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Bioinformatics promises to dramatically advance our under-
standing of human health and disease. Integrating the fields of 
mathematics, statistics, and computer science, bioinformatics 

utilizes computational methods to analyze and interpret large bio-
logical data sets. The past 3 decades of research in bioinformatics 
have largely focused on the analysis of genetic, transcriptomic, and 
microbiomic data. In more recent years, analyses of proteomics1 
and metabolomics2 have also become of increasing interest. This 
article seeks to review bioinformatic techniques in genetics, tran-
scriptomics, and microbiomics (Table) and offer examples of these 
techniques as applied to psoriasis and psoriatic arthritis. 

Psoriasis is a chronic, autoimmune inflammatory skin disease 
that affects about 3% of the world population.3 Multiple pheno-
types have been described, including plaque, guttate, inverse, pus-
tular, palmoplantar, scalp, and erythrodermic psoriasis. Psoriasis 
has also been associated with numerous comorbidities, including 
psoriatic arthritis in up to 30% of affected individuals.4 While the 
etiologies of psoriasis and psoriatic arthritis remain poorly under-
stood, they are thought to arise from the complex interplay of ge-
netic, immunologic, and environmental factors. Microbial factors 
have also long been implicated in psoriatic pathogenesis. While a 
number of treatments are available for psoriasis and psoriatic ar-
thritis, none is effective in all cases. As such, there is great inter-
est in understanding psoriatic heterogeneity in an effort to stratify 
patients for more personalized therapy (Figure).

Here we review the role of bioinformatics in 3 areas of biol-
ogy as applied to psoriatic disease: (1) genetics, the study of DNA 
variation and its relation to disease; (2) transcriptomics, the study 
of RNA transcripts and their variation across biological states; and 
(3) microbiomics, the study of bacterial, viral, and fungal genomes 
present in a particular environment such as the human host.

Genetics
Linkage analysis
Historically, the primary method of studying single-gene disorders 
was linkage analysis, which queries a set of genetic markers (typi-
cally dozens to several hundred) in affected and unaffected mem-
bers of multigenerational families in order to map heritable traits to 
their chromosomal locations.5 Linkage analysis can be conducted 
using parametric or nonparametric methods. Parametric analyses 
calculate a logarithm of odds score based on an explicit genetic 
model and display superior performance when the model suffi-
ciently approximates the true mode of inheritance.6 Nonparametric 
methods evaluate allele sharing among affected individuals with-
out particular model assumptions and are necessary for analyzing 
diseases of complex genetic origin.7 In either case, linkage analysis 
has demonstrated the greatest utility in detecting alleles or variants 
of large effect size.8

Linkage analyses have been used in psoriasis research to iden-
tify 9 susceptibility loci, referred to as PSORS1-9. Among these, 
PSORS1 and PSORS2 have received the greatest attention. Locat-
ed within the major histocompatibility complex (MHC), PSORS1 
on 6p21.3 accounts for 35%-50% of the total genetic contribution 
to disease.9 PSORS2 was identified in a linkage analysis of a large 
family of European ancestry with plaque psoriasis, in whom 30% 
had developed psoriatic arthritis.10 PSORS2 was further implicated 
in a genome-wide linkage scan of a Taiwanese family with pso-
riasis across 5 generations11 as well as in a linkage study of 224 
affected sibling pairs.12 Underscoring the polygenic inheritance of 
psoriasis, early linkage analyses eventually motivated larger-scale 
approaches for gene identification such as genome-wide associa-
tion studies (GWAS).

Genome-wide association studies
Gene locus identification
GWAS typically use a case-control design (comparing unrelated 
subjects who are affected and unaffected) to identify an asso-
ciation between a genetic marker and a phenotype of interest. In 
some instances, GWAS do not examine case controls and instead 
examine the association of genetic markers with a continuous or 
quantitative trait. In either situation, loci are identified by exam-
ining hundreds of thousands of single-nucleotide polymorphisms 
(SNPs) interspersed throughout the genome, typically using DNA 
microarray technology.13 Loci that harbor SNP variants that are 
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more frequently observed in individuals with, rather than without, 
the disease are deemed to be associated. Owing to the phenomenon 
of linkage disequilibrium, scrutiny of these loci can then guide the 
discovery of pathogenic variants. 

Bioinformatic pipelines that analyze GWAS data utilize several 
steps. First, the DNA microarray data are subjected to quality con-
trol checks to ensure that low-quality DNA samples are removed, 
that poorly performing SNP assays are removed, that subjects re-
lated to each other are removed, and that the cases and controls 
are generally matched in terms of their genetic ancestry. Next, as-
sociation testing between SNPs and disease is performed with vari-
ous statistical tests, many of which can adjust for covariates such 
as demographic features, disease features, and subtle differences 
in ancestry. SNPs that are identified as statistically significant are 
often tested in independent replication cohorts, with a final meta-
analysis performed. 

Well-suited to the study of plaque psoriasis given its polygenic 
inheritance, GWAS have dramatically expanded the number of loci 
associated with psoriasis susceptibility. Large-scale GWAS and 
meta-analyses have convincingly identified 63 loci contributing to 
psoriasis susceptibility in European populations.14 Many large in-
tercontinental consortia have further pooled hundreds of thousands 
of samples, allowing for the identification of susceptibility loci 
with very mild effect sizes.15,16 For instance, a large trans-ethnic 
genome-wide meta-analysis of psoriasis gathered roughly 15,000 
psoriasis cases across Caucasian and Chinese ancestries to identify 
a handful of novel associations.17

GWAS have also been used to investigate psoriatic arthritis, with 
the results underscoring the role of the MHC, confirming associa-
tions with IL-23 and IL-12B, and identifying a novel locus known 
to harbor genes associated with other autoimmune diseases.15 De-
spite these increasing number of associations, there remains a lack 

of comprehensive analysis of each individual risk allele with pso-
riatic clinical phenotypes.16

Fine-mapping causal variants
The association signals identified through GWAS can contain 
hundreds of variants spanning large regions of numerous genes. 
Fine-mapping is a bioinformatic process to identify true causal 
variants among all the associated variants. Statistical selection of 
causal variants can be based on association P values such as P 
< 5 x 10-8 or on Bayesian methods that assign to each variant a 
posterior probability of causality. Bayesian methods are useful in 
that they allow for the incorporation of prior biological knowledge 
from pathway analyses or functional annotations.18 Fine-mapping 
requires a sufficiently large sample size to separate out the most 
highly correlated signals and rigorous genotyping or imputation of 
the variants therein.19 

Fine-mapping studies in psoriasis have largely focused on the 
analysis of PSORS1. Initial studies using this bioinformatic ap-
proach sought to localize the primary risk locus, narrowing 
PSORS1 to an approximately 300-kb region with multiple bio-
logically plausible candidate genes. This effort was followed by a 
study in a Caucasian sample that identified HLA-C*06:02 as the 
PSORS1 risk allele.20 A follow-up study in a Chinese population 
confirmed that while HLA-C*06:02 was a major risk allele, it could 
not completely account for the full linkage evidence of PSORS1.9 
Fine-mapping with conditional analysis has further been used to 
identify additional psoriasis susceptibility alleles distributed across 
the MHC.21,22 For instance, a large-scale fine-mapping analysis in 
individuals of European ancestry used a combination of genotyp-
ing and imputation to examine the genetic variation in each of 8 
psoriasis susceptibility regions, confirming, among other findings, 
the presence of multiple psoriasis effectors in the MHC.23

■ TABLE. Major biological domains of psoriasis research with their relevant technologies  
and bioinformatic analyses.

Biological domain Relevant technologies Bioinformatic analyses

Genetics · DNA microarray

· Whole genome sequencing

· Exome sequencing

· Linkage analysis

· Genome-wide association studies

· Fine-mapping causal variants

Transcriptomics · Microarray

· RNA-seq

  – Bulk tissue RNA-Seq

  – FACS-seq

  – Single-cell RNA-Seq

· Differential expression analysis

· Network analysis

· Pathway analysis

Microbiomics · rRNA gene phylotyping

· Whole-genome shotgun sequencing

· Taxa detection

· Diversity analysis

  – Alpha diversity

  – Beta diversity

· Functional analysis
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Exome sequencing
Exome sequencing is a genomic technique that involves sequenc-
ing only the exons, or protein-coding genes, in a genome. The hu-
man exome contains about 180,000 exons, which total about 30 
million base pairs and 1% of the human genome. Sequencing of 
the exome is performed using high-throughput DNA sequencing 
technology. The goal is to identify the genetic variants responsible 
for disease phenotypes, and to do so at a lower cost than whole-
genome sequencing. Whereas GWAS studies focus on identifying 
common variants (minor allele frequency >1% in a population) as-
sociated with a disease, exome sequencing studies focus on iden-
tifying infrequent or rare variants (minor allele frequency <1%) 
associated with a disease.  

Exome sequencing has been used in psoriasis to identify 
causal variants in families and populations. For instance, exome 
sequencing of the affected European and Taiwanese families 
noted above, as well as of a child with severe pustular psoriasis, 
concluded the 17-year search for PSORS2 by identifying muta-
tions in CARD14, a gene implicated in the recruitment of inflam-
matory cells by keratinocytes.24 A follow-up study used exome 
sequencing to identify 15 additional rare missense variants in 
CARD14 across 7 psoriasis cohorts.25 Studies looking at general-
ized pustular psoriasis in Japanese,26 Tunisian,27 and European28 
individuals have also been successful in identifying mutations in 
IL36RN, which has been shown to antagonize cytokines of the 
IL-1 family.29

Transcriptomics
Our knowledge of psoriasis has also benefited from characteriza-
tion of the transcriptome. The transcriptome comprises the total 
cellular complement of coding and noncoding RNA.30 Given the 
diverse roles of RNA as messenger, regulator, and housekeeper, 
transcriptomic analysis can shed light on the dynamic state of one 
or more cells in a particular environment. Characterizing transcrip-
tomic differences between a disease tissue and its healthy counter-
part can therefore help elucidate the pathogenesis, mechanisms, 
and therapeutic targets of disease.

Transcriptomic technologies
The principal technologies used in transcriptomic analysis are mi-
croarray and RNA sequencing (RNA-seq). Both rely on purifying 
an RNA sample of interest and then converting it cDNA for further 
bioinformatic processing.

Microarray
Microarray was the initial bioinformatic technology deployed in 
transcriptomic analysis. It involves a chip with an array of ever-
updated probes designed to hybridize the RNA-derived cDNA of 
interest. As such, it relies on previous knowledge of the genome 
to detect and quantify known transcripts or isoforms.30 Relative to 
RNA-seq, pre-processing and low-level analyses of the results are 
relatively straightforward. New microarray datasets can also be 
readily combined with those available in public databases without 
introducing platform-specific heterogeneity.31,32 Within the field of 
psoriasis, microarrays remain popular for profiling gene expres-
sion in certain tissues such as peripheral blood.33,34

RNA sequencing
RNA-seq has emerged as a powerful discovery-based tool for char-
acterizing the psoriatic transcriptome. It utilizes next-generation 
sequencing technology to sequence the RNA-derived cDNA of in-
terest. Relative to microarray, RNA-seq offers notable advantages, 
including greater sensitivity and dynamic range of detection.35 

RNA-seq also allows for the characterization of splice variants, 
gene isoforms, and novel gene fusions.32 While RNA-seq in some 
cases complements the results of microarray-based studies,31 it is 
increasingly viewed as a replacement technology. Thus far, RNA-
seq has been utilized in psoriasis research to characterize the cod-
ing transcriptome,36,37 miRNAome,38 and lncRNAome,39 along 
with the lncRNAome of psoriatic arthritis.34

Fluorescence-activated cell sorting sequencing. While RNA-
seq has been traditionally performed on bulk tissue samples or cell 
populations expanded in cell culture, there are emerging isolation 
techniques compatible with downstream RNA-seq analysis.40 Fluo-
rescence-activated cell sorting (FACS) is one such technology that 

■ FIGURE.  Integrated omics analysis of a heterogeneous disease allows for patient stratification and treatment optimization.
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utilizes multiparametric flow cytometry to sort a heterogeneous 
mixture of cells uniquely labeled with fluorescent antibodies.40 
FACS can thereby enrich for expression signals from relatively 
rare cells while avoiding cell culture amplification methods that 
may significantly alter gene expression profiles.41 The technology 
also benefits from the availability of robust, low-cost commercial 
platforms with user-friendly interfaces and efficient data visualiza-
tion tools.40 Researchers of psoriasis have effectively used FACS-
seq to sort and sequence nonuniformly distributed populations of 
keratinocytes, dendritic cells, CD4+ T effector cells, and CD8+ T 
effector cells.41

Single-cell RNA sequencing. Unlike FACS-seq which en-
riches for distinct populations of cells, single-cell RNA sequenc-
ing (scRNA-seq) allows for transcriptomic analysis of individual 
cells. Utilizing high-throughput microfluidic cell capture or other 
microwell plate-based technology, scRNA-seq can enrich for rela-
tively low-abundance cell types and detect previously undetect-
able gene expression signals.42 Yet as a relatively new technology, 
scRNA-seq faces significant computational and analytical chal-
lenges.43 Within psoriasis research, FACS-seq remains favorable 
to scRNA-seq given the greater ease of cell capture and library 
preparation.41

Bioinformatic analyses
The profiling technologies of microarray and RNA-seq have al-
lowed for 3 main types of transcriptomic analysis: differential ex-
pression analysis, co-expression network analysis, and pathway 
analysis.

Differential expression analysis
Differential expression analysis entails characterizing the genes 
that are differentially up- or downregulated between experimental 
and reference tissues with the goal of gaining pathogenetic, mech-
anistic, or therapeutic insights. Microarray and RNA-seq have both 
been used for such analysis, with the latter now being the more 
widely employed approach. Still, appropriate consensus proto-
cols for identifying and reconciling differentially expressed genes 
(DEGs) elucidated through RNA-seq alone or in combination with 
microarray data remain an active area of research.44

Research in psoriasis has made use of differential expression 
analysis for nearly 2 decades. Early microarray-based studies 
yielded hundreds of DEGs, and the advent of RNA-seq has ex-
panded that number into the thousands.36,37 Thus far, studies have 
profiled DEGs of lesional versus uninvolved psoriatic skin;45-48 
psoriatic versus normal,49 atopic,50 and squamous cell carcinoma-
tous skin;51 pre- versus post-tumor necrosis factor inhibitor–treated 
psoriatic blood and lesional skin;33 psoriatic arthritic blood versus 
normal blood;34 and psoriatic arthritic synovial biopsy and blood 
versus healthy controls.52

Direct insights from differential expression analyses are mani-
fold, ranging from the implication of core psoriatic genes, to the 
analysis of therapeutic response, to the identification of disease 
biomarkers. For instance, one recent study using RNA-seq demon-
strated a core set of 763 DEGs across psoriatic phenotypes as well 
as hundreds of DEGs unique to scalp, palmoplantar, and conven-
tional plaque psoriasis.48 A second study using this technology illu-

minated a unique lncRNA signature between psoriatic and healthy 
skin as well as between psoriatic skin before and after treatment 
with adalimumab.39 A third, microarray-based study demonstrated 
the upregulation of osteoactivin in the peripheral blood and sy-
novial biopsies of individuals with psoriatic arthritis, along with 
higher serum levels of osteoactivin in psoriatic arthritis but not 
other arthritides, suggesting the potential utility of this glycosyl-
ated protein as a biomarker of disease.52

Network analysis
In addition to looking at DEGs individually, there has been interest 
in detecting their involvement in coordinated expression. Genes, 
on estimate, interact with 6 other genes and possess 10 biologi-
cal functions.53 Network analysis among DEGs can thus dramati-
cally expand the genetic and functional knowledge of disease. A 
popular systems biology approach for constructing gene networks 
is weighted gene co-expression network analysis (WGCNA). 
Building on previously unweighted methods (eg, pairwise corre-
lations, Bayesian models, and linear regression), WGCNA uses 
a correlation-based soft-thresholding weight to prioritize strong 
pairwise correlations.54 It can also reveal densely clustered subnet-
works known as “gene modules,” along with their most influential 
“hub genes,” which have been shown to orchestrate module behav-
ior.55 WGCNA has been successful in revealing candidate genes 
and molecular targets in various autoimmune conditions, includ-
ing Sjögren’s syndrome, inflammatory bowel disease, and chronic 
fatigue syndrome.54

WGCNA has also been pivotal in psoriasis research, with the 
earliest such study serving as the initial application of this tech-
nique to RNA-seq data of human skin.36 The chief use of WGCNA 
in the field has been to assemble inputs for pathway analysis, as 
outlined below. Modular analysis in WGCNA has assisted in this 
regard by at once reducing the number of inputs and increasing 
their explanatory power. Still, network analysis in its own right has 
revealed interesting findings pertaining to both psoriasis and pso-
riatic arthritis. For instance, one study demonstrated that lncRNAs 
constitute the majority of genes in modules significantly correlated 
with psoriasis. Furthermore, as most of these lncRNAs were not 
identified through differential expression analysis, network anal-
ysis was hypothesized to more robustly include low-abundance 
transcripts.54 A subsequent WGCNA study of several psoriatic phe-
notypes additionally demonstrated that the majority of hub genes 
are not differentially expressed.48 Network analysis has similarly 
underscored the importance of lncRNAs in the transcriptome of 
psoriatic arthritis.34

Pathway analysis
Much of the utility in identifying DEGs and gene co-expression 
networks lies in the ability to subsequently enrich for specific bio-
logical pathways and functions. The most popular bioinformatic 
tools for pathway analysis and functional enrichment in psoriasis 
research are Ingenuity Pathway Analysis (IPA) and Gene Ontol-
ogy (GO), respectively.47 The Molecular Signatures Database and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) have also 
been commonly used for pathway analysis.54 Mapping genes and 
gene networks onto biological processes and functions contained 
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within constantly updated omics repositories has led to a number 
of mechanistic conclusions.

Indeed, work in psoriasis has applied pathway analysis to differ-
ential expression and network analyses to yield confirmatory and 
novel insights. As one example, IPA of core DEGs across psoriatic 
phenotypes has demonstrated enrichment for endothelin-1 signal-
ing, confirming previous work showing higher serum plasma lev-
els of this biomarker.48 As another example, IPA of WGCNA data 
elucidated a module of coordinately expressed genes that was both 
related to keratinocyte differentiation and IL-17 responsive, sug-
gesting a role for IL-17 in innate host defense through signaling to 
the epidermal barrier.36

Functional enrichment analysis with GO has been similarly illus-
trative. For instance, a study of psoriatic uninvolved skin using this 
technology found enrichment for defense response among upregulat-
ed transcripts and for lipid metabolism among downregulated tran-
scripts.47 Of note, such enrichment for lipid metabolism is thought to 
be consistent with psoriatic pathogenesis through the promotion of 
either defects in the epidermal lipid barrier47 or fatty acid–mediated 
differentiation of T cells into T

reg
 cells, the latter being critical play-

ers in the suppression of the inflammatory response.54 Use of GO in 
psoriatic arthritis has also demonstrated enrichment for processes of 
suspected pathogenetic importance, including immune response and 
glycolipid metabolism.34 Intriguingly, a study of psoriatic lesional 
skin using the Molecular Signatures Database went on to demon-
strate enrichment for olfactory receptor signaling, a pathway not 
previously identified through differential expression analysis and of 
particular interest given recent data suggesting a role for olfactory 
receptors in cutaneous wound healing.54 

Microbiomics
The human microbiome comprises the totality of bacteria, fungi, 
archaea, viruses, and arthropods that reside in and on our bodies. 
Among these diverse organisms, bacteria have been increasingly 
recognized for their role in maintaining important physiologic pro-
cesses such as synthesizing essential compounds and preserving 
the skin barrier. Indeed, dysbiosis of the microbiome has been im-
plicated in a variety of diseases, including obesity,56 inflammatory 
bowel disease,57 cardiovascular disease,58 cirrhosis,59 and autism.60 
The hope is that understanding the complex interplay between mi-
crobes and disease will reveal critical insights into pathogenesis 
and treatment.

Linking the microbiome to psoriasis
The importance of microbes in psoriatic disease has long been ap-
preciated. Infection of the upper respiratory tract with streptococ-
cal bacteria was linked to psoriasis in the 1950s61 and has since 
been implicated in its initiation62 and exacerbation.63 Topical ap-
plication of the fungus Malassezia has similarly been shown to 
induce64 and worsen65 psoriatic plaques in the skin of psoriatic 
individuals. In addition to the clear role of external pathogens, 
research on the imiquimod-induced mouse model of psoriasis has 
suggested that commensal gut bacteria control the inflammatory 
response associated with the disease.66 The hypothesis that gut 
bacteria similarly mediate psoriatic arthritis remains under active 
investigation.67

Sampling the microbiome
Characterizing microbial-host interactions begins with sampling 
the microbial community of interest. The intestinal microbiome 
is typically sampled through collection of a stool specimen. Sam-
pling the skin is accomplished by biopsy, curette, or skin swab and 
entails more complex considerations given site-specific differences 
in pH, moisture, sebum content, and topography that influence mi-
crobial community architecture.68 Work in psoriasis has also more 
recently begun profiling the blood microbiome through samples 
of peripheral blood.69 Whereas early research required culturing 
samples for subsequent analysis, culture-independent methods are 
now in near-exclusive use and facilitate analysis of the 99% of the 
microbiome incapable of being cultivated.68

Microbiomic technologies
After collecting a sample, microbial DNA can be extracted to 
identify the organisms present and quantify their relative abun-
dances. Two main technologies for characterizing the microbiome 
are used: ribosomal RNA (rRNA) gene phylotyping and whole-
genome shotgun (WGS) sequencing/shotgun metagenomics.70

rRNA gene phylotyping
rRNA gene phylotyping was the initial culture-independent meth-
od for microbial detection. All bacteria contain the 16S rRNA 
gene, comprising several regions that are highly conserved and 9 
regions that are hypervariable. The hypervariable regions, denoted 
V1-V9, themselves contain both semi-conserved regions that allow 
for polymerase chain reaction (PCR)-based sequencing and vari-
able regions that enable bacterial classification. While hypervari-
able regions are not as accurate in classification as is the whole 16S 
rRNA gene, they reliably predict taxonomic levels at a fraction of 
the cost. For this reason, semi-conserved sequences in hypervari-
able regions are widely used in large-scale studies aiming to char-
acterize entire microbial communities.71 Specifically, the V4 region 
has been useful in classifying enteric microbes, V1-V3 has worked 
well for cutaneous microbes in general,72 and V3-V5 may be use-
ful for identifying microbes of diagnostic relevance to psoriasis.73 
Mycological identification is often analogously performed by se-
quencing the eukaryotic 18S rRNA gene with Malassezia-specific 
PCR primers.74 Despite its limited taxonomic resolution and in-
ability to offer any direct genomic or functional assessment of a 
microbial community, rRNA gene phylotyping remains a powerful 
and widespread tool for taxonomic classification.75

Whole-genome shotgun sequencing
Whole-genome shotgun (WGS) sequencing offers a more global 
picture of a microbial community. It involves shearing the ge-
nomes contained within a microbial sample and then sequencing 
random fragments. The fragments can then be aligned, assembled, 
and compared to a reference database for taxonomic identifica-
tion. WGS overcomes many limitations of PCR-based surveys 
by, for instance, detecting microbes lacking a universal gene such 
as 16S,76 enhancing identification of taxa at the species level,77 
and profiling the functional potential of a community.78 Shotgun 
metagenomic research on skin microbiota has emerged only over 
the past decade, with psoriasis research representing the first appli-
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cation of this technology to skin disease.75 While WGS remains the 
more expensive and computationally intensive approach, its cost is 
expected to decrease with advancement of the technology.

Bioinformatic analyses

Detection of Taxa
With these sequences in hand, the next step is taxonomic classi-
fication. Classification of 16S sequence data begins with cluster-
ing sequences into operational taxonomic units (OTUs), a working 
name for groups of related bacteria.79 OTU clusters can be based 
on the similarity of sequences to each other or to those available 
in an annotated database, approaches known as “de novo” and 
“closed-reference” OTU picking, respectively. “Open-reference” 
OTU picking is an increasingly recommended third strategy that 
employs a closed-reference strategy followed by de novo picking 
among unsuccessfully mapped reads.79 Similarity thresholds of 
95% and 97-99% are generally regarded as appropriate proxies for 
OTU classification at the genus and species level, respectively.79 
Robust bioinformatic approaches have also been developed for 
taxonomic analysis of shotgun data. One popular method, which 
was used by the first WGS study of psoriasis, classifies shotgun 
reads by mapping them to a pre-computed catalog of unique clade-
specific marker genes.80 An alternative method makes use of lowest 
common ancestor positioning to hierarchically classify pre-aligned 
sequences on a taxonomy tree, with sequences failing to meet a 
similarity threshold being assigned to progressively higher taxo-
nomic levels.70

The above bioinformatic tools for taxonomic classification have 
been widely used in studies of the psoriatic microbiome. A review 
of studies that employed predominantly 16S rRNA phylotyping to 
characterize psoriatic cutaneotypes found a trend toward a higher 
relative abundance of Streptococcus and a lower relative abun-
dance of Propionibacterium in psoriasis patients versus controls.72 
A more recent study using this technology elucidated a psoriatic 
core intestinal microbiome as well as 3 enterotypes, with patients 
belonging to the enterotype marked by a predominance of Prevotel-
la being more likely to have bacteria detected in their peripheral 
blood as well as a higher inflammatory status.81 In the sole shotgun 
metagenomic study on psoriasis noted above, use of MetaPhlAn 
2, a tool mapping shotgun reads to a database of clade-specific 
marker genes, revealed increased Staphylococcus in psoriatic ver-
sus unaffected skin but few discriminative features at the species 
level.75 More recent 16S rRNA research using a high sequencing 
depth showed a relative enrichment of Staphylococcus aureus in 
particular and further validated strong Th17 polarization in mice 
colonized with this bacterium.82 Of note, 16S rRNA research on 
psoriatic arthritis has thus far demonstrated a gut microbial profile 
similar to that observed in inflammatory bowel disease.83

Diversity analysis
The field of bacterial ecology has developed 2 sets of bioinformatic 
tools for analyzing the diversity of microbial communities.

Alpha diversity. Alpha diversity refers to the diversity of spe-
cies within an individual community. In studies of the microbiome, 
these communities are often well-defined ecological niches such as 

distinct areas of the skin or intestine.84 Alpha diversity can be as-
sessed in terms of evenness, or the distribution of species, as well 
as richness, or the number of species present in a sample. Common 
indices of alpha diversity that combine these 2 metrics include the 
Shannon and Simpson indices. The Shannon index involves sum-
ming the proportion of each species relative to the total number 
of species in a given community.85 The Simpson index is a similar 
measure that gives more weight to dominant species.

Studies of psoriatic skin lesions have generated conflicting con-
clusions about alpha diversity.72 The earliest study to assess alpha 
diversity demonstrated with skin swabs that psoriatic lesional 
skin was associated with a greater Simpson diversity index than 
nonlesional or control skin.86 A subsequent study comparing bi-
opsied psoriatic lesional skin to normal skin with lesions removed 
by wide excision, however, revealed no difference in mean Shan-
non indices but a narrower distribution of indices among cases 
versus controls.86 The largest microbiomic study of psoriasis to 
date demonstrated a trend towards a lower Shannon index at the 
phylum, class, order, family, and genus levels in lesional psoriatic 
skin compared to nonlesional skin and healthy skin. It also showed 
that systemic treatment with methotrexate or tumor necrosis factor 
inhibitors led to a persistent decrease in richness in lesional but 
not unaffected skin.87 Conflicting results are thought to be due to 
differences in sampling technique and the use of site-matched and 
not site-matched sampling.72

Beta diversity. Beta diversity considers the dissimilarity of 
bacterial composition between communities.87 It can be quantified 
through either a phylogenetic or taxon-based approach. Phyloge-
netic methods take evolutionary history into account, assigning 
lower weights to differences in abundance of closely related spe-
cies.70 UniFrac is a popular phylogenetic method that measures the 
amount of unique evolution of one community relative to others88 
and has been shown to align with meaningful biological patterns.89 
Taxon-based methods characterize the dissimilarity between sam-
ples based only on counts, without use of a phylogenetic tree. In 
this way, they are less adept in suppressing noise but are more sen-
sitive to differences in OTUs with high sequence similarity that 
may nonetheless be of distinct biological significance. Bray-Curtis 
dissimilarity is a popular taxon-based method that is robust to 
count matrices filled with zeros, which is common in microbial 
community data.70 Dissimilarity matrices can then be further visu-
alized with methods such as principal coordinate analysis, which 
transforms the matrices into a new set of orthogonal axes that ex-
plain their maximum amount of variation.90

Within the field of psoriasis, studies of beta diversity have 
yielded similarly conflicting results.72 For instance, one study us-
ing UniFrac and principal coordinate analysis demonstrated lower 
beta diversity among psoriasis lesions relative to controls, imply-
ing reduced variation in OTU composition of psoriatic microbial 
communities.91 In contrast, the largest microbiomic study refer-
enced above used intragroup UniFrac analysis to demonstrate that 
beta diversity increased from control to unaffected to lesional skin, 
indicating the uniqueness of psoriatic microbial communities.87 
However, longitudinal analysis in a small subset of these patients 
and controls demonstrated that differences in beta diversity were 
no longer observed at a 12- and 36-week follow-up.87 
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Functional analysis
Bioinformatic tools also allow for profiling the function of a micro-
bial community in relation to its host.70 Functional inference of 16S 
data is commonly accomplished with PICRUSt software. By map-
ping representative OTU sequences to phylogenetic gene markers 
in a reference database, PICRUSt is able to predict and quantify 
functional genes likely to be associated with the OTUs. Counts of 
functional genes can then be further analyzed by pathway analy-
sis (eg, KEGG) to determine key biological functions. However, 
shotgun metagenomics data offer a more reliable functional as-
sessment. Software programs such as MEGAN, MG-RAST, and 
HUMAnN directly map sequence data to gene databases and orga-
nize the data into biological pathways using tools such as KEGG 
pathways or the SEED hierarchy.92 Ideally, metabolic inferences 
from microbiomic data are to be compared and reconciled with 
transcriptomic analyses.92 

Functional study of the psoriatic microbiome has thus far yield-
ed only limited or conflicting conclusions. For instance, applica-
tion of PICRUSt to swabs of healthy and psoriatic skin found both 
samples to be enriched with bacteria capable of amino acid and 
carbohydrate metabolism, merely suggesting a general role for 
bacterial metabolism in host-microbe interaction.93 In contrast, a 
recent fecal microbiota study using PICRUSt found an overrep-
resentation of pathways involving bacterial chemotaxis and car-
bohydrate transport.94 As for the shotgun metagenomics study 
referenced above, HUMAnN was utilized to investigate microbial 
communities of the ear and elbow.75 The ears of psoriatic individu-
als compared to those of controls showed a decreased prevalence of 
pathways involved in the metabolism of vitamins and cofactors—a 
result that aligns with transcriptomic pathway analyses suggesting 
a reduced role of lipid metabolism in psoriatic skin. At the elbow, 
however, biological functions between diseased and unaffected 
metagenomes were more uniform.

Conclusion
Omics generally concerns the collective characterization of bio-
logical disciplines ending in -omics. In addition to the fields of ge-
netics, transcriptomics, and microbiomics reviewed above, omics 
includes epigenomics, proteomics, and metabolomics, among oth-
ers, which have overall received less attention to date in psoriasis 
research. While these disciplines have traditionally operated in 
siloes, work in omics increasingly seeks to integrate data across 
disciplines to achieve high-level insights. Already, a pilot study in 
psoriasis has begun to combine approaches in genomics, transcrip-
tomics, and proteomics to predict treatment response.95 Indeed, the 
hope is that integration of multi-level omic data will overcome the 
limitations of individual biomarker analysis to effectively stratify 
patients for targeted therapy.96 Coupled with advances in machine 
learning and an increase in cross-disciplinary collaboration, bio-
informatics holds the potential to revolutionize our understanding 
and treatment of human disease.
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