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Automaticity of the sequence of the last nonzero
digits of n! in a fixed base

par Eryk LIPKA

Résumé. En 2011, Deshouillers et Ruzsa [5] ont donné des arguments en
faveur de la non-automaticité de la suite des derniers chiffres non nuls de
n! en base 12. Cette assertion a été prouvée quelques années plus tard par
Deshoulliers [4]. Dans cet article, nous donnons une preuve alternative qui
nous permet de généraliser le problème et donner une caractérisation com-
plète des bases pour lesquelles la suite des derniers chiffres non nuls de n! est
automatique.

Abstract. In 2011 Deshouillers and Ruzsa [5] tried to argue that the se-
quence of the last nonzero digit of n! in base 12 is not automatic. This state-
ment was proven a few years later by Deshoulliers in [4]. In this paper we
provide an alternate proof that lets us generalize the problem and give an
exact characterization of the bases for which the sequence of the last nonzero
digits of n! is automatic.

1. Introduction
Let (`b(n!))n∈N be the sequence of last nonzero digits of n! in base b.

In this paper we will answer the question for which values of b is this
sequence automatic. It is known that (`b(n!))n∈N is automatic in many
cases including bases being primes or powers of primes. One can also prove
that (`b(n!))n∈N is automatic for some small bases that have more prime
factors, like 6 or 10. In general, for a base of the form b = pa1

1 p
a2
2 where p1 6=

p2, p1, p2 ∈ P, a1, a2 ∈ N+, it can be shown that (`b(n!))n∈N is automatic
when a1 (p1 − 1) 6= a2 (p2 − 1). The smallest base for which the answer is
unclear is 12. This was the case analysed by Deshouillers and Ruzsa in [5].
They conjectured that (`12(n!))n∈N cannot be automatic, despite the fact
that it is equal to some automatic sequence nearly everywhere. An attempt
to prove that conjecture was made by Deshouliers in his paper [3], and a
few years later he answered the question by proving the following, stronger
result
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Theorem 1.1 (Deshouillers [4]). For a ∈ {3, 6, 9}, the characteristic se-
quence of {n ; `12(n!) = a} is not automatic.

Another way of proving a similar fact (but for a ∈ {4, 8}) was provided
recently by Byszewski and Konieczny in [2]. It seems that both proofs can
be generalized to all cases when a1(p1 − 1) = a2(p2 − 1); however it is
not obvious if, or how, it can be extended to bases with more than two
prime factors. This was our main motivation for writing this paper, and we
provide a complete characterization of the bases for which this sequence is
automatic, including those with many prime factors.

In this paper we will use the following notation: the string of digits of n in
base k will be denoted [n]k, or reversely we use 〈n1n2 . . . nl〉b to describe the
integer with digits n1 . . . nl; by vb(n) we mean the largest integer t such that
bt|n, and sb(n) is the sum of digits of n in base b. This paper is composed of
two main parts: first we recall some basic facts about automatic sequences
for readers not familiar with the topic; in the latter part we present our
results about the automaticity of (`b(n!))n∈N.

Acknowledgements. We would like to thank Piotr Miska and Maciej
Ulas for proofreading and helpful suggestions while preparing this paper

2. Basics of automatic sequences
In this section we will give a short summary of topics from automatic

sequence theory that we will be using later. If the reader is interested in
getting more insight into this topic, we strongly recommend the book of
Allouche and Shallit [1] that covers all important topics in this area.

Definition 2.1. Deterministic finite automaton with output is a 6-tuple
(Q,Σ, ρ, q0,∆, τ) such that

• Q is a finite set of states;
• Σ is an input alphabet;
• ρ : Q× Σ→ Q is a transition function;
• q0 ∈ Q is an initial state;
• ∆ is an output alphabet (finite set);
• τ : Q→ ∆ is an output function.

The transition function can be generalized to take strings of characters
instead of single ones. For a string s1s2s3 . . . we define ρ (q, s1s2s3 . . .) =
ρ (. . . ρ (ρ (q, s1) , s2) . . .).

Definition 2.2. For any finite alphabet Σ, a function f : Σ∗ → ∆ is called
a finite-state function if there exists a deterministic finite automaton with
output (Q,Σ, ρ, q0,∆, τ) such that f(ω) = τ (ρ (q0, ω)).
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Lemma 2.3. If f : Σ∗ → ∆ is a finite-state function then the function
g : Σ∗ → ∆ defined by g(ω) = f(ωR) is also finite-state. ( R denotes taking
the everse of a word).

Proof (Sketch). Let (Q,Σ, ρ, q0,∆, τ) be the automaton that is related to
f , we will define another automaton (Q′,Σ, ρ′, q′0,∆, τ ′). Let Q′ = ∆Q be
all functions from Q to ∆ and q′0 ≡ τ . For all g ∈ Q′ we define τ ′(g) = g(q0),
and for all σ ∈ Σ, q ∈ Q we put ρ′(g, σ)(q) = g(ρ(q, σ)). By induction on
length of the word ω ∈ Σ∗ one can prove that the equation

ρ′(g, ω)(q) = g(ρ(q, ωR))
holds for any g ∈ Q′, q ∈ Q. And finally

g(ω) = τ ′(ρ′(q′0, ω)) = ρ′(q′0, ω)(q0) = g(ρ(q0, ω
R)) = f(ωR). �

Definition 2.4. (a(n))n∈N is a k-automatic sequence if the function [n]k →
an is finite-state. By Lemma 2.3 it is not important whether we read the
representation of n from the right or from the left side.

Now we present some simple examples of sequences that are automatic.

Example 2.5. The sequence an = n (mod m) is k-automatic for any k ≥
2,m ∈ Z+. In order to see this, it is enough to take Q = {0, 1, . . . ,m− 1},
ρ(q, σ) = kq + σ (mod m) and read input “from left to right”.

The sequence an = sk(n) (mod m) is k-automatic for any k ≥ 2,m ∈ Z+.
Take Q = {0, 1, . . . ,m− 1} and ρ(q, σ) = q + σ (mod m).

For any k ≥ 2 and x ∈ N, the characteristic sequence an = δx(n) is
k-automatic. The automaton that computes it can be constructed by tak-
ing dlogk(x)e states that counts how many digits were correct plus one
“sinkhole” state that accepts all numbers other than x.

We can also obtain automatic sequences by modifying the existing ones.

Example 2.6. If (a(n))n∈N is a k-automatic sequence then so is bn = f(an)
for any function f taking values from the image of an. The difference will
be only in the output function of the related automaton.

If (a(n))n∈N, (b(n))n∈N are k-automatic sequences, then so is cn =
f(an, bn) for any function f as long as it is well defined on all possible
pairs (an, bn). To obtain such an automaton (Qc,Σ, ρc, qc,∆c, τc) we can
take the “product” of automata (Qa,Σ, ρa, qa,∆a, τa), (Qb,Σ, ρb, qb,∆b, τb)
defined by

• Qc = Qa ×Qb;
• ρc(a, b) = (ρa(a), ρb(b));
• qc = (qa, qb);
• ∆c = f(∆a ×∆b);
• τc(a, b) = f(τa(a), τb(b)).
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This can be easily generalized to the case with f taking any finite number
of sequences as an input.

By combining the above examples together we can also observe the fol-
lowing.
Lemma 2.7. Let k ∈ N≥2 be fixed, then:

• the characteristic sequence of a finite set is k-automatic;
• if sequence (a(n))n∈N differs from (b(n))n∈N only on finitely many
terms and one of them is k-automatic then so is the other one;
• a periodic sequence is k-automatic;
• an ultimately periodic sequence is k-automatic;

Of course this does not exhaust all possible automatic sequences, but
is enough to give some insight and be useful in our work. We should also
notice what is the relation between automaticity in different bases.
Lemma 2.8. Sequence (a(n))n∈N is k-automatic if and only if it is km-
automatic for all m ∈ N≥2.
Proof (Sketch). If we have a k-automaton generating a sequence, then we
can easily manipulate it to create a km-automaton generating the same
sequence. The main idea is to take the transition function to be the m-th
composition of the original transition function with itself (a digit in base
km can be seen as m digits in base k).

On the other hand, let Q be the set of states of the km-automaton
generating a sequence, and ρ be its transition function. We take Q′ =
Q× {0, 1, . . . , km−1 − 1} × {0, 1, . . . ,m− 1} and

ρ′((q, r, s), σ) =
{

(q, kr + σ, s+ 1) if s < m− 1
(ρ(q, kr + σ), 0, 0) if s = m− 1;

this way we accumulate base k digits until we collect m of them and then
use the original transition function. �

3. New results
Let’s start with some facts that we will be using in our proof:

Proposition 3.1 (Legendre’s formula [6]). For any prime p and positive
integers a, n, we have

vpa(n!) =
⌊
n− sp(n)
a(p− 1)

⌋
.

Proposition 3.2 (Result from [7]). For any positive integers b, c such that
ln(b)
ln(c) 6∈ Q there exists a constant d such that for each integer n > 25 we
have

sb(n) + sc(n) > log logn
log log logn+ d

− 1.
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The next proposition is a known fact, but we haven’t found it clearly
stated anywhere; it can be easily proven using Dirichlet’s approximation
theorem or Equidistribution theorem.

Proposition 3.3. For any positive integers a, b, c such that ln(b)
ln(c) 6∈ Q there

exist infinitely many triples of non-negative integers d, e, f with 1 ≤ f < be

such that
cd = a · be + f.

In other words, there are infinitely many powers of c with base b notation
starting with given string of digits.

After such an introduction we can finally state our results. The following
lemma and theorem are the main steps in proving when (`b(n!))n∈N is not
automatic.

Lemma 3.4. Let P be a non-empty finite set of prime numbers and p be its
greatest element. Let a > 0, k > 1 be integers. Then there exists an integer
a′ such that maxi∈P {si(a′)} = sp(a′) and [a]k is prefix of [a′]k.

Proof. If k is not a power of p, then by Proposition 3.3 there exist infinitely
many triples (d, e, f) of non-negative integers with 1 ≤ f+1 < ke such that

pd = a · ke + (f + 1).

Furthermore we have

sp(pd − 1) = d(p− 1) > (p− 1) ln(pd − 1)
ln(p) ,

and from the definition of sq, for any prime q the following holds

sq(pd − 1) < (q − 1)
(

ln(pd − 1)
ln(q) + 1

)
.

Because p is the greatest number in P , then for any q ∈ P, q 6= p, we have

sq(pd − 1)− sp(pd − 1) < ln(pd − 1)
(
q − 1
ln(q) −

p− 1
ln(p)

)
+ q − 1.

The right side of this inequality is negative for d big enough, so because
0 ≤ f < ke we can take a′ = pd − 1. When k = pt we can notice that for
any integer d

sp(a · ptd + ptd − 1) = sp (a) + td (p− 1)

> (p− 1)
(

ln(a · ptd + ptd − 1)
ln(p) − ln (a)

ln(p) − 1
)
,

and hence it is enough to take a′ = a·ptd+ptd−1 for d sufficiently large. �
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Theorem 3.5. Let P be a finite set of prime numbers with at least two
elements and p be its greatest element, also let c > 0 be a real number. Let
us define sets

A− =
{
n ∈ Z+ : max

i∈P
{si(n)} = sp(n)

}
,

A+ =
{
n ∈ Z+ : max

i∈P
{si(n)} − sp(n) ≥ c

}
.

Then there does not exist a deterministic finite automaton with output that
assigns one value to integers in A− and another value to those in A+.

Proof. Let’s suppose that we have such an automaton (Q,Σk, ρ, q0,∆, τ) for
some k. Because Q is finite, there exists an internal state S ∈ Q such that
for infinitely many positive integers c1 < c2 < . . . we have ρ (q0, [pci ]k) = S.
Now, by Lemma 3.4, there exists an integer a′ ∈ A− which can be obtained
from pc1 by appending some suffix. Hence we can fix positive integers e, f <
ke such that a′ = pc1 ·ke + f . Let the sequence of digits (f1, f2, . . . , fe) be a
representation of f in base k, possibly with added leading zeros. By T ∈ Q
we denote an internal state such that

T = ρ
(
q0,
[
a′
]
k

)
= ρ (S, f1f2 . . . fe) .

This means that for every i ∈ N+ we have

ρ (q0, [pci · ke + f ]k) = ρ (q0, [pci ]k f1f2 . . . fe) = ρ (S, f1f2 . . . fe) = T ,

and this implies that τ (ρ (q0, [pci · ke + f ]k)) = τ (T ) does not depend on
the value of i.

On the other hand, when ci > dlogp(f)e we have sp (pci · ke + f) =
sp (ke) + sp (f) which is a constant. However, due to Proposition 3.2 we
know that for any q ∈ P, q 6= p, the value of sq (pci · ke + f) is increasing
with ci. Hence for ci big enough we have pci · ke + f ∈ A+.

All but finitely many integers of the form pci · ke + f are elements of A+
but at least one (namely pc1 · ke + f) is an element of A−. This proves that
such an automaton cannot assign different values to members of those two
sets. �

Now we will show that lb(n!) can be automatic for some b.

Lemma 3.6. If b = pa, p ∈ P, a ∈ N then the sequence (`b(n!))n∈N is
b-automatic.

Proof. First, we notice that `b (xy) = `b (`b (x) `b (y)), so

`b ((bn)!) = `b

`b(n!)
bn∏

i=n+1
`b (i)

 .
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Because `b (bx) = `b (x) we can rewrite the product in the following way:

`b ((bn)!) = `b

`b(n!)
bn∏

i=1
b-i

`b (i)

 = `b

`b(n!)
n∏

i=1
`b

j=b−1∏
j=1

j

 .
We denote mi = `b (i!) and obtain `b ((bn)!) = `b

(
`b(n!)mn

b−1

)
. Now we

take the string of digits n1n2 . . . nl = [n]b and obtain the following formula
`b(n!) = `b (〈n1n2 . . . nl〉b!)

= `b ((b · 〈n1n2 . . . nl−1〉b + nl)!) =

= `b

(
(b · 〈n1n2 . . . nl−1〉b)!

nl∏
i=1

(b · 〈n1n2 . . . nl−1〉b + i)
)

= `b (`b ((b · 〈n1n2 . . . nl−1〉b)!) `b (nl!))

= `b
(
mnl

`b (〈n1n2 . . . nl−1〉b!)m
〈n1n2...nl−1〉b
b−1

)
,

which by iteration leads to
(3.1) `b (〈n1n2 . . . nl〉b!) = `b

(
mn1mn2 . . .mnl

`b
(
mr

b−1
))
,

where r = 〈n1n2 . . . nl−1〉b + . . .+ 〈n1n2〉b + 〈n1〉b. Now, by Euler’s Theorem
m

ϕ(b)
b−1 ≡ mpa−pa−1

b−1 ≡ 1 (mod b) so we only need to know the value of r
(mod pa − pa−1).

r =
l−1∑
i=1

bi−1
l−i∑
j=1

nj


=

l−1∑
j=1

nj +
l−1∑
i=2

pa(i−1)
l−i∑
j=1

nj


≡

l−1∑
i=1

ni + pa−1
l−1∑
i=2

 l−i∑
j=1

nj

 (mod (pa − pa−1)).

Hence

(3.2) r ≡
l−1∑
i=1

ni + pa−1
l−2∑
i=1

(l − 1− i)ni (mod (pa − pa−1)).

Finally, we can define an automaton (Q,Σb, ρ, q0,∆, τ) generating the se-
quence (`b(n!))n∈N in the following way:

• the input alphabet Σb = {0, 1, 2, . . . , b− 1};
• the output alphabet ∆ = {1, 2, . . . , b− 1};
• the set of states Q = ∆× Σpa−pa−1 × Σp−1;
• the initial state q0 = (1, 0, 0);
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• the output function τ(u, v, w) = `b(u ·mv+pa−1w
b−1 );

• the transition function ρ ((u, v, w) , s)

=
(
`b (u ·ms) , (v + s) (mod(pa − pa−1)), (w + v) (mod(p− 1))

)
.

With this definition we have ρ (q0, [n]b) = (u, v, w) where
• u = `b (mn1mn2 . . .mnl

);
• v =

∑l−1
i=1 ni (mod

(
pa − pa−1));

• w =
∑l−2

i=1 (l − 1− i)ni (mod (p− 1)).
Hence using equations (3.1) and (3.2) we see, that `b(n!) = τ (u, v, w). �

Now we are ready to prove the main result.

Theorem 3.7. Let b = pa1
1 p

a2
2 . . . with a1 (p1 − 1) ≥ a2 (p2 − 1) ≥ . . .. The

sequence (`b(n!))n∈N is p1-automatic if a1 (p1 − 1) > a2 (p2 − 1) or b = pa1
1

and not automatic otherwise.

Proof. Let n� 0. For b = p1
a1 the sequence is b-automatic from Lemma 3.6;

by Lemma 2.8 it is also p1-automatic. If b has more than one prime factor
and a1 (p1 − 1) > a2 (p2 − 1) we take b′ = b

p
a1
1

so p1 - b′. From Proposi-
tion 3.1 and the definition of vb′ we have

vb′(n!) = min
i>1

vp
ai
i

(n!)

= min
i>1

⌊
n− spi(n)
ai (pi − 1)

⌋
> min

i>1

⌊
n− (logpi

(n) + 1) (pi − 1)
ai (pi − 1)

⌋

≥ min
i>1

⌊
n

ai (pi − 1) − logpi
(n)− 1

⌋
>

⌊
n

a1 (p1 − 1)

⌋
>

⌊
n− sp1(n)
a1 (p1 − 1)

⌋
= vp

a1
1

(n!),

which leads to b′|`b(n!). Thus `b(n!) ∈ {b′, 2b′, 3b′, . . . (pa1
1 − 1) b′}, so the

value of `b(n!) can be computed from the value of `b(n!) (mod pa1
1 ). Now,

we can be sure that there exist integers c, d satisfying the equations
n! = b(vb(n!))`b(n!) + b(vb(n!)+1)c

n! = p
a1
(

v
p

a1
1

(n!)
)

1 `pa1
1

(n!) + p
a1
(

v
p

a1
1

(n!)+1
)

1 d.

We notice that vb(n!) = mini≥1 vp
ai
i

(n! = vp
a1
1

(n!), which leads to

b

(
v

p
a1
1

(n!)
)
`b(n!) + b

(
v

p
a1
1

(n!)+1
)
c = p

a1
(

v
p

a1
1

(n!)
)

1 `pa1
1

(n!) + p
a1
(

v
p

a1
1

(n!)+1
)

1 d.
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After division of the above equality by p
a1
(

v
p

a1
1

(n!)
)

1 we obtain the following(
b′
)(v

p
a1
1

(n!)
)
`b(n!) + pa1

1
(
b′
)(v

p
a1
1

(n!)+1
)
c = `pa1

1
(n!) + pa1

1 d.

From the above equation, we can notice that `b(n!)(b′)
v

p
a1
1

(n!)
≡ `pa1

1
(n!)

(mod pa1
1 ), hence to finish this part of the proof we just need to con-

struct a p1-automaton that returns the value of vp
a1
1

(n!) (mod ϕ(pa1
1 )). By

Proposition 3.1 this value can be computed from (n− sp1(n)) (mod ϕ(pa1
1 )·

a1(p1 − 1)), and this expression is p1-automatic as we already mentioned
in Example 2.5.

Now, in the last case, when a1 (p1 − 1) = a2 (p2 − 1), let I = {i :
ai (pi − 1) = a1 (p1 − 1)}. Without loss of generality we can assume p1 =
maxi∈I pi. By Legendre’s formula (Proposition 3.1) we have

max
i∈I

spi(n) = sp1(n)⇒ vp
a1
1

(n!) = min
i∈I

vp
ai
i

(n!) = vb(n!)

⇒ pa1
1 - `b(n!),

max
i∈I

spi(n) > a1(p1 − 1) + sp1(n)⇒ vp
a1
1

(n!) > min
i∈I

vp
ai
i

(n!) = vb(n!)

⇒ pa1
1 |`b(n!).

Hence, by Theorem 3.5, there is no finite automaton that can, for given
n, tell whether pa1

1 divides `b(n!) or not. This completes the proof, as any
finite automaton generating the sequence (`b(n!))n∈N should distinguish
those two sets. �
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