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SOME REMARKS ON NEUTROSOPHIC T0-SPACES

SAMI LAZAAR, ABDELWAHEB MHEMDI and HADJER OKBANI

Abstract. This paper is devoted to the study of the T0 separation axiom for a neu-
trosophic topological space. We give a categorical study of these spaces in a special
case of neutrosophic topological spaces called neutrosophic saturated topological
spaces.

1. Introduction

As a generalization of the intuitionistic fuzzy set, the concepts of neutrosophy
and neutrosophic set were introduced by Smarandache [17,18]. After that, in [15],
Salama and Alblowi presented the definition of a neutrosophic topological space for
the first time. These spaces are a generalization of intuitionistic fuzzy topological
spaces.

The concept of neutrosophic topological spaces has been an area of study for
many researchers. A lot of results have been produced by mathematicians. We
can cite as examples the works of Smarandache [14,18] and Lupiáñez [9, 10].

Many topological concepts, such as continuity, adherence, closure, interior, and
separation axioms, have been generalized to neutrosophic topological spaces [10].

In this paper, we will study neutrosophic topological spaces from the point of
view of category theory. We will work on a particular case of neutrosophic topo-
logical spaces called neutrosophic saturated topological spaces, which represent
the objects of a category denoted by SNTOP and whose arrows are neutrosophic
continuous maps. The collection of all the objects in this category which are
neutrosophic T0-spaces forms a subcategory of SNTOP denoted by SNTOP0.

The first part of this paper will be devoted to presenting all the important and
necessary known definitions and remarks needed for our work.

In the next part, we will present the category SNTOP with its arrows and we
will prove that the subcategory SNTOP0 is reflective in SNTOP. More precisely,
this part is devoted to the construction of the T0-reflection of a neutrosophic
saturated topological space.

In the final paragraph, we will characterize arrows in SNTOP that are orthog-
onal to the subcategory SNTOP0.
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2. Preliminaries

Smarandache gave the definition of a neutrosophic set in [17], in which he linked
the degrees of membership, non-membership and indeterminacy of every point in
a given universe discourse. This definition allows topological spaces to be gen-
eralized to these sets. In 2012, Salama and Alblowi gave this generalization and
defined neutrosophic topological spaces in [15].

Here, we present all the needed definitions and remarks related to neutrosophic
topological spaces which will be used throughout this paper.

As mentioned in [16], Smarandache defines the non-standard real unit interval
]−0, 1+[ by adding to the interval [0,1] numbers of the form 1 + ϵ and 0 − ϵ such
that ϵ is infinitesimal.

Neutrosophic sets are defined in [17] as follows:

Definition 2.1. A neutrosophic set (NS for short) A on the universe of dis-
course X is defined as

A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈ X}
where µA, σA, γA : X →]−0, 1+[ represent the degree of membership function
(namely µA(x)), the degree of indeterminacy (namely σA(x)), and the degree of
non-membership (namely γA(x) ), respectively, of each element x ∈ X to the set
A and −0 ≤ µA(x) + σA(x) + γA(x) ≤ 3+.

In the literature and regarding the philosophical point of view, µA(x), σA(x),
4γA(x) take values from the real standard or non-standard subsets of ]−0, 1+[.
However, it is difficult to use these values in the applications in engineering and
real life scientific problems. Hence, we will consider neutrosophic sets taking the
value from the subsets of [0, 1].

The collection of all neutrosophic sets over the universe X will be denoted by
N (X).

Definition 2.2. Let A, B ∈ N (X). We say that A is a neutrosophic subset of
B and denoted by A ⊆ B (or we can say that B is a neutrosophic superset of A)
if µA(x) ≤ µB(x), σA(x) ≤ σB(x) and γA(x) ≥ γB(x) for all x ∈ X.

Definition 2.3. [3] Let {Ai : i ∈ J} be an arbitrary family of neutrosophic
sets in X. Then,

(a)
⋂

Ai = {⟨x, ∧µAi(x), ∧σAi(x), ∨γAi(x)⟩ : x ∈ X};
(b)

⋃
Ai = {⟨x, ∨µAi(x), ∨σAi(x), ∧γAi(x)⟩ : x ∈ X}.

Definition 2.4. ([15]) The neutrosophic complement of A ∈ N (X) is denoted
by Ac and defined by

Ac = {⟨x, 1 − µA(x), 1 − σA(x), 1 − γA(x)⟩ : x ∈ X}.

Definition 2.5. ([15]) The neutrosophic empty set is denoted by 0X and de-
fined by

0X = {⟨x, 0, 0, 1⟩ : x ∈ X}.

The neutrosophic universal set is denoted by 1X and defined by
1X = {⟨x, 1, 1, 0⟩ : x ∈ X}.
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Remarks 2.6. Let A, B ∈ N (X). Then,
(i) A = B iff A ⊆ B and B ⊆ A.
(ii) A ∩ Ac may not be equal to 0X .
(iii) A ∪ Ac may not be equal to 1X .

Definition 2.7. ([6]) If τ ⊆ N (X), then τ is called a neutrosophic topology
on X if

(i) 0X , 1X ⊆ τ ;
(ii) If A, B ⊆ τ , then A ∩ B ⊆ τ ;
(iii) The union of any number of neutrosophic sets of τ is also in τ.

The pair (X, τ) is called a neutrosophic topological space over X (in short, NTS).
Moreover, the members of τ are said to be neutrosophic open sets in X (in short,
NOS). If Ac ∈ τ, then A ∈ N (X) is called a neutrosophic closed set in X (in short,
NCS) and the family of all neutrosophic closed sets is denoted by τ c.

Definition 2.8. Let (X, τ) be a neutrosophic topological space and A ∈ N (X).
Then, the closure of A is the neutrosophic set A defined by

A =
⋂

{G|G ∈ τ c and A ⊆ G}.

Definition 2.9. Let X be a universe of discourse and x ∈ X. For 0 ≤ r, t, s ≤ 1
such that (r, t, s) ̸= (0, 0, 1), the neutrosophic set defined as follows:

{⟨x, r, t, s⟩} ∪ {⟨y, 0, 0, 1⟩; if y ∈ X \ {x}},

is called the neutrosophic point with support x and parameters r, t, s. It will
be denoted by xr,t,s.

It is obvious that every not empty neutrosophic set is the union of its neutro-
sophic points.

Now, we introduce the notions of image and preimage of neutrosophic sets.

Definition 2.10. [3] Let X and Y be two universes of discourses and f : X → Y
be a map.

(i) If B = {⟨y, µB(y), σB(y), γB(y)⟩ : y ∈ Y } ∈ N (Y ), then the preimage of
B under f , denoted by f−1(B), is the neutrosophic set in X defined by

f−1(B) = {⟨x, µB(f(x)), σB(f(x)), γB(f(x))⟩ : x ∈ X};
(ii) If A = {⟨x, µA(x), σA(x), γA(x)⟩ : x ∈ X} ∈ N (X), then the image of A

under f , denoted by f(A), is the neutrosophic set in Y defined by
f(A) = {⟨y, µf(A)(y), σf(A)(y), γf(A)(y)⟩ : y ∈ Y },

such that

µf(A)(y) =
{

supx∈f−1(y) µA(x), if f−1(y) ̸= ∅,
0, otherwise,

σf(A)(y) =
{

supx∈f−1(y) σA(x), if f−1(y) ̸= ∅,
0, otherwise,

γf(A)(y) =
{

infx∈f−1(y) γA(x), if f−1(y) ̸= ∅,
1, otherwise.
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Definition 2.11. ([14]) Let (X, τ1) and (Y, τ2) be two NTSs, and let f : X → Y
be a map. Then, f is said to be neutrosophic continuous if f−1(A) ∈ τ1, ∀A ∈ τ2.

Remark 2.12. Let (X, τ1) and (Y, τ2) be two NTSs and let f : X → Y be
a function. Then, the following statements are equivalent.

(1) f is a neutrosophic continuous map;
(2) f−1(A) ∈ τ c

1 , ∀A ∈ τ c
2 .

Proposition 2.13. Let (X, τ), (Y, γ), (Z, σ) be three neutrosophic topological
spaces. If f : (X, τ) → (Y, γ), g : (Y, γ) → (Z, σ) are neutrosophic continuous,
then g ◦ f : (X, τ) → (Z, σ) is also a neutrosophic continuous map.

Proof. Let G be a neutrosophic open set in Z. We have
(g ◦ f)−1(G) = f−1(g−1(G)).

Since g is a neutrosophic continuous map, then g−1(G) is a neutrosophic open set
in Y. Moreover, f is a neutrosophic continuous map. Therefore, f−1(g−1(G)) is
a neutrosophic open set in X. □

Definition 2.14. [14] A map f : (X, τ1) → (Y, τ2) between two neutrosophic
topological spaces is said to be

(i) neutrosophic open if f(A) ∈ τ2, ∀A ∈ τ1.
(ii) neutrosophic closed if f(A) ∈ τ c

2 , ∀A ∈ τ c
1 .

Definition 2.15. [12] A bijection g : (X, τ1) → (Y, τ2) is called a neutrosophic
homeomorphism if g and g−1 are neutrosophic continuous.

3. Neutrosophic saturated topological space

Definition 3.1. A neutrosophic set A in the universe set X is said to be
saturated if, for every neutrosophic point xr,t,s, we have:

xr,t,s ⊆ A ⇒ x1,1,0 ⊆ A.

Remarks 3.2. Let A be a neutrosophic set in the universe X.

(1) If A is saturated, then Ac is saturated.
(2) If A is saturated, then A ∩ Ac = 0X and A ∪ Ac = 1X.

Definition 3.3. Let (X, τ) be a neutrosophic topological space. We say that
τ is a neutrosophic saturated topology if A is saturated for every A in τ.
In this case, we say that (X, τ) is a neutrosophic saturated topological space.

Notation 3.4. We denote by SNTOP the category of all neutrosophic satu-
rated topological spaces with neutrosophic continuous maps as arrows.

Definition 3.5. ([1]) A neutrosophic topological space (X, τ) is said to be
a neutrosophic T0-space if for every pair of neutrosophic points xr,t,s and yi,j,k in
X, whose supports are different, there exists a neutrosophic open set A such that
xr,t,s ⊆ A and yi,j,k ⊆ Ac ( or yi,j,k ⊆ A and xr,t,s ⊆ Ac ).

The following theorem gives a characterization of neutrosophic T0-spaces.
Theorem 3.6. Let (X, τ) be a neutrosophic topological space. Then, the fol-

lowing statements are equivalent:



SOME REMARKS ON NEUTROSOPHIC T0-SPACES 93

(i) (X, τ) is a neutrosophic T0-space;
(ii) For each x ̸= y, there exists H ∈ τ such that

⋃
r,t,s

xr,t,s ⊆ H and
⋃

i,j,k

yi,j,k ⊆ Hc or,⋃
r,t,s

xr,t,s ⊆ Hc and
⋃

i,j,k

yi,j,k ⊆ H;

(iii) For every x ̸= y, there exists H ∈ τ such that{
x1,1,0 ⊆ H and y1,1,0 ⊆ Hc or,
x1,1,0 ⊆ Hc and y1,1,0 ⊆ H.

Proof. (i) ⇒ (iii) We apply the definition of neutrosophic T0-spaces to the
neutrospohic points x1,1,0 and y1,1,0.

(iii) ⇒ (ii) Let xr,t,s, yi,j,k be two neutrosophic points such that x ̸= y. Then,
there exists H ∈ τ such that, for example, x1,1,0 ⊆ H and y1,1,0 ⊆ Hc [by the
hypothesis]. Notice that xr,t,s ⊆ x1,1,0, ∀r, t, s from the fact that r, t ≤ 1 and 0 ≤ s.
We can see that xr,t,s ⊆ H and yi,j,k ⊆ Hc. So,⋃

r,t,s

xr,t,s ⊆ H and
⋃

i,j,k

yi,j,k ⊆ Hc.

(ii) ⇒ (i) Straightforward. □

In the following, we will be interested in a neutrosophic saturated topological
space.

Now, we denote by SNTOP0 the full subcategory of a neutrosophic T0-space
in SNTOP.

Our goal is to prove that SNTOP0 is reflective in SNTOP.
Let (X, τ) be a neutrosophic saturated topological space. We define on X the

binary relation ∼ by:

x ∼ y if and only if x1,1,0 = y1,1,0.

It is obvious that ∼ is an equivalence relation. We denote by X/∼ the quotient set
and by ρX the canonical surjection from X onto X/∼, x 7→ ρX(x) = x̄.

Remarks 3.7.
(1) τ̃ = {A ∈ N (X/∼) such that ρ−1

X (A) ∈ τ} defines a saturated topology on
X/∼.

(2) ρX is a neutrosophic continuous map.

Proposition 3.8. ρX : (X, τ) → (X/∼, τ̃) is a neutrosophic open map.

Proof. First, 0X is included in every soft set. Let A ∈ τ. We have to show that
ρ−1

X (ρX(A)) = A. It is clear that A ⊆ ρ−1
X (ρX(A)). Conversely, if 0X ̸= xr,t,s ⊆

ρ−1
X (ρX(A)), then there exists 0X ̸= yi,j,k ⊆ A such that ρX(x) = ρX(y) so that

x1,1,0 = y1,1,0.
If xr,t,s ⊈ A, then xr,t,s ⊆ Ac (since A is saturated), and thus x1,1,0 ⊆ Ac,

which is impossible because y1,1,0 ⊆ x1,1,0 and y1,1,0 ⊈ Ac.

Hence, xr,t,s ⊆ A and we deduce that ρ−1
X (ρX(A)) = A. □
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Proposition 3.9. Let (X, τ) be a neutrosophic saturated topological space.
Then the following statements are equivalent:

(i) (X, τ) is a neutrosophic T0-space;
(ii) x1,1,0 = y1,1,0 ⇒ x = y.

Proof. (i) ⇒ (ii) Suppose that x ̸= y. Since (X, τ) is a neutrosophic T0-space,
there exists A ∈ τ such that, for example, x1,1,0 ⊆ A and y1,1,0 ⊆ Ac. Then,
y1,1,0 ⊆ Ac. As A is saturated, x1,1,0 ⊈ Ac. Therefore, x1,1,0 ⊈ y1,1,0.

(ii) ⇒ (i) Let x ̸= y. By (ii), there exists F ∈ τ c such that, for example,
x1,1,0 ⊆ F and y1,1,0 ⊈ F. And since F is saturated, y1,1,0 ⊆ F c, which implies
that (X, τ) is a neutrosophic T0-space. □

Theorem 3.10. (X/∼, τ̃) is a neutrosophic T0-space.
Proof. Let x ̸= y. Then, there exists O ∈ τ such that, for example, x1,1,0 ⊆ O

and y1,1,0 ⊆ Oc, which implies that x1,1,0 ⊆ ρX(O) and y1,1,0 ⊆ ρX(Oc) =
(ρX(O))c. Since ρX is neutrosophic open, then ρX(O) is neutrosophic open. There-
fore, (X/∼, τ̃) is a neutrosophic T0-space. □

It is interesting to note that reflective subcategories appear throughout math-
ematics, for example, in algebra’s free group and free ring functors, topology’s
different compactification functors, and analysis’ completion functors. See, for ex-
ample, [11, p.90]. Recall from [11, p.89] that a subcategory D of a category C
is termed reflective (in C) if the inclusion functor I : D −→ C has a left adjoint
functor F : C −→ D; i.e., if, for each object A of C, there exists an object F (A) of
D and a morphism ρA : A −→ F (A) in C such that, for each object X in D and
each morphism f : A −→ X in C, there exists a unique morphism f : F (A) −→ X

in D such that f̃ ◦ ρA = f .
Now, we are in a position to present the principal result of the paper.
For this, using the characterization given by MacLane in [11], we will prove

that, for every (X, τ) ∈ SNTOP, there exists an object (X/∼, τ̃) ∈ SNTOP0 and
a morphism ρX : (X, τ) → (X/∼, τ̃) such that, for each (Y, γ) ∈ SNTOP0 and
each neutrosophic continuous map f from (X, τ) → (Y, γ), there exists a unique
neutrosophic continuous map f̃ : (X/∼, τ̃) → (Y, γ) rending the following diagram
commutative.

(X, τ) ρX //

f ##

(X/∼, τ̃)

f̃zz
(Y, γ)

Theorem 3.11. SNTOP0 is reflective in SNTOP.

Proof. It is sufficient to prove that for any neutrosophic saturated topological
space (X, τ), (X/∼, τ̃) is the T0-reflection of (X, τ).
• Uniqueness: It is unique by f̃(ρX(x)) = f(x).
• f̃ is well defined: Let x, y ∈ X. If f(x) ̸= f(y), then there exists A ∈ γ such

that, for example, (f(x))1,1,0 ⊆ A and (f(y))1,1,0 ⊆ Ac. By the neutrosophic
continuity of f , we have f−1(A) ∈ τ. And thus, x1,1,0 ⊆ f−1(A) and y1,1,0 ⊆
f−1(Ac) = (f−1(A))c, which implies that x̄ ̸= ȳ.
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• f̃ is a neutrosophic continuous map: Let B ∈ γ. We have ρ−1
X (f̃−1(B)) =

(f̃ ◦ ρX)−1(B) = f−1(B) ∈ τ. Then, f̃−1(B) ∈ τ̃ , which implies that f̃ is
a neutrosophic continuous map.

Finally, (X/∼, τ̃) is the neutrosophic T0-reflection of (X, τ).
□

Example 3.12. Let X = {a, b, c} and τ = {0X , 1X , U, V },
where

U = {⟨a, 1, 1, 0⟩, ⟨b, 1, 1, 0⟩, ⟨c, 0, 0, 1⟩}
and

V = {⟨a, 0, 0, 1⟩, ⟨b, 0, 0, 1⟩, ⟨c, 1, 1, 0⟩}.

(X, τ) is clearly a neutrosophic saturated topological space, but it is not a neu-
trosophic T0-space. Using the relation “∼” defined above, we have a1,1,0 = b1,1,0,
then X/∼ = {ā, c̄} and τ̃ = {0X/∼, 1X/∼, Ũ , Ṽ }, where

Ũ = {⟨ā, 1, 1, 0⟩, ⟨c̄, 0, 0, 1⟩}
and

Ṽ = {⟨ā, 0, 0, 1⟩, ⟨c̄, 1, 1, 0⟩}.

(X/∼, τ̃) is the T0-reflection of (X, τ).

4. The class of morphisms in SNTOP orthogonal to all
neutrosophic T0-spaces in SNTOP

A morphism f : A −→ B and an object X in a category C are called orthogonal
[4] if the mapping homC(f ; X) : homC(B; X) −→ homC(A; X) that takes g to gf
is bijective. For a class of morphisms σ (resp., a class of objects D), we denote
by σ⊥ the class of objects orthogonal to every f in σ (resp., by D⊥ the class of
morphisms orthogonal to all X in D) [4].

The orthogonality class of morphisms D⊥ associated with a reflective subcate-
gory D of a category C satisfies the following identity D⊥⊥ = D [2, proposition
2.6]. Thus, it is of interest to give explicitly the class D⊥. Note also that, if
I : D −→ C is the inclusion functor and F : C −→ D is a left adjoint functor of
I, then the class D⊥ is the collection of all morphisms of C rendered invertible by
the functor F [2, proposition 2.3].

This section is focused on the study of the orthogonal class SNTOP0
⊥.

Grothendieck and Dieudonné introduced the notion of quasihomeomorphism
between topological spaces in [5] to solve some algebraic topology problems. Recall
that a continuous map q : (X, τ) → (Y, γ) is said to be a quasihomeomorphism if
U 7→ q−1(U) defines a bijection O(Y ) → O(X), where O(X) is the set of all open
subsets of the space X.

Definition 4.1. Let f : (X, τ1) → (Y, τ2) be a neutrosophic continuous map be-
tween two neutrosophic saturated topological spaces. f is said to be a neutrosophic-
quasihomeomorphism (in short, N -quasihomeomorphism) if U 7→ f−1(U) defines
a bijection between τ1 (resp. τ c

1 ) and τ2 (resp. τ c
2 ).

Proposition 4.2. ρX : (X, τ) → (X/∼, τ̃) is a N -quasihomeomorphism.
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Proof. It follows from ρ−1
X (ρX(A)) = A. □

Proposition 4.3. If f : X → Y , g : Y → Z are neutrosophic continuous maps
between saturated NTSs and two of the maps f, g, g ◦ f are N -quasihomeomor-
phisms, then so is the third one.

Proof. 1. Suppose that f and g are two N -quasihomeomorphisms. For any
neutrosophic saturated open set U of X, let V be the unique neutrosophic satu-
rated open set of Y such that U = f−1(V ) and let W be the unique neutrosophic
saturated open set of Z such that V = g−1(W ). It is clear that W is the unique
neutrosophic saturated open set of Z such that U = (g ◦ f)−1(W ). We conclude
that g ◦ f is a N -quasihomeomorphism.

2. Suppose that g and g ◦ f are N -quasihomeomorphisms. Let U be a neutro-
sophic saturated open set in X. Since g ◦f is a N -quasihomeomorphism, there ex-
ists a unique neutrosophic saturated open set W in Z such that U = (g◦f)−1(W ) =
f−1(g−1(W )). Now, V = g−1(W ) is a neutrosophic saturated open set of Y sat-
isfying U = f−1(V ). Let us show that V is the unique neutrosophic saturated
open set of Y such that U = f−1(V ). Indeed, let V ′ be a neutrosophic saturated
open set of Y such that U = f−1(V ′). Then, there exists a unique neutrosophic
saturated open set W ′ of Z such that V ′ = g−1(W ′). So,

(g ◦ f)−1(W ) = U = f−1(V ′) = f−1(g−1(W ′)) = (g ◦ f)−1(W ′).
Finally, W = W ′, and consequently V = g−1(W ) = g−1(W ′) = V ′.

3. Suppose that f and g◦f are N -quasihomeomorphisms. If V is a neutrosophic
saturated open set in Y , f−1(V ) is a neutrosophic saturated open set in X. Then,
there exists a unique neutrosophic saturated open set W in Z such that

(g ◦ f)−1(W ) = f−1(V ).
It is easy to show that W is the unique neutrosophic saturated open set in Z such
that V = g−1(W ). Therefore, g is a N -quasihomeomorphism. □

Given (X, τ1) is a neutrosophic saturated topological space, the construction of
its T0-reflection denoted by (X/∼, τ̃1) satisfies some categorical properties. For each
neutrosophic saturated topological space (Y, τ2) and each neutrosophic continuous
map f from (X, τ1) to (Y, τ2), there exists a unique neutrosophic continuous map
f̃ : (X/∼, τ̃1) → (Y/∼, τ̃2) such that the following diagram commutes:

(X, τ1)

⟲

f //

ρX

��

(Y, τ2)

ρY

��
(X/∼, τ̃1) f̃ // (Y/∼, τ̃2)

The following definitions are introduced in order to give the main result of this
section.

Definition 4.4. Let f : X → Y be a neutrosophic continuous map between
two neutrosophic saturated topological spaces.
(1) f is said to be N -onto (N -surjective) if, for each y ∈ Y , there exists x ∈ X

such that y1,1,0 = f(x)1,1,0;
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(2) f is said to be N -one-to-one (N -injective) if, for each x, y ∈ X such that
f(x)1,1,0 = f(y)1,1,0 ⇒ x1,1,0 = y1,1,0;

(3) f is said to be N -bijective if it is both N -one-to-one and N -onto.

Lemma 4.5. Let f : (X, τ1) → (Y, τ2) be a neutrosophic continuous map be-
tween neutrosophic saturated topological spaces and f̃ is as in the commuting dia-
gram above. Then, the following properties hold:

(1) f is N -injective if and only if f̃ is injective.
(2) f is N -surjective if and only if f̃ is surjective.
(3) f is N -bijective if and only if f̃ is bijective.

Proof. (1) Suppose that f̃ is injective. Let x, y ∈ X such that f(x)1,1,0 =
f(y)1,1,0. Then, ρY (f(x)) = ρY (f(y)), and thus f̃(ρX(x)) = f̃(ρX(y)). As f̃ is
injective, then ρX(x) = ρX(y), which implies that x1,1,0 = y1,1,0. Therefore, f is
N -one-to-one.

Conversely, suppose f is N -injective. Let x, y ∈ X such that f̃(ρX(x)) =
f̃(ρX(y)). Then, ρY (f(x)) = ρY (f(y)), and thus f(x)1,1,0 = f(y)1,1,0. Since f is
N -injective, x1,1,0 = y1,1,0. So, ρX(x) = ρX(y), which proves that f̃ is injective.

(2) Suppose that f̃ is surjective. If y ∈ Y , then there exists x ∈ X such that
f̃(ρX(x)) = ρY (y), then ρY (f(x)) = ρY (y). Hence, f(x)1,1,0 = y1,1,0.

Conversely, suppose that f is N -surjective. Let y ∈ Y ; there exists x ∈ X
such that y1,1,0 = f(x)1,1,0. Then, ρY (y) = ρY (f(x)), which implies that ρY (y) =
f̃(ρX(x)). Therefore, f̃ is a surjective map.

(3) An immediate consequence of (1) and (2). □

Theorem 4.6. Let f : (X, τ1) → (Y, τ2) be a neutrosophic continuous map
between two neutrosophic saturated topological spaces. Then, the following state-
ments are equivalent:

(i) f is a N -onto, N -quasihomeomorphism;
(ii) f̃ is a neutrosophic homeomorphism.

Proof. (i) ⇒ (ii) By Lemma 4.5, f is a N -onto map, then f̃ is an onto map.
Let us prove that f̃ is one-to-one. Using Lemma 4.5, it is sufficient to show that

f is N -one-to-one. For this, let x, y ∈ X such that f(x)1,1,0 = f(y)1,1,0. If x1,1,0 ̸=
y1,1,0, then there exists a neutrosophic saturated open set A of X such that, for
example, x1,1,0 ⊆ A and y1,1,0 ⊆ Ac. Since f is a N -quasihomeomorphism, there
exists a neutrosophic saturated open set B of Y such that f−1(B) = A. Then,
f(x)1,1,0 ⊆ B and f(y)1,1,0 ⊆ Bc, which is a contradiction. We conclude that f is
N -one-to-one so that f̃ is one-to-one.

Since f̃ ◦ ρX = ρY ◦ f , ρY ◦ f and ρX are neutrosophic continuous maps, so f̃
is a neutrosophic continuous map.

f̃−1 is a neutrosophic continuous map. Let A ∈ τ̃1. Since ρX is a neutrosophic
continuous map, then ρ−1

X (A) ∈ τ1. Moreover, f is a N -quasihomeomorphism, so
there exists B a neutrosophic saturated open set of Y such that f−1(B) = ρ−1

X (A),
which implies that f−1(ρ−1

Y (ρY (B)) = ρ−1
X (A), and thus

ρ−1
X (A) = (ρY ◦ f)−1(ρY (B)) = (f̃ ◦ ρX)−1(ρY (B)) = ρ−1

X (f̃−1(ρY (B)));
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hence, f̃(A) = ρY (B). Furthermore, we have ρY (B) ∈ τ̃2. Therefore, f̃(A) is
a neutrosophic saturated open set of (Y/∼, τ̃2). We conclude that f̃−1 is a neutro-
sophic continuous map.

Finally, f̃ is a bijective neutrosophic continuous map with its inverse f̃−1 also
being neutrosophic continuous, so f̃ is a neutrosophic homeomorphism.

(ii) ⇒ (i) By Lemma 4.5, f is N -onto.
Clearly, f is a N -quasihomeomorphism by Proposition 4.3 and also ρX is an

N -quasihomeomorphism. □
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