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INDOOR LOCATION ESTIMATION BASED ON TOA DATA
AND BIAS ESTIMATION USING GAMMA REGRESSION

Atsushi Yoshida∗, Takenori Sakumura† and Toshinari Kamakura†

ABSTRACT

We aim at improving the accuracy of indoor position estimation through a sta-
tistical approach. In this study, we propose a position estimation method based on
Time-of-Arrival (ToA). ToA data are often useful. However, ToA data include a posi-
tive bias due to the reflection of radio waves. Therefore, it is difficult to estimate the
TAG position from ToA data directly without an accurate bias correction. In this pa-
per, we propose a maximum likelihood estimation method for the TAG position using
gamma regression and a rotated distribution, and we show that the estimation with bias
correction is more accurate than the estimation without bias correction. In addition,
we show that our method also provides a confidence region for the TAG position.

1. Introduction

We aim at improving the accuracy of indoor position estimation through a statistical
approach. Since there are prospects of utilization in fields of such as marketing science and
location-based service, the study on indoor localization is important. In marketing science,
it is considered for use to get an interesting product’s shelf information for a customer and
to analyze the customer’s behavior in the store. In location-based service, it may become
possible for a visitor to receive the navigation service anywhere in a shopping mall or a
museum (Chong, Watanabe, and Inamura, 2006; Sahinoglu, Gezici and Guvenc, 2008).

The Global Positioning System (GPS) is well known as a typical localization method.
However, its accuracy is at best within about 1 to 5 meters even if it is outside, and it not
anticipated that further accuracy can be achieved in urban areas and the indoor environ-
ment. Hence, a method using a Wireless Sensor Network (WSN) is widely used for indoor
localization. The localization method in WSN is mainly classified as either the range-free
method or the range-based method. The range-free method estimates a position from a
network-like view with many devices, and provides a much less accurate position than the
range-based method that uses ranges between devices. Therefore, we use the latter in this
study.

To estimate the location using the range-based method, we need to prepare several
devices as anchor nodes (ANCHOR) and target nodes (TAG) and handle the distances
between them. For measuring distance, there are various kinds of radio signal information
to measure a distance, such as Received Signal Strength (RSS) (Okusa and Kamakura,
2015), Time-of-Arrival (ToA) (Kamakura and Okusa, 2013; Venkatraman, Caffery and You,
2004; Watabe and Kamakura, 2010), and Angle-of-Arrival (AoA). We have to select or
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combine these sources of information to estimate the position of TAG. In this study, we
propose a position estimation method based on ToA.

ToA is the radio signal information to estimate the distance between ANCHOR and
TAG based on time. In this paper, we call a measurement method using the ToA information
a “ToA method.” This method measures the radio signal’s travel time between an ANCHOR
and TAG that are completely synchronized, and calculates the distance. For instance, when
a radio signal is transmitted from TAG at time t0 and it is received by ANCHOR at time
t1, the distance R is calculated as follows:

R = C(t1 − t0),

where C is the speed of light. Thus, if the distance was measured correctly, we can get
the position of TAG using trilateration. However, since the distance often includes positive
systematic error, not random error in the actual environment, it is difficult to estimate the
accurate position of TAG.

The cause of the systematic error is in Non Line-of-Sight conditions, multipath and
clock off (Go and Chong, 2015; Sahinoglu, et al., 2008). In this paper, we call a difference
between a true distance and a measured distance a bias, and focus on the bias.

In this paper, we devise a new rotated distribution to define the likelihood of the
position of TAG, and propose a method to obtain the location of TAG based on maximum
likelihood estimation using the estimated bias by the gamma regression model. In addition,
our proposed method can also calculate a confidence region for the estimated position.

2. The proposed method - Indoor Location Estimation algorithm

We perform location estimation by a maximum likelihood method. The likelihood for a
location of TAG is represented a density function defined over a 2-dimensional plane (x, y).
Here, the ToA method provides only information for distances. We propose a new density
function q(x, y;θ) rotated over the 2-dimensional plane (x, y) which is generated from the
density function p(t;θ) (t ≥ 0) for the measured distances t;

q(x, y;θ) =
1

2πµ(θ)
p(
√
x2 + y2;θ),

where µ(θ) represents the mean of the density function p(t;θ). This density function is given
by calculating the volume of a solid of revolution generated from the underlying density
function. The volume becomes 2πµ(θ) by Pappus’s Centroid’s theorem (see Goodman and
Goodman (1969)). We call the above q(x, y;θ) the rotated distribution generated from
the positive distribution p(t;θ). For instance, when p(t)(= e−t) denotes an exponential
distribution with rate parameter λ = 1, shown in Figure 1, the rotated distribution q(x, y)
will be obtained as Figure 2.

For the indoor location estimation our proposed method will be described as the fol-
lowing 4 steps.

Step 1: We consider the gamma regression model for the bias γijk using the measured dis-
tance ℓijk. Sahinoglu et al. (2008) mentioned the gamma distributions for the correction.
We will use the gamma distribution regression model described as follows:

log(E(γijk)) = β0 + β1ℓijk,
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Fig. 1: Exponential distribution p(t) Fig. 2: A rotated distribution of q(x, y)

where β0 and β1 are unknown parameters, the bias γijk is a positive value which sub-
tracted the actual distance Rjk from the ith measured distance ℓijk between the jth
TAG and the kth ANCHOR (i = 1, 2, . . . , n0, j = 1, 2, . . . , J0, k = 1, 2, . . . ,K0). We
measure the distance under various conditions on the TAG position in advance, and
estimate common parameters β0, β1 using the observed data for all ANCHORs by the
maximum likelihood method. In that way, we construct the model for the relationship
between measured distance and actual bias beforehand. Figure 3 shows the relationships
between the measured distances and the actual biases, and the fitted gamma regression
curve.

Fig. 3: Measured Distance vs. Actual Bias Fig. 4: A rotated Weibull distribution
(m=2, η=5, x0=0, y0 = 0, γ = 0)

Step 2: The observed distance data are assumed to follow a rotated Weibull distribution.
The probability density function f(x, y;x0, y0,m, η, γ) is given by the following equation

f(x, y;x0, y0,m, η, γ) = 1
2πηΓ(1+ 1

m )

(
m
η

)(
d(x,y,x0,y0)+γ

η

)m−1

exp
{
−
(

d(x,y,x0,y0)+γ
η

)m}
,

where x, y are latent location x-y coordinates, x0, y0 are location coordinates of an AN-
CHOR, d(x, y, x0, y0) is the euclidean distance between (x, y) and (x0, y0), m is a shape
parameter, η is a scale parameter, γ is the bias stated as a location parameter and Γ(·)
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is the gamma function. Figure 4 shows the probability density function about the ro-
tated Weibull distribution with m = 2, η = 5 and x0 = y0 = γ = 0. The likelihood
for the ith measured distance ℓik between an unknown TAG and the kth ANCHOR
(i = 1, 2, . . . , n, k = 1, 2, . . . ,K) will become

L1(mk, ηk)

=

n∏
i=1

f (xik, yik;xk, yk,mk, ηk, γk)

=

n∏
i=1

1

2πηkΓ(1 +
1

mk
)

(
mk

ηk

)(
d(xik, yik, xk, yk) + γk

ηk

)mk−1

exp

{
−
(
d(xik, yik, xk, yk) + γk

ηk

)mk
}
,

where xik, yik are latent variables on ith measurement. In actual calculation, we can ob-
tain maximum likelihood estimators m̂k and η̂k by maximizing L1 in which d(xik, yik, xk, yk)+
γk is replaced with ℓik.

Step 3: With the estimated parameters m̂k, η̂k in Step 2, the TAG position (xTAG, yTAG) is
defined as the parameters giving the maximum values of the following joint probability
density function,

L2(xTAG, yTAG) =

K∏
k=1

f (xTAG, yTAG;xk, yk, m̂k, η̂k, γ̂k),

where (xk, yk) is the kth ANCHOR position and γk is estimated by the equation γ̂k =∑n
i=1 exp (β̂0 + β̂1ℓik)/n. In this step, we regard γ̂k as an estimator of the bias. The

maximum likelihood estimator of the TAG position (x̂TAG, ŷTAG) is obtained by solving
numerically the following simultaneous equations.

F =
∂ logL2

∂xTAG

= 0,

G =
∂ logL2

∂yTAG

= 0.

Step 4: Since the position (x̂TAG, ŷTAG) in Step 3 is a maximum likelihood estimator, a con-
fidence region for the estimated position is calculated by Kamakura and Okusa (2013)
as follows:

(x− x̂TAG, y − ŷTAG)
[
HT Σ̂H

]−1
(
x− x̂TAG

y − ŷTAG

)
≤ χ2

2(p),

where HT Σ̂H represents the asymptotic covariance matrix (ACov). The asymptotic
variance (AVar) of the x-location is given by

AVar[xTAG(m̂1, η̂1, . . . , m̂K , η̂K)] = hT
1 Σ̂h1,

where h1 =

(
∂x̂TAG

∂m̂1

∂x̂TAG

∂η̂1
· · · ∂x̂TAG

∂m̂K

∂x̂TAG

∂η̂K

)T

,

and we substitute the estimators for the position and distribution parameters into these
after solving for simplicity. Similarly, the AVar of the y-location is given by
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　 AVar[yTAG(m̂1, η̂1, . . . , m̂K , η̂K)] = hT
2 Σ̂h2,

where h2 =

(
∂ŷTAG

∂m̂1

∂ŷTAG

∂η̂1
· · · ∂ŷTAG

∂m̂K

∂ŷTAG

∂η̂K

)T

.

Combining the above variances, the ACov is given by

ACov[(x̂TAG, ŷTAG)] = HT Σ̂H,

where H =

(
h1

h2

)T

=

(
∂x̂TAG

∂m̂1

∂x̂TAG

∂η̂1
. . . ∂x̂TAG

∂m̂K

∂x̂TAG

∂η̂K
∂ŷTAG

∂m̂1

∂ŷTAG

∂η̂1
. . . ∂ŷTAG

∂m̂K

∂ŷTAG

∂η̂K

)T

.

Furthermore, we write down the notations to obtain the ACov. These are calculated by
a theorem on implicit functions. Because the simultaneous equations

{
F = F (x̂TAG, ŷTAG, m̂1, . . . , m̂K , η̂1, . . . , η̂K) = 0
G = G(x̂TAG, ŷTAG, m̂1, . . . , m̂K , η̂1, . . . , η̂K) = 0

and

∆ =

����
∂(F,G)

∂(x̂TAG, ŷTAG)

���� ̸= 0

exist, we can obtain the relation
{
x̂TAG = x(m̂1, . . . , m̂K , η̂1, . . . , η̂K)
ŷTAG = y(m̂1, . . . , m̂K , η̂1, . . . , η̂K).

And then, with partial differentiation for F,G with respect to the distribution parameters
mk, ηk for k = 1, . . . ,K, one obtains the equations (1) and (2),




∂F

∂x̂TAG

∂x̂TAG

∂m̂k
+

∂F

∂ŷTAG

∂ŷTAG

∂m̂k
+

∂F

∂m̂k
= 0

∂G

∂x̂TAG

∂x̂TAG

∂m̂k
+

∂G

∂ŷTAG

∂ŷTAG

∂m̂k
+

∂G

∂m̂k
= 0,

(1)




∂F

∂x̂TAG

∂x̂TAG

∂η̂k
+

∂F

∂ŷTAG

∂ŷTAG

∂η̂k
+

∂F

∂η̂k
= 0

∂G

∂x̂TAG

∂x̂TAG

∂η̂k
+

∂G

∂ŷTAG

∂ŷTAG

∂η̂k
+

∂G

∂η̂k
= 0,

(2)

and the following notations are obtained by solving the simultaneous equations,

∂x̂TAG

∂m̂k
=

����
∂(F,G)

∂(ŷTAG, m̂k)

����
/

∆,
∂ŷTAG

∂m̂k
= −

����
∂(F,G)

∂(x̂TAG, m̂k)

����
/

∆,

∂x̂TAG

∂η̂k
=

����
∂(F,G)

∂(ŷTAG, η̂k)

����
/

∆,
∂ŷTAG

∂η̂k
= −

����
∂(F,G)

∂(x̂TAG, η̂k)

����
/

∆.

In addition, the following matrix is required to calculate the asymptotic covariance ma-
trix,

Σ =



I−1
1 · · · 0
...

. . .
...

0 · · · I−1
K


 .
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Here, Ik is a Fisher information matrix of m̂k and η̂k as follows:

Ik = −E

[(
∂2 logL1

∂2mk

∂2 logL1

∂mk∂ηk

∂2 logL1

∂ηk∂mk

∂2 logL1

∂2ηk

)]
.

3. Numerical Experiments

3.1. The Detail of Experiments

Figure 5 shows the environment of experiments. Gray boxes and white boxes show 4
ANCHORs and 18 TAGs respectively. We assume experiments in 4 ANCHORs located on
4 corners of the room and a specified TAG. We generated the independent sample ℓik of
TAG (xTAG, yTAG) for the kth ANCHOR (x0, y0) given by,

ℓik ∼ Weib

(
shape = msim, scale =

d(xTAG, yTAG, x0, y0)

Γ(1 + 1/msim)

)
+ γsim,

where, msim = 5, γsim = 2. In the parameter estimation of the gamma regression model, we
used 100 pieces of the distance data between TAG and ANCHORs (i.e. n0 = 100), and the
information for the true locations of TAG.

Fig. 5: The environment of experiments

3.2. Results

The following Figures 6, 7 and 8 show the results of location estimation with the bias
correction (γ̂k =

∑n
i=1 exp (β̂0 + β̂1ℓik)/n) and without the bias correction (γ̂k = 0) in NLoS

environments. In these figures, the true TAG position (xTAG, yTAG) is shown by a black dot,
the estimated position (x̂TAG, ŷTAG) is shown by a white dot, and the contours of the confidence
region are shaded using a gray scale. These are the estimation results when the sample size
generated from each ANCHOR is 5 (i.e. n = 5). As seen, the estimated location with
our proposed bias correction is closer to the true location than without the bias correction.
Similarly in regard to the confidence region as well, we get good estimates. Table 1 shows
the numerical results of location estimation for 18 patterns of the true TAG position with
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(a) Without bias correction (b) With bias correction

Fig. 6: The true TAG position (xTAG, yTAG) = (5, 11)

(a) Without bias correction (b) With bias correction

Fig. 7: The true TAG position (xTAG, yTAG) = (8, 6)

(a) Without bias correction (b) With bias correction

Fig. 8: The true TAG position (xTAG, yTAG) = (12, 6)

the bias correction or without the bias correction. Table 2 shows the mean of the error
distance (MED) and the standard deviation (SD) for two methods. From Table 1 and 2, it
can be seen that our proposed method is more accurate for all results.

4. Case Study

We note results of the application for actual data in the same environment as the
simulation case. The distance data are extracted from the data for three minutes excluding
unexpected values. Figure 9 is one of the results, and shows that our method also gives
good estimation using actual data. We can see that the estimated location with the bias
correction is closer to the true location than without the bias correction, and the range of the
confidence region with the bias correction is much smaller than without the bias correction.
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Table 1: The results of estimated positions

True Without Correction With Correction
position position error[m] position error[m]

1 (1, 1) (3.35, 0.38) 2.433 (0.74, 1.80) 0.840
2 (1, 6) (4.09, 6.27) 3.099 (0.92, 6.11) 0.136
3 (1, 11) (3.23, 12.75) 2.829 (0.86, 10.32) 0.693
4 (5, 11) (6.20, 12.87) 2.223 (4.50, 9.95) 1.164
5 (5, 6) (6.25, 6.51) 1.351 (4.30, 6.17) 0.717
6 (5, 1) (6.52, 0.63) 1.567 (4.56, 2.44) 1.510
7 (8, 1) (8.30, -1.02) 2.040 (7.26, 2.57) 1.734
8 (8, 6) (8.29, 7.20) 1.235 (6.99, 6.17) 1.024
9 (8, 11) (7.92, 13.99) 2.994 (7.04, 9.88) 1.481
10 (12, 11) (10.75, 14.86) 4.057 (10.46, 9.94) 1.868
11 (12, 6) (11.07, 8.43) 2.599 (10.57, 5.88) 1.435
12 (12, 1) (10.54, -3.27) 4.509 (10.93, 2.21) 1.610
13 (16, 1) (14.37, -3.45) 4.739 (14.94, 1.30) 1.107
14 (16, 6) (13.67, 6.81) 2.463 (14.13, 5.59) 1.917
15 (16, 11) (14.12, 14.70) 4.153 (14.40, 10.53) 1.664
16 (20, 11) (18.39, 14.68) 4.018 (18.74, 11.34) 1.301
17 (20, 6) (15.67, 6.26) 4.334 (16.97, 5.69) 3.048
18 (20, 1) (19.06, -3.04) 4.151 (18.89, 0.51) 1.216

Table 2: Mean error distance of the results

Method MED[m] SD[m]
without the bias correction 3.044 1.140
with the bias correction 1.359 0.624

(a) Without bias correction (b) With bias correction

Fig. 9: The results with the true TAG position (xTAG, yTAG) = (8, 6) using actual data
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Our method is able to obtain the location of TAG with higher accuracy. In addition, this
result supports that the actual data contain a positive bias.

5. Conclusion

In order to estimate the spatial accurate location, ToA data are often useful. However,
ToA data include a positive bias due to the reflection of radio waves. Therefore, it is difficult
to estimate the TAG position from ToA data directly without an accurate bias correction.
In this paper, we proposed a maximum likelihood estimation method for estimation of the
TAG position using gamma regression and a rotated distribution. The result of a simulation
that mimicked reality showed that the estimation with bias correction was more accurate
than the estimation without bias correction. The case study also showed similar results to
the simulation and supported the validity of our proposed method. In addition, we showed
that our method also provides a confidence region for the TAG position.
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