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a b s t r a c t

This work presents a new methodology for flow regimes identification and volume fraction predictions
in wateregaseoil multiphase systems. The approach is based on gamma-ray pulse height distributions
(PHDs) pattern recognition by means the artificial neural networks (ANNs). The detection system uses
appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detec-
tors adequately positioned in order measure transmitted and scattered beams, which makes it less
dependent on the regime flow. The PHDs are directly used by the ANNs without any parameterization of
the measured signal. The system comprises four ANNs. The first identifies the flow regime and the other
three ANNs are specialized in volume fraction predictions for each specific regime. The ideal and static
theoretical models for annular, stratified and homogeneous regimes have been developed using MCNP-X
mathematical code, which was used to provide training, test and validation data for the ANNs. The
energy resolution of NaI(Tl) detectors is also considered on the mathematical model. The proposed ANNs
could correctly identify all three different regimes with satisfactory prediction of the volume fraction in
wateregaseoil multiphase system, demonstrating to be a promising approach for this purpose.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Multiphase flow measurement is a very important issue in
offshore petroleum industries. The use of techniques for determi-
nation volume fractions of oilewateregas flows with adequate
precision is required. Commonly, such techniques are invasive, and
involves in high cost associated to installation andmaintenance. On
the other hand, non-invasive techniques tend to be less accurate.
Due to this fact, many investigations on non-invasive techniques
are found in literature with the aim of improving accuracy and
reducing costs.

By using gamma-ray sources (Abouelwafa and Kendall, 1980;
Johansen et al., 1994; Åbro et al., 1998,1999; Tjugum et al.,
2001, 2002) it is possible to perform these measurements
without modifying the operational conditions, allowing accom-
plishment of the entire monitoring process. However, volume
fraction prediction by using gamma-ray measurements generally
depends on the correct identification of the flow regime to
increase the precision in prediction. The flow regime information
in the liquid-gas flows is usually obtained by individual
x: þ55 21 2173 3852.
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interpretation and subjective evaluations based on visual obser-
vations (graphic illustrations). The major difficulty in visual
observation, even when using high-speed photography, is that
the picture is often confusing and difficult to interpret, especially
when dealing with high velocity flows. In addition, there are
systems that are opaque where flow visualization is impossible;
then, such analysis is also not possible by this method (Haojiang
et al., 2001; Jin et al., 2003). Therefore, a non-invasive system
that can provide material volume fraction (MVF) predictions
regardless of a priori knowledge of the flow regime, without
subjective evaluation, is a great contribution.

Together with the detection system, artificial neural networks
(ANNs) (Haykin, 1999) has been used in order to interpret the pulse
height distributions (PHDs) obtained by gamma-ray radiation
detectors to identify the flow regime (Mi et al., 1997, 1998, Haojiang
et al., 2001; Jin et al., 2003) and predict the MVFs (Salgado et al.,
2007, 2009, Bishop and James, 1992; Åbro et al., 1999). ANNs are
mathematical models inspired in the human brain, which has the
ability of learning by examples. ANNs are able to discover behaviors
and patterns from a finite set of data (called the “training set” or
“training patterns”). If an adequate training set is provided, the ANN
is able to generalize the knowledge acquired during (learning)
process, responding adequately to new situations (not comprised in
the training set).
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The training and test patterns (different volume fractions for the
three flow regimes) were obtained by means of static and ideal
mathematical models for annular, stratified and homogeneous
regimes.

These models were developed by mathematical simulation
using the Monte Carlo N-Particle eXtended (X-5 Monte Carlo Team,
2003) (MCNP-X) computer code (Pelowitz, 2005) based on the
method of Monte Carlo (MC) (Åbro et al., 1998,1999). The MC
technique is a widely used simulation tool for radiation transport,
mainly in situations where physical measurements are incon-
venient or impracticable. In this work the MCNP-X code, which is
specific for simulating electron and photon transport through
materials with various geometries, has been used. The model
developed in the MCNP-X code considers the main effects of radi-
ation with the matter involved and the PHDs from the NaI(Tl)
detectors. The energy resolution, dimensions and characteristics of
a real detector are also considered; in general, the model presented
tends to approach the realistic case.

In this work, the whole gamma-ray PHDs obtained by detectors
are directly used to feed the ANNs without any parameterization of
the signal, which allowed the use of simplified detection geometry
consists of two NaI(Tl) detectors, the first one positioned at 180�

diametrically opposed to sources of 241Am and 137Cs and the second
one at 45�. In addition, the system considers the transmitted (IT)
and scattered (IS) beam measurements in order to increase the
visualization of the cross-section, making the response less
dependent on the flow regime and also to obtain sufficient infor-
mation to determine precisely the volume fractions regardless,
a priori, of the flow regime.
Oil

Gas
Water
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Fig. 2. The models for the different annular, s
The developed ANN system comprises four ANNs. The first one
is trained to identify the dominant flow regime and other ones are
trained for volume fraction predictions of each specifically regime.
An evaluation of the quality training of ANN was made from 25
patterns not used during the training phase, also generated by
mathematical code.

In this study, the training patterns (combination of the volume
fractionsof eachmaterial)wereuniformlydistributed throughout the
search space; moreover, the choice of each data set was performed
systematically. Another important enhancement over the mathe-
maticalmodelused inpreviouswork (Salgadoetal., 2009) is theuseof
a more realistic model of the NaI(Tl) detector, considering the real
dimensions and materials compositions, as well as its energy reso-
lution. These improvements allowed the achievement of the better
results, showing smaller average relative errors for annular, stratified
and homogeneous regimes with the use of only two detectors.

Thus, this work provides a new methodology, able to identify
the flow regime with good accuracy and calculate volume fractions
of multiphase flows (gasewatereoil) based on interpretation of
gamma-ray PHDs by means of the ANNs, independently of a priori
knowledge of the flow regime.
2. Proposed methodology

2.1. Volume fraction predictions

2.1.1. Mathematical detector model
Themathematical model considered NaI(Tl) scintillator detector

as a homogeneous cylinder (Salgado et al., 2008; Berger and Seltzer,
tratified c) Homogeneous

tratified and homogeneous flow regimes.
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Fig. 4. Schematic representation used for the ANN.
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Table 1
Summary of pattern recognition for the prediction results.

Detectors Annular Stratified Homogeneous
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1972; Saito and Moriuchi, 1981; Orion and Wilopolski, 2002; Shi
et al., 2002; Sood and Gardner, 2004) with 31 mm
(diameter) � 19 mm (thickness). The information (dimensions and
materials) of a real NaI(Tl) detector was considered in the mathe-
matical model for calculating the MCNP-X code from gammag-
raphy1 technique. A special treatment provided in the MCNP-X
code: the Gaussian energy broadening2 (GEB) (card FTn) option has
been used to better fit the full energy peak shape of PHD (Pelowitz,
2005). The GEB parameters have been set taking into account3 the
resolution of the detector by means of the FWHM provided by
radioactive sources (Salgado et al., 2008), for this it must to be
inserted into the input file (INP), the mathematical model of the
detector. In calculations it has been considered the radiation back-
ground and the contributions due to interactions by Compton Effect.

2.1.2. Proposed geometry
The proposed geometry combines transmission (IT) (at detector

1) and scattered (Is) (at detector 2) radiation (dual-mode densi-
tometry) from gamma-ray source with a fan beam, thus it is
1 Gammagraphy is a non-destructive testing method consisting in carrying out
a radiograph by using the electromagnetic gamma radiation of a radionuclide.

2 The energy peaks behave like a Gaussian function.
3 This step aims to validate the response of the detector quality by means of

energy resolution while the order quantity will be achieved by normalize the of the
full energy peak from PHD obtained by MCNP-X.
possible to acquire sufficient information about the flow regime
and also to increase the measurement area on the cross-section of
the pipe making the MVF prediction less dependent on the flow
regime (Johansen and Jackson, 2000; Tjugum et al., 2001).

In all simulations, fan beam geometry (for the source) and two
NaI(Tl) detectors has been used. One of them (D1) is aligned to the
source (180�) and the other (D2) is located at 45�. The measure-
ment system simulation is shown in Fig. 1. One collimated (angle
beam 8.84�) gamma-ray point source (59.45 keV: 241Am and
662 keV: 137Cs) has also been simulated in the MCNP-X code. In our
studies, salt water was used (4% of NaCl) to simulate the seawater
(Johansen and Jackson, 2000).

The gaseous phase was substituted by air and oil was assumed
as a hydrocarbon (molecular formula C5H10) with a 0.896 g cm�3

density (Hussein and Han, 1995). A Polyvinyl Chloride (PVC) tube
D1 e D2 Air Water Air Water Air Water

� 5% 90.083 76.033 90.909 72.727 85.950 70.248
5e10% 0.826 4.959 0 9.091 1.653 9.091
10e20% 0 1.653 0 0.826 2.479 2.479
20e30% 0 0 0 0 0.826 0.826
> 30% 0 0 0 0 0 0
r2 1.0000 0.9998 1.0000 0.9996 0.9999 0.9992



Table 2
ANN prediction for the production set on annular, stratified and homogeneous regimes.

Pattern Annular Stratified Homogeneous

Air (%) Water (%) Air (%) Water (%) Air (%) Water (%)

Real RNA Real RNA Real RNA Real RNA Real RNA Real RNA

1 5 5.00 20 19.58 5 4.97 20 18.85 5 5.04 20 20.67
2 5 5.24 40 40.67 5 4.97 40 40.02 5 5.12 40 41.07
3 5 5.12 80 79.69 5 5.08 80 80.50 5 4.44 80 80.14
4 15 15.02 0 0.51 15 14.90 0 0.00 15 15.21 0 0.00
5 15 15.03 10 9.80 15 15.02 10 9.31 15 15.19 10 10.05
6 15 14.98 30 29.37 15 15.08 30 28.82 15 15.70 30 30.03
7 15 14.79 50 49.44 15 15.08 50 49.50 15 14.56 50 49.72
8 15 14.86 60 59.41 15 15.16 60 60.26 15 14.86 60 59.38
9 15 14.76 70 68.83 15 15.23 70 68.50 15 14.58 70 69.80
10 25 25.17 20 19.10 25 24.82 20 19.14 25 25.70 20 21.28
11 25 24.76 40 39.93 25 24.64 40 41.09 25 24.69 40 38.98
12 35 34.83 0 0.07 35 34.35 0 0.45 35 34.68 0 0.76
13 35 34.98 10 9.95 35 34.75 10 9.83 35 34.81 10 10.28
14 35 34.52 30 29.82 35 35.01 30 30.39 35 34.88 30 29.97
15 35 34.95 50 49.01 35 35.03 50 50.11 35 35.23 50 49.63
16 35 34.92 60 61.06 35 34.77 60 60.26 35 34.64 60 59.36
17 45 44.78 20 19.92 45 45.08 20 20.38 45 45.16 20 19.57
18 45 44.80 40 39.74 45 45.05 40 39.46 45 45.21 40 39.06
19 55 55.15 0 0.65 55 54.55 0 2.14 55 54.72 0 1.53
20 55 54.75 10 9.35 55 55.10 10 10.71 55 54.95 10 8.09
21 55 54.93 30 30.31 55 55.00 30 30.10 55 55.81 30 28.25
22 65 64.97 20 20.58 65 64.68 20 18.93 65 65.55 20 18.33
23 75 75.04 0 0.00 75 75.15 0 0.17 75 75.21 0 4.59
24 75 74.94 10 9.79 75 75.11 10 9.01 75 73.15 10 8.43
25 95 95.63 0 0.67 95 94.78 0 3.84 95 95.75 0 0.00
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composes a test section with 1.8 cm thickness and 25.0 cm of
internal diameter. The models for the different flow regimes are
shown in Fig. 2.

2.1.3. ANN training data
The first step in this investigation was the mathematical simu-

lations for the different flow regimes (annular, stratified and
homogeneous regimes), shown in Fig. 2, bymeans of MCNP-X code,
in order to generate the training and test data sets for the ANNs. The
values of the thickness (rg, rw and ro e annular model, see Fig. 2(a)
and hg, hw e ho e stratified model see Fig. 2(b)), of each material
had been varied, in the MCNP-X code, in order to generate a diverse
combinations of MVFe aw, ag e ao, while for the homogeneous
regime mass fraction of each one of the materials had been varied.
For each one of these combinations, which had been varied from 0%
to 100%, the relative counts from transmitted (IT) and scattered (IS)
beams had been calculated. It is important to emphasize that the
MCNP-X code considers the material in a region (cell), defined in
the INP, as uniform.

Volume fractions that compose training, test and production
data sets are shown in Fig. 3, which presents a graphical repre-
sentation called ternary.

Thus, a set of 363 (121 � 3) simulations for different combina-
tions of MVFs and three flow regimes (annular, stratified and
homogeneous) were made, in order to generate the training set of
Table 3
Results of the ANNs training.

Flow regime r2 Relativea error (%)

All patterns Production set

Air Water Air Water

Annular 1.0000 0.9998 0.73 1.48
Stratified 1.0000 0.9996 0.61 2.56
Homogeneous 0.9998 0.9989 1.73 3.31

a The patterns with no presence of any material (e.g. 0% of air) were not
considered in the calculation of relative error.
the ANNs (204 (68 � 3) simulations), test (84 (28 � 3) simulations)
and production (75 (25 � 3) simulations). The test set was used for
stopping criteria: cross validation (Haykin, 1999) in order to avoid
over-training. The production set is used for a final validation test
after training of the ANN, simulating the operating phase.

In this work, a 3-layer feed-forward multilayer perceptron
(MLP) (Haykin, 1999) has been used. The learning/training algo-
rithm was the back-propagation algorithm (Chauvin and
Rumelhart, 1995). The ANN inputs and outputs are given by:

(i) ANN inputs4 (106 neurons):
PHD1: 20e720 keV, with steps of 10 keV (C20, C30, ., C720 e

counts from channel 2 to 72);
PHD2: 20e360 keV, with steps of 10 keV (C20, C30, ., C350 e
counts from channel 2 to 35).

(ii) ANN outputs (2 neurons):
H2O volume fraction
Air volume fraction.

Note that only two phases are used as ANN outputs. The third
phase is obtained by complement. Such set of volume fractions
used as ANN outputs has been empirically chosen, after investi-
gating (by experimentation) all possible combinations (including
the use of three volume fractions).
2.2. Identification of regimes for ANN

The methodology consists on use the gamma-ray PHDs to feed
the ANN1 in order to automatically identify the flow regime of this
system. A schematic representation used for the proposed ANN is
shown in Fig. 4.
4 The energy range choice of each PHD used in the training took into account the
value of relative error (R) below 10% in the counts, percentage acceptable according
to the MCNP-X manual.
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The ANN used was a 3-layer feed-forwardmultilayer perceptron
(MLP) (Haykin, 1999) trained by back-propagation algorithm It is
important to note that patterns that contain only one material (e.g.
100% air) were removed of training set, since they represent the
same flow regime, therefore, if considered they could confuse the of
the ANN training. The ANN inputs and outputs are given by:

i) ANN inputs (106 neurons):
PHD1: 20e720 keV, with steps of 10 keV (C20, C30, �, C720 e
counts from channel 2 to 71);
PHD2: 20e360 keV, with steps of 10 keV (C20, C30, �, C350 e

counts from channel 2 to 35).
Fig. 8. Flow regime identification system and vo
ii) ANN outputs (3 neurons)
S3, S2 and S1

The output data were classified considering three neurons in
ANN output (S3, S2 and S1), so that to obtain the identification of
systems, just that the ANN set the highest value among the network
outputs to “1” corresponding todominantflowregimeand to “0” the
others. To illustrate, suppose that the flow regime is annular, then
the network should adjust the output for S3 ¼ 0, S2 ¼ 0 and S1 ¼1.

3. Methods application and results

3.1. Volume fraction determination

For illustration of the differences between the PHDs for each
volume fraction some simulated transmitted (IT) and scattered (IS)
beam measurements obtained by detector 1 and 2 respectively for
the three flow regimes with two different volume fraction config-
urations are shown in Fig. 5. The PHD energy range considered here
was 20e800 keV.

The prediction for the test set of the annular, stratified and
homogeneous regimes are shown in Fig. 6 indicating that the ANNs
could adequately predict volume fractions. Note excellent agree-
ment between the volume fraction of the actual and predicted by
ANNs showing the ability of generalization of the networks.

The ANNs performance of theMVF predictions is summarized in
Table 1. As can be seen in Table 1, the ANNs could predict more than
70% of all patterns with errors less than 5% (worst case) for air, and
about 80% less than 10% (worst case) for water volume fractions.
The patterns with no air (0%) (9.09% of total) and of water (17.35% of
lume fraction predictions intelligent system.



C.M. Salgado et al. / Progress in Nuclear Energy 52 (2010) 555e562 561
total) not were considered, and then the ANNs classified 95% of all
data for air and water volume fractions to within �10% error for all
regimes studied.

In Table 2, results obtained for the production set on annular,
stratified and homogeneous regimes are presented. These results
demonstrate a good generalization of the trained ANNs, indicating
their ability for volume fraction predictions on annular, stratified
and homogeneous regimes.

Linear models were fit to the data from the correlation between
the volume fractions of the actual and predicted by the ANNs for all
patterns and also for the production set using a least-squares
procedure and linear correlation coefficients (r2). The results are
summarized in Table 3, demonstrating a good convergence of ANNs
(ANN2, ANN3 and ANN4) about all data set in MVFs prediction for
the three regimes studied.

3.2. Regime identification

To illustrate the difference between the flow regimes PHD some
transmitted and scattered beam measurements of volume fraction
of 30% air, 20% water and 50% oil for annular, stratified and
homogeneous regimes are presented Fig. 7.

It is important emphasize that the networks (ANN2, ANN3 and
ANN4) are suitably trained for the annular, stratified or homoge-
neous regimes, as described in item 3.1 and that the information
used in the ANN1 training are the same PHDs (PHD 1 and PHD 2)
used to calculate the volume fractions.

A simplified diagram of the proposed system for the identifi-
cation of flow regimes with prediction of MVFs is shown in Fig. 8.

The proposed ANN reached 100% of accuracy, identifying all flow
regimes submitted for a total of 354 patterns. The production set
with 75 patterns was used in order to validate the ANN1 inworking
phase also presented 100% of correct classification.

4. Conclusions

In this work, several improvements related tomethodologies for
regime flows identification and volume fraction predictions were
achieved.

A compact detection system, with two detectors, could be
developed in order to provide adequate measurements for identi-
fications and predictions. The use of non-parameterized PHD,
probably contributed to this, providing more complete information
about measured spectra.

The use of MCNP code was adequate to model the detection
system and effects of radiation interaction with matter, allowing
a very close to real representation. Hence, data for training the
ANNs could be easily generate by MCNP simulation, avoiding the
use of experimental data.

The ANNs architecture, as illustrated in Fig. 8, allows volume
fractions to be predictedwithout knowledge about the flow regime.
It has been possible due to the accuracy obtained for ANN1
(responsible to regime identification), which were able to correctly
identify 100% of the actual regimes (among the possible ones).

Volume fraction predictions, by ANN2 (annular), ANN3 (strati-
fied) and ANN4 (homogeneous), presented very good results, with
maximum relative errors bellow 3.5%.

In summary, the proposed methodology demonstrated to
contribute to the state-of-art in multiphase flow regime charac-
terization, improving the following points: i) detection system is
more compact; ii) the accuracy of ANN are improved; iii) the
volume fractions can be automatically predicted without a priori
knowledge of the actual flow regime.

The proposed methodology demonstrated to be quite prom-
ising. However, investigation on dynamic flows (in future work), in
which proposed methodology should be adapted and improved, is
required for real-world application. To accomplish that, an exper-
imental facility is under development in the Institute.
Acknowledgments

The authors would like to thank Ademir Xavier da Silva for
allowing the use of the MCNP-X code of the Universidade Federal
do Estado do Rio de Janeiro (UFRJ).

Claudio M. N. A. Pereira and Roberto Schirru are supported by
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro (FAPERJ).
References

Abouelwafa, M.S.A., Kendall, E.J.M., 1980. The measurement of component ratios in
multiphase systems using gamma-ray attenuation. Journal of Physics E:
Scientific Instruments 13, 341e345.

Åbro, E., Johansen, G.A., Opedal, H., 1998. A radiation transport model as a design
tool for gamma densitometers. Nuclear Instruments and Methods in Physics
Research A431, 347e355.

Åbro, E., Khoryakov, V.A., Johansen, G.A., Kocbach, L., 1999. Determination of void
fraction and flow regime using a neural network trained on simulated data based
on gamma-ray densitometry. Measurement Science and Technology 10, 619e630.

Berger, M.J., Seltzer, S.M., 1972. Response functions for sodium iodide scintillation
detectors. Nuclear Instruments and Methods 104, 317e332.

Bishop, C.M., James, G.D., 1992. Analysis of multiphase flows using dual-energy
gamma densitometry and neural networks. Nuclear Instruments and Methods
A 327, 580.

Chauvin, Y., Rumelhart D.E., 1995. Backpropagation Theory, Architectures and
Applications.

Haojiang, W., Fangde, Z., Yuyuan, W., 2001. Intelligent identification system of flow
regime of oilegasewater multiphase flow. International Journal of Multiphase
Flow 27, 459e475.

Haykin, S., 1999. Neural Networks: A Comprehensive Foundation Prentice Hall 2nd
edition.

Hussein, E.M.A., Han, P., 1995. Phase volume-fraction measurement in oil-
ewateregas flow using fast neutrons. Nuclear Geophysics 9 (3), 229e234.

Jin, N.D., Nie, X.B., Ren, Y.Y., Liu, X.B., 2003. Characterization of oil/water two-phase
flow patterns based on nonlinear time series analysis. Flow Measurement and
Instrumentation 14, 169e175.

Johansen, G.A., Jackson, P., 2000. Salinity independent measurement of gas volume
fraction in oil/gas/water pipe flows. Applied Radiation and Isotopes 53,
595e601.

Johansen, G.A., Froystein, T., Hjertaker, B.T., Isaksen, Ø., Olsen, Ø., Strandos, S.K.,
Olsen, T.S., Åbro, E., Mckibben, B., Heggstad, S. and Hammer, E., 1994. The design
of a dual mode tomography for three-component flow imaging. In: Proceedings
of European Concerted Action of Process Tomography (ECAPT), Oporto,
Portugal, March, pp. 24e27.

Mi, Y., Tsoukalas, L.H., Ishii, M., 1997. Application of multiple self-organizing neural
networks: flow pattern classification. Transactions of the American Nuclear
Society 77, 114e116.

Mi, Y., Ishii, M., Tsoukalas, L.H., 1998. Vertical two-phase flow identification using
advanced instrumentation and neural networks. Nuclear Engineering and
Design 184, 409e420.

Orion, I.,Wilopolski, L., 2002. Limitations in thePHOTONMonteCarlogammatransport
code. Nuclear Instruments and Methods in Physics Research A 480, 729e733.

Pelowitz, D.B., 2005. MCNP-X TM User's Manual, Version 2.5.0. LA-CP-05e0369. Los
Alamos National Laboratory.

Saito, K., Moriuchi, S., 1981. Monte Carlo calculation of accurate response functions
for a NaI(Tl) detector for gamma rays. Nuclear Instruments and Methods 185,
299e308.

Salgado C.M., Brandão L.E., Schirru, R., Pereira, C.M.N.A., Ramos, R., Silva, A.X., 2007.
Study of volume fractions for stratified and annular regime in multiphase flows
using gamma-rays and artificial neural network. In: 5th International Nuclear
Atlantic Conference e INAC, Santos, SP, BR.

Salgado, C.M., Brandão, L., Schirru, R., Pereira, C.M.N.A., Ramos, R., Silva, A.X., 2008.
Modelagem de detector NaI(Tl) usando MCNP-X. n 0189. XI Encontro de
Modelagem Computacional, Volta Redonda, RJ.

Salgado, C.M., Brandão, L.E., Pereira, C.M.N.A., Ramos, R., Silva, A.X., Schirru, R.,
2009. Prediction of volume fractions in three-phase flows using
nuclear technique and artificial neural network. Applied Radiation and
Isotopes ARI 4470.

Shi, Hu-Xia, Chen, Bo-Xian, Li, Ti-Zhu, Yun, D.I., 2002. Precise Monte Carlo simu-
lation of gamma-ray response functions for a NaI(Tl) detector. Applied Radia-
tion and Isotopes 57, 517e524.



C.M. Salgado et al. / Progress in Nuclear Energy 52 (2010) 555e562562
Sood, A., Gardner, R.P., 2004. A new Monte Carlo assisted approach to detector
response functions. Nuclear Instruments and Methods in Physics Research
Section B 213, 100e104.

Tjugum, S.A., Johansen, G.A., Holstad, M.B., 2001. The use of gamma radia-
tion in fluid flow measurements. Radiation Physics and Chemistry 61,
797e798.
Tjugum, S.A., Frieling, J., Johansen, G.A., 2002. A compact low energy multibeam
gamma-ray densitometer for pipe-flow measurements. Nuclear Instruments
and Methods in Physics Research B 197, 301e309.

X-5 Monte Carlo Team, 2003. MCNP e A General Monte Carlo N-Particle Transport
Code, Version 5 Volume I: Overview and Theory, LA-UR-03-1987. Los Alamos
National Laboratory.


	Flow regime identification and volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks
	Introduction
	Proposed methodology
	Volume fraction predictions
	Mathematical detector model
	Proposed geometry
	ANN training data

	Identification of regimes for ANN

	Methods application and results
	Volume fraction determination
	Regime identification

	Conclusions
	Acknowledgments
	References


