
Section II: Cellular and Molecular Dissection of The Orexin System

Abstract
Hypothalamic hypocretin/orexin neurons have been initially conceptualized as slow, modulatory con-

trollers of behavior. Furthermore, their behavioral effects have been assumed to be a secondary con-

sequence of their impact on arousal. However, cellular-resolution calcium imaging and optogenetic 

studies show that orexin neurons regulate self-generated and sensory-evoked movement on rapid, 

subsecond timescales. Orexin cell activity rapidly and transiently peaks before and during movements. 

Optogenetic prevention of this activation reduces the probability of locomotion initiation, and opto-

genetic mimicry of orexin cell activation rapidly causes locomotion. Neural ensemble calcium imaging 

experiments reveal that the same orexin cells whose activity underlies movement initiation display 

subsecond-latency responses to diverse sensory stimuli. These findings establish orexin neurons as 

rapid and strong sensorimotor controllers that are in many ways operationally similar to classic subcor-

tical movement controllers, such as midbrain dopamine neurons. While a scientific definition of “arous-

al” is still lacking, the subsecond-scale sensorimotor control by orexin neurons could be viewed as 

reminiscent of a motor rather than an arousal system. © 2021 The Author(s)

Published by S. Karger AG, Basel

Brain function relies on context-appropriate changes in the dynamics of neuronal electri-
cal membrane potential (action potential firing). This is the primary determinant of neu-
rotransmitter release, including hypocretin/orexin transmitters. The firing of hypocretin/
orexin-released neurons (orexin neurons), and its effects on postsynaptic targets, is there-
fore of central interest for understanding the role of orexin neurons in brain function and 
has been intensely researched. These studies revealed that orexin cell firing is modulated 
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by multiple neurotransmitters and also produces and releases (together with orexin pep-
tides) several neurotransmitters such as dynorphin and glutamate [1–30]. Since the end 
of 2010, it has become possible to simultaneously visualize real-time activity dynamics of 
multiple orexin neurons (ensemble dynamics) in the brains of behaving animals, reveal-
ing new levels of cellular heterogeneity in the orexin system and its relation to rapidly-
changing behavior [16]. The latter phenomena form the focus of this chapter, after a brief 
introduction.

In vitro electrophysiological recordings from rodent orexin neurons, identified either 
by postrecording immunolabelling or transgenic insertion of green fluorescent protein, 
have consistently revealed that orexin neurons are intrinsic pacemakers that generate 
tonic firing at around 10 Hz, in a manner resistant to blockers of fast synaptic inputs [1, 
7, 8, 13, 25, 28, 31–35]. This tonic firing is slowly (minutes) modulated by nutrients, gas-
ses, neuromodulators, and possibly local electrical oscillations [1, 11, 14, 15, 17, 18, 25, 26, 
36–38]. In vivo, the firing dynamics of orexin neurons can be very different. As detailed 
in this chapter, they change rapidly (milliseconds) in response to sensory stimuli and/or 
motor actions. As described below, these rapid changes appear important for normal sen-
sorimotor control at the subsecond timescale. In contrast, the relative contribution to in 
vivo orexin cell activity of the slow modulators (nutrients, gasses) remains to be defined, 
and will not be discussed further here. This is, however, an important subject for future 
research.

One key function of the brain is to create movements that enable foraging and appro-
priately connect sensations to actions. Here, the role of the cortex for rapid (subsecond) 
sensorimotor transformations is well documented [39]. On the other hand, regions such 
as the hypothalamus are traditionally not conceptualized as direct players in rapid senso-
rimotor control, except from the perspective of gating perception via (slowly changing) 
arousal.

Yet, since 2005, orexin neurons have repeatedly been reported to change their in vivo 
firing dynamics on a subsecond timescale, including in response to visual, somatosensory, 
and olfactory stimulation, as well as in the context of rapid movements. Specifically, elec-
trophysiological action potential recordings, and averaged neural population recordings 
with low-resolution optical methods, have revealed that orexin neurons’ activity repre-
sents external sensory stimuli within milliseconds and that orexin cell activity correlates 
with muscle/electromyography activation [3, 12, 29, 40–43]. At least some of the rapid 
sensory responses occur in orexin neurons; however, none occur in neighboring lateral 
hypothalamic neurons expressing the melanin-concentrating hormone [12]. This sug-
gests that orexin cells are specialized for receiving external sensory information [12, 19]. 
These findings contrast with the earlier conceptualization of orexin neurons as sensors of 
only slowly changing levels of hormones and nutrients, and chronic/slow controllers of 
arousal and movement [26, 44–46].

If the main function of orexin neurons is slow control of arousal, then it is not clear 
why they need to change their firing on a subsecond timescale in order to implement this 
function. If orexin neurons only perform slow/modulatory control of arousal and move-
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ment, what then is the purpose of the observed subsecond changes in their activity in vivo? 
The activity of orexin neuron ensembles in vivo was not recorded in the above studies. 
Therefore, it remained unclear whether the majority of orexin neurons change their activ-
ity in association with fast sensations and movements. The physiological significance, in 
particular the causal role in actions/movements, of sensory responses of orexin neurons 
was also not elucidated. These knowledge gaps were addressed by more recent experi-
ments [16], which assessed the behavioral correlates of orexin neuron ensemble activity 
and examined how rapidly orexin neurons can control awake behavior in response to 
sensory input.

Neuronal ensemble activity of orexin neurons can be visualized at cellular resolution 
and in real-time using three-dimensional (“volumetric”) 2-photon laser scanning calcium 
imaging [16]. Such imaging of > 300 orexin neurons in mice, performed simultaneously 
with precise quantification of locomotion using a treadmill, suggested that activation of 
the majority (∼70%) of orexin neurons correlated with initiation of locomotor bouts 
(Fig. 1a–c). A closer inspection of the temporal correspondence of the orexin cell activity 
vector and the locomotion speed revealed that the majority of orexin neurons increase 
their activity up to several seconds prior to locomotion initiation [16]. In fact, based on 
the activity vector of orexin cells, a simple machine learning approach was able to accu-
rately predict imminent locomotion initiation (Fig. 1d).

The temporal order of neurobehavioral dynamics (orexin cell activity first, running 
second) in these experiments is consistent with the idea that activation of at least some 
orexin neurons may rapidly cause running. This would imply that orexin neurons control 
behavior, not only through a slow (10s of seconds) modulation of “arousal” – placed here 
in parentheses due to lack of a scientific definition of such a term (commented on further 
below) – but also via rapid direct activation of motor systems, as expected from electro-
physiological data [47] on orexin circuits.

Direct evidence for this rapid coupling between orexin cell firing and behavior comes 
from optogenetic stimulation experiments that examined whether stimulation of action 
potential firing in orexin neurons can elicit movement. Optogenetics involves the use of 
light to stimulate or inhibit cells that have been genetically modified to express light-sen-
sitive proteins, and/or to measure the response of these cells to stimulation [48]. Indeed, 
optogenetic excitation of orexin cell firing above around 7 Hz, a frequency consistent with 
their natural firing rates in vivo [3, 29], led to frequency-dependent stimulation of run-
ning. In these experiments, the latencies between the increase in orexin cell firing and lo-
comotion onset were in the range of 300–4,880 ms, with a median of 1.75 s [16], indicating 
that orexin cell activation leads to rapid initiation of movement (Fig. 1e).

Conversely, optogenetic silencing of orexin neurons reduces the probability of loco-
motion initiation [16]. The ability of orexin cell firing to rapidly initiate locomotion, to-
gether with the fact that orexin cell firing is rapidly (< 100 ms) recruited by sensory stim-
uli of multiple modalities [16], raises the question of whether orexin cells are causally 
involved in fast sensorimotor transformations. This has been examined by optogenetic 
silencing experiments where reversible orexin cell inactivation was temporally targeted to 
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the precise moments of sensation. Examination of sensory-evoked locomotion initiation 
in these experiments reveals that mice are significantly less likely to initiate locomotion 
when the sensory-evoked activity of orexin cells is disrupted (Fig. 1f, g). Therefore, rapid 
dynamics of orexin neurons is critical for mediating rapid sensorimotor transformations. 
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Fig. 1. Locomotor correlates of orexin neural ensemble dynamics. a Experimental set-up. b Examples 
of orexin cell ensemble dynamics in relation to running. c Orexin cell activity aligned to start and end 
of running bouts. d Machine learning accuracy to predict locomotion bouts based on activity of differ-
ent orexin cell types. e Effect of optogenetic stimulation of orexin cells on running. f Effect of optoge-
netic inhibition of orexin cells on running. g Running bout quantification from the experiment in f.  
h Effect of orexin cell deletion (O-DTR D+) on sensory-evoked running. All data are from [16], where 
further details are given. F, s.d, calcium fluorescence Z-score, s.d.; GCaMP6s, genetically encoded Ca2+ 
indicator; ROI, region of interest; n.m., not modulated. Reprinted with permission under the Creative 
Commons Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/
by/4.0/) from Karnani et al. [16].
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Mice with deleted orexin neurons also display an inability to generate normal running 
responses upon sensory stimulation (Fig. 1h) [16].

These data provide causal evidence for a role of orexin neurons in subsecond-scale 
sensorimotor transformations and self-paced movements [16]. This contrasts with much 
of the previous literature on orexin cells, which has examined primarily the slower modu-
lation by orexin neurons of behavioral states such as arousal and obesity. While previous 
work has also found that orexin neurons display rapid sensory responses [3, 12, 40, 41], 
the motor importance of these subsecond activity fluctuations had been unclear until the 
study of Karnani et al. [16]. Interestingly, several further studies have begun to demon-
strate that rapid dynamics of other lateral hypothalamic neurons are also causally linked 
to rapid changes in behavior [49–52].

Although arousal is a vague term that lacks a clear scientific definition and has been 
used to refer to diverse brain and motor states (e.g., wakefulness, movement, attention, 
goal-oriented actions, sex), studies had previously implied that orexin neurons contribute 
to the arousal process via a slow, modulatory influence [44]. In contrast, Karnani et al. 
[16] found that orexin cell firing evokes locomotion in milliseconds. This finding suggests 
that orexin cells in fact play a rapid role in locomotion initiation, similar to established 
motor control centers such as the midbrain dopamine cells [53]. The demonstration that 
subsecond sensory responses of orexin cells are causally involved in rapid control of loco-
motor output, similar to sensorimotor transformations in the neocortex [54, 55], clarifies 
the need to update orexin neurons sensory representations on a subsecond timescale. Do 
orexin neurons control specific phases of locomotion? Temporally targeted acute optoge-
netic silencing experiments suggest a specific role in locomotion initiation, rather than 
locomotion maintenance [16].

In order to convert these new findings into an integrated scientific concept for the role 
of the orexin system in brain function, a precise scientific definition of “arousal” may be 
required. For any neuron that effects movement, the labeling of its function as “arousal” 
depends on the temporal definition of arousal, which is missing from most of the current 
literature. The timescale of orexin neuron activation by external stimuli can be as short as 
34 ms, and orexin neuron activation can produce movements as rapidly as 300 ms [16]. 
Irrespective of whether these effects are called “arousal” or “sensorimotor control,” it is 
clear that orexin neurons, in addition to their paradigmatic position as slow regulators of 
body physiology, exert rapid control over motor performance. It would be interesting to 
investigate whether orexin neurons provide parallel inputs to arousal and motor systems, 
which may ensure that attention and movement occur together.

Many questions remain unanswered regarding the rapid motor effects of orexin neu-
ron activation. For example, which neurotransmitters and postsynaptic targets mediate 
these effects? How do they relate to the existing view of the hypocretin/orexin system as 
a slow arousal controller [5, 6, 20, 21, 23, 24, 37, 56–63]? It is tempting to speculate that, 
given the rapid (millisecond) speed of glutamate action on its ionotropic receptors com-
pared with the slow (sec-min) G-protein-coupled receptor signaling of orexin peptides, 
the rapid motor actions of orexin cells are mediated by glutamate release from orexin cell 
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axons [21, 22, 64]. However, the role of orexin peptides in these effects cannot yet be ex-
cluded. This is because lateral hypothalamic activation can generate orexin-receptor-de-
pendent engagement of spinal motoneurons with < 100 ms delay [47].

Understanding the relative physiological roles of co-released orexin and non-orexin 
neurotransmitters has important implications for drug design. For example, drugs target-
ing orexin receptors, such as those being developed for insomnia [65, 66], may preserve 
the functions of orexin neurons that are mediated by glutamate. Human narcoleptic pa-
tients, who are thought to lack orexin neurons (and hence, not only orexin transmitters 
but all other transmitters synthesized in orexin neurons), display severe abnormalities in 
context-appropriate motor control such as dramatic postural collapse in response to cer-
tain sensory stimuli [57]. It is currently unclear whether this human pathology is entirely 
due to orexin deficiency, or whether the loss of other transmitters made by orexin cells 
also contributes.

In summary, recent data suggest that orexin neurons can be added to a growing network 
of known movement-controlling neurons in the brain [55]. It is currently unclear whether 
this means that movement-control involves neural systems with a certain redundancy be-
tween them, or whether hitherto-used experimental readouts of movement are simply in-
adequate for distinguishing between non-redundant neural controllers. So far, there appear 
to be striking similarities between the roles in movement of orexin and dopamine systems. 
For example, da Silva et al. [53] found that midbrain dopamine neurons are causally in-
volved in locomotion initiation and have diverse activity profiles during movement, with 
some cells turning off and some on, similar to what is observed in orexin neurons [16]. Also 
similar to orexin neurons, the established movement-control neurons in the striatum acti-
vate before self-initiated actions [67]. Given these similarities, would it be more accurate to 
refer to the orexin system as a “motor” rather than an “arousal” system? Interestingly, the 
reverse question has been raised for midbrain dopamine circuits, which were found to have 
the sleep-wake effects expected of an arousal system [68]. Further conceptual progress in 
this field may require a modernization of our scientific terminology used to describe the 
different timescales at which neural dynamics are coupled to brain state and behavior.

Key Take-Home Points

•	 Orexin cell activity is necessary for initiation of normal locomotor responses to external sen-
sory stimuli.

•	 The activity of most (but not all) orexin cells changes rapidly before and during movements.
•	 Most orexin neurons rapidly (subsecond) respond to external sensory stimuli.
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