi, the considered Schrodinger operator with oscillating
potential. We have proved that H; € C 1(A1) and established a Mourre estimate for
Hy w.r.t. Ay, see Propositions 4.2 and 4.8. However, in order to apply the standard
Mourre theory, one has to prove that H; is in a better class of regularity w.r.t.
Aj. In this section, we prove that this is not the case. If one replaces A; by some
natural variants, we explain in Remark 5.6 below that the required regularity is
not available. On the other hand, a consequence of Theorem 4.15 is that under
the Assumption 4.13, the operator H; has no singular continuous spectrum. By
abstract means, see [ABG, Proposition 7.2.14], there exists a conjugate operator
A, such that H; € C(A) and such that a strict Mourre estimate holds true for
Hi, w.r.t. A, on every interval that contains neither an eigenvalue nor {0, k2/4}. Tt

seems very difficult to find explicitly A.

We first continue the description of different classes of regularity appearing in the
Mourre theory that we began in Subsection 2.1. We refer again to [ABG, GGM1,
GGé] for more details. Recall that a self-adjoint operator H belongs to the class
CY(A) if, for some (hence for all) z ¢ o(H), the bounded operator (H — z)~!
belongs to C!(A). Lemma 6.2.9 and Theorem 6.2.10 in [ABG] gives the following
characterization of this regularity:

Theorem 5.1. ([ABG]) Let A and H be two self-adjoint operators in the Hilbert
space . Forz ¢ o(H), set R(z) := (H—2)"1. The following points are equivalent:

(1) H € C'(A).
(2) For one (then for all) z ¢ o(H), there is a finite ¢ such that
(5.1) [{Af, R(2)f) = (R(2)f, Af)] < cl|fII*, for all f € D(A).
(3) a. There is a finite ¢ such that for all f € D(A)ND(H):
) (Af H) = (HFAF) < (I + 1 F])-

b. The set {f € D(A); R(z)f € D(A)and R(Z)f € D(A)} is a core for
A, for some (then for all) z ¢ o(H).

(5.2

Note that the condition (3.b) could be uneasy to check, see [GGé]. We mention
[GM][Lemma A.2] to overcome this subtlety. Note that (5.1) yields that the commu-
tator [A, R(z)] extends to a bounded operator, in the form sense. We shall denote
the extension by [4, R(z)]o. In the same way, from (5.2), the commutator [H, A]
extends to a unique element of B(D(H), D(H)*) denoted by [H, Al,. Moreover, if
H e CY(A) and 2 ¢ o(H),

(53) [AH-27' = (H-z"" [H, Al, (H—2)"".

———— N—— ————
H—D(H)* DH)*DH) DH)«—H
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Here we use the Riesz lemma to identify 57 with its anti-dual 2Z7*. It turns out
that an easier characterization is available if the domain of H is conserved under
the action of the unitary group generated by A.

Theorem 5.2. ([ABG, p. 258]) Let A and H be two self-adjoint operators in the
Hilbert space S such that e**D(H) C D(H), for all t € R. Then H € C'(A) if
and only if (5.2) holds true.

Remark 5.3. Some arguments used in the proof of Proposition 4.2 may be performed
in an abstract way. Take a Hilbert space ¢, such that ¢ — 57 with a continuous,
dense embedding and such that the Co-group {e**4},cp stabilizes ¥ (hence also ¥*
by duality). Let T € B(¥4,9*). We say that T € C1(A;9,%4*) if the strong limit
of t =+ t~1(e®ATe ™A — T) exists in B(¥,%*), as t goes to 0. The limit is denoted
by [T,iA]o. Assuming the invariance of D(H) under the Co-group {e“4};cr and
taking a ¢ with continuous, dense embeddings D(H) < ¢ — J#, then {e"4},cr
stabilizes ¢ by interpolation. If T € C1(A;94,%*) then T € C*(A; D(H),D(H)*).
If H € CY(A;D(H),D(H)*), [H,iA], coincide with the previous definition. One
can reformulate Theorem 5.2 as follows: H € C'(A;D(H),D(H)*) if and only if
H e Cl'(4).

We need to introduce others classes inside C*(A). Let T € B(2#). We say that
T € CY¥(A) if the map R 3 t e Te~#4 € B() has the usual C' regularity.
We say that T' € CHY(A) if

1
(5.4) / (T, ¢4, ¢4 2 dt < oc.
0
We say that T € C'T9(A) if T € C1(A) and
1
(5.5) / AT, Ale= A ¢ dt < oo,
0

Thanks to [ABG, p. 205], it turns out that

(5.6) C*(A) c CMO(A) c ¢t (A) cch(A) c cH(A).

Given a self-adjoint operator H and an open interval Z of R, we consider the corre-
sponding local classes defined by: H € CE] (A) if, for all ¢ € C(T), p(H) € ClI(A).

We say that H € Cll(A) if, for some z € o(H), R(z) € CIl(A). Proposition 2.2 also
works for the new classes: for all open interval Z of R and all ¢ € C°(Z),

(5.7) Hecl(a) = o(H)ecHa).

In [ABG], the LAP is obtained for H € C!(A) (see p. 308 and p. 317) and this
class is shown to be optimal among the global classes (see the end of Section 7.B).
In [Sal, for H € C;T°(A), the LAP is obtained on compact sub-interval of Z. It is
expected that the class Co' (A) is sufficient. Section 7.B in [ABG] again shows that
one cannot use in general a bigger local class to get the LAP.

Now we explore the regularity properties of H; under Assumption 4.6. From Propo-
sition 4.2, we know that H; € C'(A;). If H; would belong to C1'1( A1) then, by (5.6)
and (5.7), Hy would belong to C;™*(A,;) for any open interval Z C0; +ocof. If H;
would belong to C2T%(A;) or even to C+'(A;), for some open interval Z C]0; +o0|,
then H; would belong to C+*(A;) by (5.6). In both cases, this would contradict:
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Proposition 5.4. Under Assumption 4.6, for any open sub-interval I of 0; 4+o00],
H1 ¢ C%’H(Al)

Proof. Take such an interval Z and ¢ € C2°(Z). By Proposition 4.2, (5.6), and (5.7),
©(Ho) € CH*(A1). Assume that o(H;) € CV¥(Ay). Then K := o(Hy) — ¢(Ho) €
Ch¥(A;) and K is a compact operator on L2(R%), thanks to Lemma 4.7. Thus

[K,iAi]o = lim t’l(e*itAlKeitAl _ K)
t—0

in B(L2(RY)) and [K,iA:], is also compact. So is B[K,iA],B’, for any B, B’ €
B(L%(R%)). This contradicts Lemma 5.5 below. O

Lemma 5.5. Assume Assumption 4.6. For any open interval T C]0;+oc[, there
exist a function p € CX(Z) and bounded operators B, B’ on L*(RY) such that
Blo(Hy) — o(Hy),iA1)o B’ is not compact on L?(R2).

We refer to Appendix D for a proof of this Lemma for d = 1, which does not rely
on pseudodifferential calculus.

Proof of Lemma 5.5. In the sequel, for C,D € B(L*(R%)), we write C ~ D if
C — D is compact on L*(R%). By Proposition 4.2, Hy, Hy € C'(A). Then By :=
[p(H1) — ¢(Hp),iA1]o is bounded. Furthermore, thanks to (2.9), (2.10), and by the

resolvent formula, with a norm convergent integral,
(5.8) B = QL / Oz 0%(2)[(z — Hi)"'"(W + V) (2 — Ho) ', i) dz A dz.
T Jc

We recall that given a continuous function F : R¢ — C, that tends to 0 at infinity,
the multiplication by F' is compact from H*(R%) to L2(R%), for all s > 0. Using
again Proposition 4.2 and expanding the commutator, using the computation of
[W,iA1]o (see just before (4.4)) and the resolvent formula again, it yields:

B~ QL/Ggwc(z)(z—Hl)_l[W-i-V,iz‘h]o(Z—Ho)_le/\dEa
T Jc

12

;/(’)gap(c(z)(z—Hl)’lWl(z—Ho)’ldz/\dz,
™ Jc

(5.9) ~ ;—Z / Az (2)(z — Ho)"*Wi(z — Ho) "t dz A dz,
T Jc

2

(5.10) ~ ;—;/aggp‘c(z)(zfHO)”XlWl(szO)*ldz/\dz,
C

with X; € C>(R?), X; = 0 near 0, and X; = 1 near infinity.

At this point, we use pseudodifferential techniques and, in particular, Appendix A.
For z € RY, let ex (x) = Xy (x)e™* 12l By (4.4), (XiW1)(z) = kg2~ (ey (x)+e_(2)).
Now we apply Proposition A.1 to a(z,£) = [£]? € S((£)?,g). By its proof, ax can
be chosen real and a!f is self-adjoint. Using the resolvents of a¥ and a*,

er(z—Ho) ' =ex(z—a")™' = (z—a¥) tes

(5.11) + (2 —af) Hewhy + cWex)(z —a”) 7,
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FIGURE 3. supp bo

for all z ¢ R. We obtain from (5.10), (5.11), and Proposition A.1:

ik
B ~ ! q/(‘%(p )z —Hp) Hz—a¥) e, dz NdZ.

According to [Bol] (see Appendix B), ( —Hy)™ ' =p¥ and (z—a¥)~! = p¥_ where
the symbols p., ps,. belong to S(( Y72, 9) and satisfy (B.3) with m = (¢)2. Using
the continuity of the map S({€)72,9)% > (r,t) = r#t —rt € S(h{€)72,9g), we can
find, for all £ € N, Cy > 0 and N,y € N such that

(512) ||pz#pa,z - pzpa,z”Z,S(h(&)*“,g) S C€<Z>NE+1|Im(Z)|_NE_1 .
Using (2.3), (2.4), and (2.5), we see that, for o € {+; -1},

/ 0% (2) (po#po.z — Dopos) d2 A 02
converges in S(h{€)™%,g) = S((x)~1{¢)75, g). Thanks to (2.15),
B ~ qu( 9= (2) (2 — Iélz)l(zaa(xvf))ldwd?yea-
We take b € S(l, g) such that bX; = b. By the previous arguments,
b By ~ — 2 (/C Bz" (2)b(x, &) (2 — [€17) 7! (2 — a (2,€)) ™ dz A dz)w

(5.13) - ikq(4m) et k=l

Now we choose ¢ with a small enough support near some A € Z and b € S(1,9)
such that b(z, £) = X4(2)bo (2, €), X4 € C°(R?) with X4 = 0 near 0 and X4 = 1 near
infinity, ©(|€]?)bo(2,€) = 0 = o(|€ + kZ|?)bo(%, ), bp = 0 near & - & = +k/2, and
such that ¢(|¢ — k2|?)bo(%, £) is nonzero, see Figure 3. In the last requirement, we
use the fact that Z C]0; +o0o[. Note that, on the support of by(%,£) and for |x| large
enough, by (r, &) := [£]? — |€ + ok&|? does not vanish, for o € {+;—}. Thus,

(2= 1€ 7 (2 = ao(2, )" = (ba(2, )7 ((= = &) ™! = (2 — a0 (2,€)) "),
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in this region. Inserting this in (5.13) and using the support properties of b and ¢,
OBy ke 3 (b, ) (b1 (2. ) 7 (21E2) = (g + okif?)) ) M=

:kzqu((x €)1 (2,6) 7 (1€ — ki) ek

Setting B = b* and B’ = ¢**I*l, BB, B’ ~ ¢* with an explicit ¢ € S(1, g) that does
not tend to 0 at infinity. By (2.15), neither ¢* nor BBy B’ is compact. O

Remark 5.6. As alternative to Ay, it is natural to try A; = (7(&)p(x)x - €)', where
1 —p e CP(RY and 7 € S(1,g) satisfies 7(¢) = 1 if [£|?> € Z. But Proposition 5.3
holds true with A; replaced by Aj.

Let us sketch a justification of Remark 5.6. One can verify that o(Hp) € C2(A,).
We follow the proof of Lemma 5.5 and arrive at (5.10) where x1W; is replaced by:

ik
- Z Rl / 0:0%(2)(z — Ho)"1b¥ dz NdZ e,
o—t 47 C ’

with, for yo2 = 0 near 0 and xa2x1 = X1,

bro = x2(x) (T(E)ﬁc =16 —0ok)i- (£ — aki)) )
Since the b, , do not depend on z, we can estimate p,#b, ¢ #Do.» — broP:Do,-» in &
similar way as in (5.12) and get (5.13) with b replaced by bb. . Following the last

lines, we find that BB B’ ~ (b, _c)"¥, by _c € S(1,g), and b, _c does not tend to
zero at infinity. We arrive at the same conclusion as in Lemma 5.5.

APPENDIX A. OSCILLATING TERMS.

In our study of Schrodinger operator with a perturbed Wigner-Von Neumann po-
tential (see Section 4), we need a good understanding of operator compositions
like a*X1 W7, where a € S(m, g), g and m given by (2.12) and (2.13), W; given
by (4.4), and where X; € C®(R?%) such that X; = 0 near 0 and X; = 1 near in-
finity. More precisely, we are looking for an explicit pseudodifferential operator
A such that a”X1 W7 = A+ b By + Be9bY, with bounded operators Bj, By and
symbols b1,b2 € S(m(z)~1(€)7, 90) (go given in (2.12)). Although a € S(m, go)
and X;W; € S({x)71, go), the symbolic calculus associated to g is not well suited
for our analysis, in particular to guarantee by, by € S(m(z) =)7L, go). It is bet-
ter to work with g with the drawback that W, does not belong the corresponding
calculus. Taking into account the special form of Wi, we provide the previous
decomposition with by, b € S(m(x)~1(£)71, g), using standard arguments of pseu-
dodifferential calculus. In Appendix D, we give a simpler result in dimension d = 1
that essentially follows from facts used in [FH].

For m of the form (2.13), we denote by S(m(x)~°°, g) the intersection of all classes
S(m(z)¥, g) for k € Z. We denote by S(—o00, g) the intersection of all classes S(m, g)
with m satisfying (2.13). Tt suffices to study a”e+ where e4 () = X;(x)e**=l. To
this end, we shall use the oscillatory integrals defined in Theorem 7.8.2, p. 237, in
[H61], which actually works for symbols in the classes S(m, g) we consider here.
These oscillatory integrals can also be viewed as tempered distributions. Note that
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usual operations on integrals (like integration by parts or change of variable) are
valid for oscillatory integrals.

Proposition A.1. Let a € S(m, g) with m and g given by (2.13) and (2.12). Let
e+ be the functions defined just above. Then there exist symbols ax € S(m, g), by €
S(m(x)=°,9), and cx € S(mh,g) (with h defined in (2.14)), such that era™ =
abey +erb¥ + ey and such that ay(x, &) = a(x, & F klz|z), if X1(x) # 0.

Proof. Let X2, Xy € C*®°(R?) such that X5 = 0 and Xy = 0 near 0, XaX; = X;, and
X2(1 — X3) = 0. Notice that XoX; = X1. We write exa®¥ = exa”(Xa + 1 — Xg) =
era®XoeFT*le . + ey Xoa® (1 — Xo) and arrive at

(A1) era® = era®XoeTH*le, 4+ e p®

where b := Xo#ta#(1 — Xo) € S(—00, g), since Xa(1 — X3) = 0. For f € ./ (R?), the
Schwartz space on R?, using an oscillatory integral in the & variable,

fi(@) = (exa”Xae ™M f) ()

= (27T)*d/€i<“y’§>a((9€+y)/2;§)><1($)€ﬂk'm'- Xa(y)e ™M £ (y) dydg

— (2m)~¢ / v Kl (i 4 4)/2:€) - X (2)Xa(y) f(y) dyde

We take € €]0;1/4] and 7 € C°(R) such that 7(t) = 1if |[t] < 1—4e and 7(t) = 0 if
[t| > 1—2¢. Weinsert 7(|z—y|(z) 1) +1—7(|z—y[{x) ') into the previous expression
of f1 and call fy (resp. f3) the integral containing 7(|z — y|(z)~1) (resp. 1 — 7(|z —
y[{@)~1)). On the support of Xy (z)X2(y)7(|z — yl(x) 1), [z — y| < (1 - 2¢)(z). We
can choose the support of X; such that, on the support of X1 (2)Xa(y)7(|x—y[{z)~1),
|z —y| < (1 —€)|z|. In particular, on this support, 0 does not belong the segment
[2;9] and, for all ¢ € [0; 1],

(A.2) u(t;z,y) = [te + (1 —t)yl > || — (1 —t)ly — 2| > ela].

For  # 4, (Lu.y.pe — 1)eil@=yOFik(zl=ly]) = ( for Loy, = |t —y| 2z —y) - De.
Thus, by integration by parts, for all p € N,

fa(a) = (2m) / v %K= X, ()Xo () (1 — (| — y]() 1))

+(L5y,0)" (@l +9)/2:€)) £ (y) dydg
(A.3) = (b5'f)(x),
with b3 € S(—o0, g) (cf., (8.1.8) in [HG3]).

Lemma A.2. Take z,y € R? such that 0 does not belong the segment [z;y]. Then,

(A.4) [ =yl = (w(1/22,9) +r(z,y),7 —y)
where v(t; z,y) = (to + (1 — t)y)/|tz + (1 — t)y| for t € [0;1], and where
(A.5) r(z,y) = /((1 - t)]l[l/g;l] (t) — th[0;1/2) (t))@tv(t;x,y) dt

satisfies |r(z,y)| < 2.



26 GOLENIA, SYLVAIN AND JECKO, THIERRY

Proof. Tt suffices to use the Taylor expansion with integral rest for the function
u(;x,y) defined in (A.2) between 0 and 1/2 and between 1/2 and 1. O

By Lemma A.2, we can rewrite fo(x) as

fa(z) = (27T)’d/ei“’y’fik(”(1/2“’””“’””X1(x)Xz(y)T(lw —yl{z)™)
-~ a((z+y)/2:€) f(y) dyd§
= 2m! [ @ - vl )
ca((z+y)/2ZmF k(w(l/22,y) +1(2,9))) f(y) dydn

after the change of variable n = £ + k(v(1/2;z,y) + r(z,y)). Now we use a Taylor
expansion of a with integral rest in the ¢ variable:

a((x+y)/2in F k(v(1/2;2,9) +r(z,y))) = al(z +y)/2in F kv(1/2;2,y))
+ /O dt (Vea((z +y)/2;n F k(v(1/2;2,y) + tr(z,y))), kr(z,y)) -

According to this decomposition, we split fo(z) in fi(z) + f5(z). Thanks to the
bound (A.2) for t = 1/2, we can find X3 € C>(R?) such that X3 = 0 near 0 and

Xa(@)Xa (y)7 (o — yl(2) ™) (1 = Xs((2 +3)/2)) = 0.

Setting ay(x,n) = X3(x)a(z,n F ki), we obtain that

fala) = (2m)~¢ / =YX (@)X (y)7(le — yl(x) ™)
< ax((x+y)/2) f(y) dyd§ + fs5(x)
(A6)  =Xi(x)(@¥Xef)(@) + f5(x) = (@Lf) () + (b5 F)(x) + fs(a),

with by € S(m(z)=>°,g). Since ||n + k2| — |n|| < k, for all x € R4\ {0} and all
n € R4, a direct computation shows that a+ € S(m, g).

Now we study f5. Given a vector v € R? let A(v) = I — (v,-)v (where I denotes
the identity on R9). If 0 does not belong to the segment [x;y] in RY, dv(t; z,y) =
(u(t;z,y)) " LA((t;2,y)) - (x — y), where v(t;x,y) (resp. u(t;z,y)) is defined in
Lemma A.2 (resp. (A.2)). Defining (s) := (1 — s)U1/2,11(5) — s1j0;1/2)(s)5

fola) = (2m) / 1M X, ()X () (1 — y) () ) / dt
(Vea((z +y)/2;n F k(v(1/2;2,y) + tr(z,y)))

Tk / ds w(s) (u(s: 2,y)) " Alo(si2,9)) - (@ — ) - F(y) dyde
0

by (A.5). Denoting by A(v)T the transposed of the linear map A(v) and setting
me=nF k(v(1/2;z,y) + tr(z,y)),
(Vea((z +y)/2im), Alv(s;,y)) - (@ —y))
= (A(v(s;2,9))" Veal(z +y)/2m) , (z —y)) -
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Integrating by parts in the 5 variable,

1 1
— (27)"¢ i{z—y,m) — -1 d
folo) = 20 [ @@t i)™ [ at
- (i(A(v(s;2,9))Ve, Ve)a) (= +y) /2:me)
- kR(s)(u(s;,y)) ™" fy) dydg .
Writing f(y) = (2m)~¢ [ WS (F f)(£)d¢, Ff being the Fourier transform of f,

A7) fol@) = @n)C / 8 ey (2, €)(FF)(€)de = (Opeof)(x)

where ¢q is defined by the oscillatory integral (in the 7 variable)
(A8 al@d = [y dydy  with

plx,y;m) = Xo(2)Xa(y)7T(Jx — y[{x / dt/ ds (u(s;z,y)) !

(A.9) ~iki(s) ((A(v(si2,9)) Ve, Ve)a) (@ + 1) /2 m) -

Now we inset in (A.8) 7(|n —&[(€)™1) + 1 —7(|n —&|(€) ™) and split ¢ into ¢1 + ca.
In particular,

cale,§) = [ €9 (1w~ €1(€) ) ol i) dyd
= [ (1~ €1€) ) (L, )" ol dud

for all p € N. By direct computations, we see that co € S(—o0, g) and ¢; € S(mh, g).
Since for any symbol r, there exists a symbol s in the same class such that Opr =
s", the equations (A.1), (A.3), (A.6), and (A.7), yield the desired result. O

APPENDIX B. FUNCTIONAL CALCULUS FOR PSEUDODIFFERENTIAL OPERATORS.

Here we present a result on the functional calculus for pseudodifferential operators
associated to the metric ¢ in (2.12). This result is probably not new but we did
not find a proof in the literature. It follows quite directly from arguments in [Bol]
(see also [Le]). However we sketch the proof for completeness. We use notions and
results from Subsection 2.2.

Recall that, for p € R, we denote by S” the set of smooth functions ¢ on R such
that sup,cp(t)*=°|0Fp(t)| < co. If we take a real symbol a € S(m,g), then the
operator a” is self-adjoint on the domain D(a™) = {u € L*(R%);a"u € L2(R%)}.
In particular, the operator ¢(a™) is well defined by the functional calculus if ¢ is a
borelean function on R. We assume that m > 1. A real symbol a € S(m, g) is said
elliptic if (i —a)~! belongs to S(m™1, g).

Theorem B.1. Let m > 1 and a € S(m,g) be real and elliptic. Take p € SP.
Then p(a) € S(m?,g) and there is b € S(hm”,g) such that

(B.1) gp(aw(z,D)) = (cp(a))w(z,D) +bY(x, D).
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Proof. Let p € R, ¢ € 8’3/, and k € N large enough such that 2k > p’. Then
¥(t) == p(t)(1 +t2)* belongs to S ~2F with p’ — 2k < 0. If the result is valid for
p < 0, then there exists b € S(hmp/_%, g) such that

e(a®) =p(a”)(1+ (a®)*)* = ((1(a))” + ) (1 + (a®)?)*
= (Y(a)(L+a®)*)" + ¢ + (b#(1 + a®)*)* = (¢(a)" +d*

with ¢, d € S(hm”/,g), by the composition properties. So it suffices to prove the
result for p < 0. Since we can write any function ¢ € S, with p < 0, as @12 with
01 € 8% (=1 <8 <0)and ¢, € SPI*! (where [p] denotes the integer part of p)
and use the previous composition properties, we see by induction that it suffices to
establish the result for —1 < p < 0.

Let 2 € C\ R. Using that (z —a)™' = (i —a) (14 (2 —i)(z — a)~!), we observe
that [(z —a)™!| < m~1z)[Im(z)|~!. Thus, for all £ € N, there exists Cy > 0 and
N; € N such that, for all z € C\R, [[(z—a) " |s.5(m-1,9) < Ce(2)V T Im(z)|~ Vet
Define ¢, := (2 —a) " '#(z —a) — 1 € S(h, g). By an explicit formula given in [Bo2]
(first formula on page I11-4), ¢. only depends on the derivatives of (z — a), which
are independent of z. Thus one can find, for all ¢, C; > 0 and N; € N such that

(B.2) V2 € C\R, | g:llesng) < Cole)NettIm(z)|~Nemt.

According to [Bol], one can prove from the boundedness of commutators of (z —
a¥)~! with appropriate pseudodifferential operators that this resolvent (z — a®)~!
is equal to r¥, where the symbol r, belongs to S(m ™!, g). Furthermore, the system
Il-lle.s(m-g), £ € N, of semi-norms is equivalent to another one based on the previous
commutators. Using this, there exist, for all £, C} > 0 and N, € N such that

(B.3) V2 €C\R, [Ir:lle.smr.g) < CF ()N T Im(2) M1
Using (B.2) and (B.3), we can find, for all £, C}” > 0 and N;” € N such that
(B.4) Ve € C\R, [q:#7:]le.5(m-1,9) < CF ()N T Im(z)| =N 1.

Now we take ¢ € §” with —1 < p < 0 and consider some almost analytic extension
©® (like in Proposition 2.4). Thanks to (B.4), (2.3), (2.4), and p < 0,

b= — 8550(:(2)(]2#7’2 dz Ndz
2w C
converges in S(hm~'g). According to the definition of ¢,, ((z — a)"H)¥(z — a¥) =
Id+q¥, thus ((z—a)~1)¥ = (z—a™) "t +(g.#7.)". Using Helffer-Sjostrand formula

(2.6), (p(a))¥ = ¢(a®) + b¥ with b € S(hm~tg) C S(hmPg), since —1 < p. O
APPENDIX C. AN INTERPOLATION’S ARGUMENT.

By pseudodifferential calculus, A?(D,)~%(z)~2 extends to a bounded operator on
L2(R%). What about (A;)"(D,)~"(z)~" with 7 > 0? The same argument is not
clear since A; is not elliptic. Indeed its symbols (z,&) — = - £ can vanish when
& # 0. Using interpolation, we show

Lemma C.1. For real v > 0, (A1)" (D) "{(x)~" extends to a bounded operator on
L2(Rg).

We refer to [MS][Lemma 7.1] for an alternative proof and historical remarks.
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Proof of Lemma C.1. We prove that, for r > 0,

(C.1) 3G, > 0; Vf € LARY), [[(A)" Il < Crllda)™(Da)" £

Forr € N, (A144)"(D,) " (x) " extends to a bounded operator by the pseudodiffer-
ential calculus with the metric ¢ in (2.12). Since (A1)" (A +¢)~" is bounded, (C.1)
is satisfied when r € N. For ¢,/ > 0, let H := {f € L2(R%); || (z)"(D,)" f|| < oo}.
Now, using [Be], we infer that the space H is also the complex interpolated
space [HY,H7],/,,, where m > r. To be precise, use [Be][(1.7)] and notice that
H(m,g) = HI, where g is given as in (2.12) and m(z, £) = (x)"(£)", by [Be][Theorem
3.7]. We deduce that (C.1) is true for all » > 0 by the Riesz-Thorin Theorem. [

APPENDIX D. A SIMPLER ARGUMENT IN DIMENSION d = 1.

Here we present a more elementary proof of Lemma 5.5 in dimension d = 1. It
relies on the following

Lemma D.1. For z ¢ R, as bounded operators on L2(R,),
(D.1) (z — D)~ tetithe — oFike (z — (D, + k)2)_1 )

Proof. As differential operators, D, e™** = e**=(D_ 4 k). Thus, on H2(R,),
(D? — 2)etike = etikz (D, + k)2 — 2). Multiplying on the left and on the right by
the convenient resolvent, we get the result. (|

We first follow the general proof until formula (5.9). By (D.1),

" .
By ~ — Z ar / O=%(2)(z — D2) 7Yz — (Dy 4 0k)?) "V dz A dZ el
o—t 47T C
Choosing the support of ¢ small enough, we can find § € C2°(R) such that & — 6(&?)
vanishes near —k/2 and k/2, ¢(£2)0(£%) = 0 = ¢((£ + k)*)0(£?), for all £ € R, and
such that the function & — ¢((€ — k)?)0(£2) is nonzero (using that Z C]0; +oo]).
Set B = 0(D?). Since £2 — (£ +k)? and &2 — (¢ — k)? do not vanish on the support
of 6(£2),
iqk

~ _ Aar 2 2 _ o)) 1 C(2)(z — D)1
BBy = = 3 DD - (D + ko) /Caw(x D?)

(D2 — (Dy + ko)) (2 — (Dy + 0k)?) "t dz A dz e
By the resolvent formula and (2.6),

qk - iokx
BBy ~ =Y 0(D)(D; — (Do +ko)*) 7 (¢(D7) = (D + ko)?)) 7.
o=+
Using the support properties of 6, we obtain
BB, ~ 271qk9(D§)(Dg — (Dz _ k)2>7150((Dx _ k)2) otk

Denoting by B’ the multiplication operator by ¢*** BB B’ is, modulo some com-
pact operator, a self-adjoint Fourier multiplier. The spectrum of the latter is given
by the essential range of the function & + 271gk0(£2)(€2 — (€ — k)?)~Lo((€ — k)?).
Since this function is non constant and continuous, the spectrum contains an in-
terval and the corresponding operator cannot be compact. Thus BBy B’ is not
compact. This finishes the proof of Lemma 5.5 in dimension d = 1. (]
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