Journal on Data Semantics
https://doi.org/10.1007/s13740-021-00134-x

ORIGINAL ARTICLE

®

Check for
updates

DeepEx: A Robust Weak Supervision System for Knowledge Base
Augmentation

Johny Moreira'® - Luciano Barbosa'

Received: 12 January 2021/ Revised: 28 April 2021 / Accepted: 22 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Knowledge bases allow data organization and exploration, making easier the data semantic understanding and its use by
machines. Traditional strategies for knowledge base construction and augmentation have mostly relied on manual effort or
automatic extraction of content from structured and semi-structured sources. In this work, we present DeepEx, a system that
autonomously extracts missing attributes of entities in knowledge bases from unstructured text. We use Wikipedia as data
source. Given entities on Wikipedia represented by their articles (text and infobox), DeepEx uses a classifier to detect sentences
in the articles mentioning the possible missing attributes of the entities and then employs a deep-learning extraction model
on those sentences to identify the attributes. The sentence classifier and attribute extractor are built with labels automatically
produced by a weak supervision approach using infobox structured information as supervision source. We have compared
our strategy with previous approaches to this problem on 29 different attributes from 4 domains. The results showed that
our extraction pipeline achieved statistically superior performance in comparison with some baselines and variations of our
approach.

Keywords Information extraction - Deep learning - Weak supervision - Unstructured sources - Partial matching - Wikipedia

1 Introduction

Due to its semantic richness, knowledge bases (KBs) or
knowledge graphs (KGs) have been used for different
tasks such as improving the quality of the results of web
search (Halevy et al. [15]) and question-answering sys-
tems (Ferrucci et al. [13]). Since the quality of knowledge
bases might have a great impact on these tasks, practitioners
and researchers have been working on solutions to build and
maintain them. Knowledge bases can be curated by an orga-
nization or people through crowd-sourcing, or created using
automatic or semi-automatic approaches (Paulheim [28]).
These strategies are though hardly complete or free of error:
Knowledge bases might have wrong or missing information
about attributes of entities or relations between entities.

B Johny Moreira
jms5@cin.ufpe.br

Luciano Barbosa
luciano @cin.ufpe.br

Centro de Informatica, Universidade Federal de Pernambuco,
Av. Prof. Moraes Rego, 1235 - Cidade Universitdria, Recife -
PE 50670-901, Brazil

Published online: 06 July 2021

In this work, we are interested in the problem of knowl-
edge base completeness, specifically, in improving the cover-
age of KBs with respect to missing attributes and its values
for existing entities. A previous study by Min et al. [24]
shows the magnitude of this problem on KBs: On the Free-
base knowledge graph (Bollacker et al. [4]), for instance,
93.8% of people represented by the entity person have no
known place of birth and 78.5% have no known national-
ity. In the work of Dong et al. [11], the numbers are even
lower: 71 and 75%, respectively. The latter also states that
the coverage for less common relations or attributes can be
even lower.

Because of its structural nature, Wikipedia infoboxes
have been widely used to create knowledge bases (Paul-
heim [27]) such as Google Knowledge Graph (Dong et al.
[11]), DBPedia (Lehmann et al. [20]), Wikidata (Vrandecié
and Krotzsch,[45]) and YAGO (Suchanek et al.[42]). How-
ever, due to automatic construction and also the constant
evolving of real-world information, those KBs might miss
important information about entities that can appear in the
unstructured text of Wikipedia articles or regular web pages.
This work proposes a pipeline for extraction of attributes of
entities from unstructured text, based on machine learning

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-021-00134-x&domain=pdf
http://orcid.org/0000-0003-4705-9766

J. Moreira, L. Barbosa

models built from labels produced by a weak supervision
approach. More specifically, we propose DeepEx (Deep
Learning Extraction), a system that, given a Wikipedia article
describing an entity, uses a classifier (Sentence Classifier) to
identify the sentences in the text that mention possible miss-
ing attributes of the entity and then applies a deep-learning
extraction model (Attribute Extractor) to extract the attributes
from the candidate sentences, adding them to the article’s
infobox. Our Sentence Classifier and Attributes Extractor
are supervised learning models built using weak supervision,
i.e., labels are provided to train the models by an automatic
process instead of manually, as in regular supervision.

Weak supervision allows to automatically label large
datasets for training the models, as opposed to manual label-
ing, which demands a reasonable amount of human effort.
On the other hand, due to its automatic nature, weak super-
vision can add noise to the training data. To deal with that,
we propose a robust weakly supervised solution that works
as follows. Given a Wikipedia article that contains both the
infobox and text describing an entity, our solution uses a soft-
matching algorithm, Soft TF-IDF by Cohen et al. [8], to label
the tokens in the sentences that have high similarity to either
the name of attributes or their values that are present in the
articles’ infobox. Next, a self-training approach is applied to
build the Sentence Classifier. For that, the sentences with high
and low matching scores are used as positive and negative
examples, respectively, to train the initial Sentence Classi-
fier. That classifier is then used to label the sentences with
borderline scores as positive or negative based on their class
probability: Sentences with high probability of mentioning
attributes are considered as positive and the other ones as neg-
ative examples to train the final Sentence Classifier. Finally,
the sentences predicted as positive by the classifier and their
labeled attribute tokens are used to train the Attribute Extrac-
tor for each attribute.

Previous approaches (Lange et al. [48], Wu and Weld [19])
have also proposed weakly supervised strategies to deal with
the problem of KB augmentation performing extraction on
Wikipedia articles while using infoboxes as Knowledge base.
Wu and Weld [48] apply rules for exact and partial match-
ing of tokens, while Lange et al. [19] present a syntactical
structure analysis of attribute values for automatic pattern
definition which leads the labeling step. As opposed to them,
we employ a soft-matching strategy based on Soft TF-IDF,
which does not rely on rules, pattern generation or partial
matching of tokens; instead, the Soft TF-IDF strategy relies
on the partial matching of characters significant words in the
corpus. Based on our experimental evaluation, Soft TF-IDF
has showed better performance. Also, instead of using tra-
ditional sequence-based extractors as Conditional Random
Fields for building the attribute extractors, as previously, we
train deep neural network models to perform this task. We
also investigate the use of the BERT Transformer (Devlin et

@ Springer

al. [10]) for token classification task as the attribute extractor
of our pipeline, which have not shown good performance.

We have performed an extensive experimental evaluation
on 29 attributes of 4 different Wikipedia domains. The results
show that our KB augmentation system' was able to obtain
high values of F-score for most of the attributes on those
domains, and outperformed the baselines in the evaluated
scenarios.

The remaining of this paper is organized as follows: Sect. 2
presents basic concepts of Wikipedia data structures explored
by this work. Section 3 presents the proposed extraction
pipeline to augment knowledge bases from natural language
text. Section 4 shows the performed experimental evaluation
of the proposed extraction pipeline. Section 5 discusses the
works directly related to ours. For last, Sect. 6 concludes the
paper presenting the contributions from our work, as well as
limitations and future lines of work.

2 Preliminaries

Knowledge bases are machine-readable repositories for
knowledge, and Wikipedia is a large knowledge source of
real-world information. Although Wikipedia presents a vast
structure to organize its information (such as Categories, Sub-
categories, Infoboxes, and Infoboxes Templates), it is mostly
designed for human consumption. In this section, we present
some basic concepts and descriptions that help explain our
solution for the weakly supervised knowledge base augmen-
tation task described in Sect. 3. First we give some concepts
on knowledge bases according to Balog [2]. Then are given
some descriptions on Wikipedia’s Infoboxes structure and
definition. Figure 1 illustrates the structure of Infoboxes and
the main source of information we use in our pipeline.

2.1 Knowledge Base

KBs are graphs in which nodes represent real-world objects
and edges represent relations between them. These objects
represented by nodes on graphs are also called Entities.
Although the terms knowledge base (KB) and knowledge
graph (KG) represent the same concept, Balog [2] highlights
that

“when the emphasis is on the relationships between enti-
ties, a knowledge base is often referred to as a knowledge
graph.”

! The source code of our solution and datasets used in this paper are
publicly available on https://github.com/guardiaum/DeepEx.

https://github.com/guardiaum/DeepEx

DeepEx: A Robust Weak Supervision System for Knowledge...

Fig.1 Wikicode (left) example
to render Infobox (right) on
Wikipedia page. |—Infobox

(l{Infobox U.S. countya

instance, rendered from | county = Caribou County
Wikicode. 2—Infobox template | [state = Idaho
mapping. 3— Definition of | |seal = Caribou_County ID_Seal.PNG
properties. 4—Assign of values | |founded year =[1919 %
to properties. 5—Property-value | |toemmted daxn =[E=bruary 11 L
tuple | [seat wl =|Soda Springs Canibou County Courthouse, Soda Springs
P | |largest city wl |=[Soda Springs (CORA=SED
. Founded February 11, 1919
| |area_total_sq mi |[=|1799 Nonved for Catibos
| |area_land_sq mi [=[1764 Mountains
| |area_water_sq mi |=|34 :“t o 2033 :Prf“gs
| area percentage =[1.9% :rges <t e
| census estimate yr = 2017 ,r.er:m 1,799 sq mi
| [pop = 7034 (4,659 km?)
- - * Land 1,764 sq mi
| density sq_mi = 3.9 (4,569 km2)
3 — 5 * Water 34 sqmi
| t}me ?one = Mountain (88 km?), 1.9%
| district = 2nd Population (est.)
| footnotes = * (2017) 7.034
| web = http://www.cariboucounty.us/ * Density ?19;71?mn;|)
| named for = [[Caribou Mountains (Idaho) |Caribou Mountains]] = z
ongressional 2nd
| ex image = Caribou County Courthouse, Soda Springs, Idaho.jpg district
| ex image cap = Caribou County Courthouse, Soda Springs Time zone xggggalnfs
1 Website www
.cariboucounty
.us@

2.2 Entity

An entity is a uniquely identifiable object or thing, charac-
terized by its name(s), type(s), attributes and relationships to
other entities (Balog [2])

2.3 Entity Attributes

According to Balog [2] is the set of characteristics or fea-
tures of an entity. Typically different types of entities are
characterized by a different set of attributes. The values of
attributes are always represented as literals and may also be
accompanied by data type information .

2.4 Infoboxes

Infoboxes are a fixed-format table on Wikipedia articles that
present concise and relevant information to the topic (see
item 1 in Fig. 1). They are mainly composed of property-
value tuples.

2.5 Infobox Template

The Infobox Template?, also called infobox type or infobox
class, provides standardized information across related arti-
cles, i.e., suggesting properties to be used when filling
infobox information (see item 2 in Fig. 1). Although the
suggested properties are not mandatory, an infobox tem-

2 https://en.wikipedia.org/wiki/Help:Infobox.

Caribou County, Idaho

plate must be informed when creating or editing an infobox
instance.

2.6 Wikicode

Also known as Wikitext or Wiki markup3, Wikicode is a
syntax provided by the MediaWiki foundation. This markup
language is a simplified alternative to HTML and allows the
online formatting of Wiki pages. In Fig. 1, we illustrate on
the left side an example of Wikicode of an infobox and on
the right side this infobox rendered in a Wikipedia page.

3 Knowledge Base Augmentation System

We present in this section our proposed system to augment
knowledge bases from text: DeepEx. The architecture of
DeepEx, presented in Fig. 2, is divided into three modules:

e Data Labeling is responsible to automatically label the
data used to build the attribute extractors. It is composed
of two components. The Schema Discovery receives as
input the name of the infobox template representing a
domain of interest, collects infobox instances that instan-
tiate that template and computes the most used properties
among them, which we call the domain schema. The sec-
ond component, Weak Supervision, automatically labels
tokens in the sentences on Wikipedia articles based on

3 https://en.wikipedia.org/wiki/Help: Wikitext.

@ Springer

https://en.wikipedia.org/wiki/Help:Infobox
https://en.wikipedia.org/wiki/Help:Wikitext

J. Moreira, L. Barbosa

Fig.2 DeepEx pipeline
extraction architecture

ﬂ,: Infobox Template 1

Attribute Extractor Sentence
} Infobox Instance | o Discovery Training Classifier
(. Filtered positive
‘ ‘x) ‘ Infobox sentences
‘ ¥
‘ - Labelea _y|Sentence Classifier
Article Text i} Weak Supervision [12P#1%¢ Training

examples

! '(EXTRACTION PIPELINE)/

their matching with attributes in the infobox present in
the domain schema.

e Model Training comprises the training of the sentence
classifiers and attribute extractors. The Sentence Clas-
sifier Training receives as input the labeled sentences
coming from the Weak Supervision and trains classi-
fiers used to detect sentences in the Wikipedia text that
mention properties in the domain schema. The Attribute
Extractor Training uses the labeled tokens in those sen-
tences to build the extractor that identifies the value
of the missing domain schema attributes of entities in
Wikipedia articles;

e Extraction Pipeline is responsible to process candidate
articles to extract attributes of entities in the domain.
the Sentence Classifier filters sentences from the input
Wikipedia article that contain attributes of domain
schema and passes them to the Attribute Extractor which
performs the attribute extraction.

In the remaining of this section, we provide further details
about each one of DeepEx’s modules.

3.1 Data Labeling

We perform the KB augmentation only on the attributes
belonging to a predefined set since the attribute extraction
task requires a previously defined schema to be filled. Similar
to Wu and Weld [48], we define the schema of a tem-
plate by relying on the most common properties of entities
that use a given template. More specifically, the component
Schema Discovery receives as input the name of an infobox
template, representing the domain of interest, retrieves all
infobox instances using the given template, and defines the
domain schema by selecting the properties that occur in at
least 60% of the documents.

Next, the Weak Supervision automatically labels exam-
ples to train the models that perform the extraction of
attributes in the domain schema present in the text of the

@ Springer

e l ,,,,,,,,,,, -

my
E{‘ attribute: extracted value)

Wikipedia article. For that, given a Wikipedia article repre-
senting an entity, for each property-value pair in its infobox,
it tries to match it to tokens in the sentences of the article.
A simple strategy to perform this task would be to do exact
string matching. This approach, as explained by Takamatsu
et al. [43], might be too restrictive, mostly because of the
difference between the spelling of property names and val-
ues. For instance, in the strings of the property names used
in this work, which come from Wikicode, there are under-
lines, joint words or abbreviations such as pop for population,
sq for square, mi for miles, and yr for year. To deal with
that, we apply a partial matching strategy to match property-
value tokens in the infobox and sentence tokens in the article
text: the Soft TF-IDF (with Jaro Winkler) (Cohen et al. [8])
similarity measure. (see Fig. 3). Given a sentence from a
Wikipedia article and a property belonging to the domain
schema, the algorithm calculates the Soft TF-IDF similar-
ity between consecutive chunks of n words of the sentence
(sliding window) and the tokens of the property-value pair
that contains the selected attribute. Note that sentence and
property-value tokens can be either textual, numerical, or
mixed, and for all cases, the Soft TF-IDF operates equally.
The sentence containing a chunk with the highest similar-
ity value and with a value higher than a given threshold is
then considered a positive example for the sentence classifier
for that property. We define three different levels of confi-
dence for the presence of the property value in the sentence:
high (similarity score equals or above 0.5); borderline (score
between 0 and 0.5); and low (score equals to zero). In addi-
tion, the algorithm labels the matched tokens of the positive
sentences with tags: PROP for tokens related to the attribute
name, VALUE for tokens related to the attribute value or O
for other types of tokens. The labeled tokens are used to train
the attribute extractor.

In Fig. 3, we present a concrete example of how Weak
Supervision works. It calculates the Soft TF-IDF between
the property “largest city wl” and its value “Soda Springs”
with each 5 consecutive words of the sentence extracted from
the article. For each sliding window, according to Eq. 1, a Soft

DeepEx: A Robust Weak Supervision System for Knowledge...

Fig.3 Example of sliding
window for labeling sentences

Input Article

Infobox Tuple

"Caribou County is a county located in the

and NER tagging using Soft
U.S. state of Idaho. As of the 2010 Census the

TF-IDF (with Jaro Winkler)

PROPERTY VALUE

county had a population of 6,963.

largest city wl ‘Soda Springs‘
\ \ 7 i

measure The county seat and largest city is Soda Springs.
[.]"
i
Sentences
Tokenizer

0.388 0.640 0.599 0.734

Soft TF-IDF for Property-Value

\ \ / /
1.0 1.0 1.0 1.0
0.758 | 0.526 |

Scoring Sentence with

Soft TF-IDF in Sliding Window:

Output

"The county seat and|largest city is Soda Springs|."

\

Sentence: Its county seat and largest city is Soda Springs.
Biggest Score: 0.7580

Label: Positive

NER Tagging: ['0', 'O, 'O', 'O', 'PROP', 'PROP', '0', 'VALUE', 'VALUE', '0']

TF-IDF score is taken between the tokens in the window and
the tokens in the property-value pair, this score indicates the
label given to the sentence.

Since the higher Soft TF-IDF similarity inside a window
of tokens is very high (0.7580 in the second last window),
the sentence is chosen as a positive training example for
the sentence classifier’s training. The sliding window is also
applied as an optimization step that prevents the similarity
score to be too low, it also restricts the search space for label-
ing property-value tokens present in the sentence. Over the
selected window with highest score another score is taken
between each token in the window and each token in the
property and value elements separately. The tokens with the
highest score are matched, and the label is assigned accord-
ing to the respective element. In Fig. 3 the tokens “largest”
and “city” from the property element in the infobox tuple
present similarity 1.0 to the respective tokens in the sec-
ond last window of the sentence, while the “wl” does not
match with any other token. In the sentence the two matched
tokens are labeled as PROP. The same step is performed for
the VALUE tokens. Unmatched tokens in the sentence are
labeled as other.

Softrr—pr(S, T) =

> Vw,S) x V(w,T) x Dw, T) (1)
weCLOSE@6,S,T)

Vw, C) = ERACHONS)
I, Vi(w, C)?
V'(w, C) = log(T Fy.c + 1) x log(IDF,,) 3)

where

C: the corpus (the set of sentences in the articles and
tuples in the infobox)

S: the set of tokens in the sliding window,

T: the set of tokens in the property-value tuple,

V(w, C): TF-IDF normalization, see equation (2)

V’(w, C): the TF-IDF weight of token w computed based
on C. See equation (3).

TF, c: the frequency of word w in C,

IDF,, c: the inverse fraction of sentences in C that con-
tain w,

CLOSE (0, S, T): the set of words w € S such that there is
somev € T suchthatdist(w, v) > 6.Inourexperiments
we set 0 = 0.8.

D (w, T): similarity measure. For w € CLOSE(, S, T),
let D(w, T) = maxyerdist(w, v). In our case, the sim-
ilarity measure is Jaro Winkler (Cohen et al., [8]).

3.2 Model Training

As aforementioned, the Weak Supervision provides labeled
examples to build the Sentence Classifier and the Attribute
Extractor. For each attribute belonging to the schema domain,
DeepEx builds a binary classifier that predicts whether the
sentences in a given article mention the attribute or not. Each
sentence classifier is built as follows. The sentences with
high matching scores in the Weak Supervision step are con-
sidered as positive examples and the ones with low scores as
negative examples to train the initial Sentence Classifier. Sen-
tences with borderline scores are relabeled using self-training
to increase the number of training examples to eventually
improve the quality of the Sentence Classifier. For that, bor-
derline sentences predicted by the initial sentence classifier
with probability greater or equal to 0.9 are relabeled as pos-
itive samples and the remaining ones as negative to train
the final sentence classifier. This step is applied in order to

@ Springer

J. Moreira, L. Barbosa

capture possible positive sentences not detected by the soft
matching.

The Sentence Classifier uses bag-of-word features with
TF-IDF weighting and is built using the support vector
machine (SVM) algorithm Cortes and Vapnik [9] since it
has showed to be effective for text classification in com-
parison to other machine learning classifiers (Baharudin
et al. [1]). We specifically use probabilistic SVM (Chang
and Lin [6]) to obtain probability estimates useful in the
self-training process previously mentioned. Since the ini-
tial datasets produced by the Weak Supervision are highly
unbalanced (numbers of negative examples much higher
than positive ones), which can harm the performance of the
classifier and lead to high training time, we applied a ran-
dom under sampling over the negative examples to build
balanced training sets for the classifier: same number of pos-
itive and negative instances. Note that deep neural network
architectures have already shown comparable or superior per-
formance than SVM for text classification (Hartmann et al.
[16]). However, given the number of neural network archi-
tectures to consider as well as hyper-parameters to tune, we
opt by using a classic model for sentence classification.

Similar to the Sentence Classifier, the Model Training cre-
ates an extractor for each attribute in the domain schema. The
tagged tokens (PROP, VALUE or O) of the sentences pre-
dicted as relevant for the attribute by the Sentence Classifier
are used to train the Attributed Extractor. We implement it
using sequence-based neural network models such as long
short-term memory networks (LSTM) and convolutional
neural networks (CNNs) due to their good performance on
NLP tasks (Kim [49],Young et al. [17]). Concretely, we apply
the hybrid deep neural network presented in Fig. 4. Given an
input sentence, each of its words is represented by a concate-
nation of three different representations: pre-trained word
embedding, character-based embedding and regular word
features.

Currently, architectures for language modeling as Peters
et al. [32], Radford et al. [34] and Devline et al. [10] are
widely used in NLP tasks mainly for building deep contextu-
alized word embeddings either by using LSTM networks or
transformers (Vaswani et al. [44]). However, for the sake of
simplicity we decided to employ into our pipeline pre-trained
word embeddings. These word representations capture sen-
tence context where words occur and, as a result, words
appearing in similar contexts are set close to each other in
the embedding space. As pre-trained word embeddings, we
use Stanford’s GloVe (Pennington et al. [31]), which showed
competitive results on NLP tasks (Chiu and Nichols [7]), and
is already trained on 6 billion words from Wikipedia and Web
text.

The second word representation is the character-based
word embeddings learned using the character-level CNN pre-
sented in Fig. 4. For that, the network first uses a lookup table

@ Springer

composed of numbers (0-9), special characters, and upper
and lower letters (a-z, A-Z) to output a character embedding.
The character set also includes tokens for PADDING and
UNKNOWN, which are used for padding the words accord-
ing to the CNN window size, and to identify characters not
present in the lookup table, respectively. The character-level
features generated by the lookup table for each character in
the word are sent to an embedding layer. A dropout (Srivas-
tava et al. [41]) is performed before passing it to the CNN,
and subsequently to a max pooling layer. The output of the
CNN is passed through a new dropout layer which results in
the word representation based on its characters.

Each word is also represented by the following features:
allCaps (all characters in upper case), upperlnitial (the first
character is uppercased), lowercase (all characters are low-
ercase), mixedCaps (the token is composed of mixed cases),
numeric (all characters are digits), containsDigit (the token
contains at least one digit), mainlyNumeric (more than half
of the characters are digit) and noinfo (in the case the token
does not fit all other features).

The input sentence with this new word representation
(concatenation of word embedding, character-based word
embedding and regular features) is fed into a bidirectional
LSTM model (BLSTM) (Graves and Schmidhuber [14]).
BLSTM allows the information of long contexts to be saved,
and at the same time performs predictions of the current state
looking forward and backward in the input sequence. This is
useful in our context, since Wikipedia articles can present a
variety of writing styles, containing short and long sentences.
The activation function of each output state of the BLSTM
is a softmax function that outputs the probability distribu-
tion of its correspondent input token of belonging to one of
the extraction classes: PROP, VALUE or OTHER. The class
with the highest probability is assigned to the respective input
token. The model architecture (see Fig. 4) is based on Chiu
and Nichols [7], which has applied a similar architecture to
the NER tagging task.

3.3 Extraction Pipeline

The Extraction Pipeline module performs the main task of our
system: given the Wikipedia article of an entity in a domain,
it extracts values of the attributes from the article’s sentences.
For that, it requires trained models (Sentence Classifiers and
Attribute Extractors) for each attribute in the domain schema.
The pipeline works as follows. Given a Wikipedia article, it
executes a sentence tokenizer over the article text to sepa-
rate its sentences. All sentences are passed to each attribute’s
Sentence Classifier. If the Sentence Classifier detects the
existence of possible values for the respective attribute, the
sentence is passed to the Attribute Extractor, otherwise the
sentence is discarded. The Attribute Extractor returns the
probabilities of each token in the sentence be a property,

DeepEx: A Robust Weak Supervision System for Knowledge...

Fig.4 TOP—the CNN extracts Convolution
Lookup Character
character features from each Table Embedding + Character-based
word. BOTTOM—the BLSTM Maxpooling Flatten Word Embeddings
for tagging properties and
property-values. The output is & =1, [TTT1] - .
the sequence tagging - -
i —[TTTT] -]
Dropout 1 Dropout [
t —[TTTT] o5 L
— —> —_— || — || [LLTETELILITS
y Bd o u £
Padding | > [TTT]] u
Paddmg | |>-[TTTT] ° n H :
BN :
"2 :
3 3 3 Input E
The county seat and largest city is Soda Springs } Sentonse :
Word H
Embeddings H
Additional Word :
Features :
Character-based H
ord embeddings -+

-)=

<—@<—é<—||||||||||||||

-
? 0

4_@<—<?<—|||||||n|||||
4_@4—@«IIIIIIIIIIIIII
4—@<—<9<—||||||||||||||

-<» —> BLSTM Units

<—@<—é<—lllllllllllll

]
Y
?

j
O
!
?

Class Score

Voo
0 0

a value, or none of them (other) and considers the class with
the highest probability as the predicted one. Since different
candidate values for a same attribute can be detected in dis-
tinct sentences in the same article, the algorithm chooses the
property value with the highest overall probability. For the
cases where the tokens predicted as value appear consec-
utively in the sentence (e.g., ...largest city is Soda Springs -
...PROP, PROP, OTHER, VALUE, VALUE), they are joined as one
value (e.g., Soda Springs, VALUE), and their probabilities are
added.

4 Experimental Evaluation

We have performed an extensive performance evaluation of
our solution on Wikipedia data by analyzing its overall per-
formance and comparing it with previous approaches.

O
O <

-
-

Sequence

PR Output

}
} Softmax Layer
}
}

v Voo
o o

P PROP VALUE VALUE

4.1 Experimental Setup
4.1.1 Dataset

We built our infobox dataset using the English Wikipedia
dump of October of 2016* and released in 2017. We used
the mwparserfromhell® tool to parse the infoboxes in Wiki-
code format. Regarding the articles’ text, we tried to obtain
them directly from the Wikipedia dump but we found some
noisy information on its annotation. Because of that, we col-
lected them from the nif-context DBpedia® dataset, which
contains clear plain text from articles in Wikipedia. This
DBpedia dataset comes from the same Wikipedia dump we
used to obtain the infoboxes. To evaluate the performance of

4 http://wikidata.dbpedia.org/develop/datasets/dbpedia- version-
2016-10.

> https://mwparserfromhell.readthedocs.io/en/latest/.
6 http://downloads.dbpedia.org/2016- 10/core-il8n/en/.

@ Springer

http://wikidata.dbpedia.org/develop/datasets/dbpedia-version-2016-10
http://wikidata.dbpedia.org/develop/datasets/dbpedia-version-2016-10
https://mwparserfromhell.readthedocs.io/en/latest/
http://downloads.dbpedia.org/2016-10/core-i18n/en/

J. Moreira, L. Barbosa

our work, we used 4 infobox templates: US County, Artist,
Airline and University. They are among the 125 most used
templates on Wikipedia and 3 of them (US County, Airline
and University) were also used by previous works (Lange et
al. [48], Wu and Weld [19]). The number of articles for each
domain defined by its Wikipedia template is: 2957 for US
County, 3852 for Airline, 13,472 for Artist and 19,363 for
University. For each template, we selected 50 articles for val-
idation and 50 for testing, and manually labeled the attributes
in the sentences of those articles.

Overall, a total of 29 attributes were selected by the

Schema Discovery method described in Sect. 3.1 (see Table 1):

12 on US County, 7 on Airline, 5 on Artist and 5 on Univer-
sity. The properties present different data types: numerical,
textual, alphanumeric, and multivariate. They also vary in
terms of number of tokens, number of chars and the size of
the sentence where they are located as shown in Table 1. It is
possible to identify that while some properties are present in
short sentences, e.g., sentences presenting the seat_wl have
8.42 tokens on average, others are in large sentences, e.g.,
sentences presenting the attribute area have an average of
40 tokens. Also, in Table 1, one can notice the differences
in the size of the values: While the majority of the proper-
ties present values with size close to 1 token, there are cases
where they present 4 tokens on average, e.g., University’s
name, Airline’s headquarters, and US County’s named_for.

4.1.2 Approaches

We executed the following approaches for comparison:

— Kylin:
Proposed by Wu and Weld [48] it looks for automatic cre-
ation and completeness of infoboxes. It employs strict
heuristics for automatic data labeling and traditional
models (maximum entropy to build sentence classifiers
and CRF (Lafferty et al., [18]) as attribute extractor).
For further details we refer the reader to Wu and Weld
[48].
Anissue we had to execute this approach was to apply the
Maximum Entropy model with Bagging implemented by
Mallet for sentence classification, mainly because its poor
documentation. Because of that, we changed the clas-
sifier model implementation for a Logistic Regression
model with Bagging implemented in Scikit library’. For
the CRF, We used its Scikit implementation: CRFSuite?
with LBFGS (Byrd et al., [5]) feature weight estimation
method.

— iPopulator: It is a rule-based system proposed by Lange
etal. [19].

7 https://scikit-learn.org/.
8 https://sklearn-crfsuite.readthedocs.io/en/latest/api.html.

@ Springer

It applies a fuzzy matching strategy for automatic label-
ing of sentence tokens. The fuzzy matching is composed
of two functions, one for textual values and another for
numeric values. The labels used for tagging the sentences
are the position values based on the initially obtained pat-
tern. iPopulator also applies a CRF model. We also used
the CRFSuite as CRF implementation for the extraction.
For further details we refer to Lange et al. [19].
DeepEx-BLSTM+CNN: The proposed approach described
in Section 3. The probabilistic SVM implementation of
the Sentence Classifier was provided by the Scikit pack-
age with the default Radial Basis Function (RBF) kernel
enabling the probability estimate. The attribute extraction
network was trained with the NAdam optimizer (Dozat,
[12]). The number of epochs was defined by an early
stopping strategy after 5 iterations with no significant
improvement over the validation set. Since we built a
model for each property in the four domains and the
high number of hyper-parameters in the model, we fixed
values of some hyper-parameters and tuned others. The
tuned hyper-parameters and respective search space for
each one were convolution window [3, 5], CNN output
size [10, 25, 50], and LSTM state size [100, 200, 300].
The Character-level CNN presents two dropout layers
(probability of dropout equals to 0.5), 10 filters and
tanh activation. The BLSTM presents dropout rate of
0.5 applied to the input; and recurrent dropout of 0.25
(applied to the hidden states of recurrent units).
DeepEx-BLSTM_WE: A variation of DeepEx-BLSTM+
CNN in which we removed the CNN character-based
word embeddings from the network.

DeepEx-BLSTM: A variation of DeepEx-BLSTM+CNN
without the CNN character-based word embeddings and
the regular word features.

DeepEx-CRF: To evaluate the impact of the attribute
extractor in the proposed pipeline, we replaced the neu-
ral network by a CRF model. The applied CRF model
used the same features described on Table 2 for training
Kylin extractors. The CRF implementation was from the
CRFSuite with LBFGS (Byrd et al. [5]) feature weight
estimation method.

DeepEx-BERT: To evaluate the impact of the attribute
extractor in the proposed pipeline, we replaced the pro-
posed neural network by the Bidirectional Encoder Rep-
resentations from Transformers (BERT) model (Devlin
et al. [10]). We have used the outputted labeled datasets
from our weak supervision strategy to fine-tune the pre-
trained BERT model for the token classification task.
We use the bert-base-uncased model which consists of
12 Transformers blocks, 768 hidden units, and 12 self-
attention heads, totalizing up to 110M parameters. We
set a max sequence length to 120 tokens, fine-tuned for
3 epochs, set SEED = 1 for random numbers generator

https://scikit-learn.org/
https://sklearn-crfsuite.readthedocs.io/en/latest/api.html

DeepEx: A Robust Weak Supervision System for Knowledge...

Table 1 Properties used in the evaluation for each infobox template and its type (T—Textual, M—Multivariate, N—Numeric, A—Alphanumeric),
average count of tokens and characters for each property, and tokens in the sentences

Property Type Tokens Char Tokens in sent

U.S._county Area_land_sq_mi N 1.00 3.32 40.65
Area_percentage A 2.00 4.04 40.65
Area_total_sq_mi N 1.00 3.36 40.65
Area_water_sq_mi N 1.00 2.76 40.65
County T 2.07 14.22 15.02
Density_sq_mi N 1.00 2.66 12.04
District A 1.00 2.78 23.67
Largest_city_wl T 1.37 8.26 13.42
Named_for T 3.29 20.67 23.66
Pop N 1.00 5.45 19.20
Seat_wl T 1.15 8.36 8.42
State T 1.20 8.28 14.71

Airline IATA T 1.00 2.17 16.17
ICAO T 1.43 4.86 11.71
Airline T 2.64 16.81 22.94
Callsign T 2.00 13.86 11.14
Fleet_size M 1.00 1.50 7.72
Founded A 1.01 4.11 20.43
Headquarters T 4.95 30.11 20.22
Birth_date A 2.82 11.44 27.13
Birth_place T 243 14.31 23.58
Field M 1.33 10.37 26.94
Name T 2.51 16.98 26.26
Nationality T 1.14 8.69 27.36

University City T 1.65 10.62 26.89
Country T 1.16 7.47 27.89
Established A 1.03 4.21 25.12
Name T 4.67 33.33 27.52
Type M 1.66 13.16 25.66

Table2 Features set used by CRF extractor

Feature Example Feature Example

First token of sentence Hello World Contains “_” km_square

In first half of sentence Hello World Contains “%” 20%

In second half of sentence Hello World Stop word the; a; of

Start with capital Hawaii Purely numeric 1929

Single Capital A Number type 1932;

All capital, end with period CORP. 1,234; 5.6

Contains at least one digit AB3 Part of Speech tag

Made up of two digits 99 Token itself

Made up of four digits 1999 NP chunking tag

Contains a dollar sign $20 Previous tokens (window size 5)

Start capital, end period Mr. Following tokens (window size 5)

String normalization: capital to “A”, lowercase to “a”, digit to “1”, others to “0”

Example of String normalization: TF — 1 = AAO01

@ Springer

J. Moreira, L. Barbosa

Table 3 Macro Averages for DeepEx pipeline extraction execution. P—precision, R—recall, F—F-score

P R F P R F

US County Airline
Kylin 0.526 0.486 0.505 0.199 0.465 0.279
iPopulator 0.639 0.863 0.735 0.434 0.643 0.518
DeepEx-BLSTM+CNN 0.733 0.972 0.836 0.323 0.696 0.441
DeepEx-BLSTM_WE 0.709 1.000 0.829 0.312 0.649 0.421
DeepEx-BLSTM 0.707 0.958 0.814 0.324 0.633 0.429
DeepEx-CRF 0.693 0.968 0.808 0.361 0.443 0.398
DeepEx-BERT 0.342 0.970 0.505 0.239 0.451 0.312

Artist University
Kylin 0.270 0.400 0.323 0.438 0.409 0.423
iPopulator 0.581 0.681 0.627 0.684 0.682 0.683
DeepEx-BLSTM+CNN 0.735 0.977 0.839 0.732 0.952 0.828
DeepEx-BLSTM_WE 0.750 0.995 0.855 0.674 0.915 0.777
DeepEx-BLSTM 0.720 0.986 0.833 0.703 0.891 0.786
DeepEx-CRF 0.739 0.962 0.836 0.675 0.789 0.728
DeepEx-BERT 0.545 1.000 0.706 0.378 0.980 0.545

Bold indicates the best values for the metrics and/or highlights in the table

and BATCH_SIZE = 8. We embed the fine-tuned model
into our extraction pipeline as the attribute extractor.

4.2 Performance Measures

To measure the performance of the approaches, we used
a fuzzy matching approach. Extracted values that partially
match the correct ones are considered true positive (TP).
In our evaluation, a TP occurs when the Jaccard distance
between the extracted value and the true one is lower or equal
to 0.5. We adopted this strategy to not penalize the approaches
due to exact matching. For instance, using the fuzzy match-
ing strategy, the extracted value “Patrick R. Cleburne” is a
TP for the real value “Major General Patrick R. Cleburne”
because their Jaccard distance is 0.2. However, using exact
matching in this example would indicate otherwise.

We measure the performance of the systems comput-
ing precision, recall, and F-score of each schema property
described in Table 1. Since we are evaluating the approaches
on 29 different attributes, we also measured the macro preci-
sion, recall, and F-score. For simplicity, when analyzing the
performance of the models over a given infobox template, we
will be referring to macro measures, otherwise, when refer-
ring to the performance of the models over separate property
datasets we will be referring to regular precision, recall and
F-score measures .

@ Springer

4.3 Results

We first present in Table 3 the results in the 4 domains by
showing the average macro precision, recall and F-score that
each approach achieved on the attributes of these domains.
With respect to F-Score, four DeepEx variations , DeepEx-
BERT excluded, outperformed the two baselines (Kylin and
iPopulator) in 3 out of 4 domains. The only exception was
on the Airline domain, in which iPopulator presented the
best result. This occurred due to the poor performance of the
DeepEx variations on the properties: fleet_size and IATA,
as depicted in Table 4, which presents the performance of
each approach on the individual attributes in each domain.
Those two properties on Airline domain are represented by
small strings: IATA codes have on average 2.17 characters
and fleet_size values have on average 1.5 characters. This hin-
ders the DeepEx’s Weak Supervision to accurately identify
those properties in the articles’ text, labeling many negative
examples as positive. In addition, few examples were labeled
as positive for those attributes: 1226 examples for fleet_size
and 391 for IATA, because they rarely occur in the articles.
The DeepEx variation using BERT as the extractor model
have performed worse than all the other DeepEx variations,
but still better or similar to Kylin, and for the Artist domain
it have performed better than iPopulator. The poor perfor-
mance of BERT as information extractor can be due to three
points: (i) It cannot handle well the noise present on weakly
supervised annotated datasets; (ii) the amount of annotated
training data is not sufficient for properly fine-tune the model;

DeepEx: A Robust Weak Supervision System for Knowledge...

Table 4 F-score results for DeepEx pipeline extraction execution

F-SCORE DEEPEX BASELINE
BLSTM +CNN BLSTM _WE BLSTM CRF BERT IPOP. KYLIN
US County Area_land_sq_mi 1.0000 1.0000 0.9474 0.8636 0.2759 0.6667 0.9899
Area_percentage 0.9899 0.9899 0.9899 0.9899 0.0392 0.2712 0.9362
Area_total_sq_mi 1.0000 1.0000 1.0000 0.9899 0.2143 0.6715 0.9796
Area_water_sq_mi 0.8235 0.8235 0.8235 0.8095 0.1481 0.6667 0.9691
County 1.0000 1.0000 1.0000 1.0000 0.9474 1.0000 0.0000
Density_sq_mi 0.5075 0.3607 0.4375 0.5915 0.4615 0.1481 0.5075
District 0.1379 0.1538 0.0870 0.1111 0.1429 0.3333 0.0000
Largest_city_wl 0.3673 0.3462 0.3600 0.4444 0.2456 0.8235 0.0000
Named_for 0.8471 0.8333 0.8235 0.6301 0.6301 0.6957 0.6842
Pop 0.9691 0.9247 0.9583 0.9474 0.1818 0.9899 0.0000
Seat_wl 0.9792 0.9583 0.9362 0.9011 0.8764 0.3448 0.3729
State 0.9130 0.9011 0.9247 0.9691 0.9691 0.9899 0.2456
Airline Airline 0.8506 0.8506 0.9247 0.8889 0.8235 0.9362 0.8372
Callsign 0.4000 0.4286 0.2400 0.1538 0.0870 0.3529 0.1379
Fleet_size 0.0000 0.0000 0.0000 0.0000 0.0000 0.2667 0.0000
Founded 0.8354 0.7368 0.8293 0.7463 0.6567 0.7302 0.6154
Headquarters 0.6761 0.6471 0.6765 0.6765 0.5846 0.5581 0.0000
IATA 0.0645 0.0513 0.0500 0.1818 0.0000 0.6667 0.2222
ICAO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Artist Birth_date 0.9670 0.9783 0.9451 0.9451 0.8471 0.2807 0.7750
Birth_place 0.6667 0.7500 0.6857 0.7429 0.3929 0.4762 0.0000
Field 0.7013 0.6667 0.6301 0.7179 0.6667 0.5333 0.0000
Name 0.9583 0.9691 0.9691 0.9247 0.9130 0.9899 0.8372
Nationality 0.8372 0.8506 0.8636 0.8095 0.5797 0.6372 0.0000
Univer. City 0.7692 0.6667 0.6286 0.4444 0.4194 0.5507 0.0000
Country 0.8471 0.8434 0.8605 0.7532 0.5373 0.6444 0.0000
Established 0.9091 0.8736 0.8605 0.8148 0.3871 0.7333 0.7692
Name 0.9583 0.9362 0.9796 0.9474 0.9130 1.0000 0.9474
Type 0.6286 0.5455 0.5797 0.4923 0.2759 0.4848 0.0870
AVERAGE F-SCORE 0.7105 0.6926 0.6900 0.6720 0.4557 0.6015 0.3763

Bold indicates the best values for the metrics and/or highlights in the table

or (iii) it has difficulty to predict numbers, since as already
stated by Wallace et al. [46] character-level methods exhibit
stronger numeracy than word- and sub-word-level methods
like BERT.

We performed statistical tests to compare our proposed
model (DeepEx-BLSTM+CNN) with the other ones, consid-
ering the F-score values of all attributes present in Table 4.
We executed the Wilcoxon signed-rank test (Wilcoxon [47])
with a significance level of 0.05. The alternative hypothesis
is that the median of DeepEx-BLSTM+CNN F-score val-
ues is greater than the median of the other approaches. The
results in Table 5 show that the null hypothesis is rejected
in all evaluated scenarios. This confirms that our proposed
system (DeepEx-BLSTM+CNN) achieved statistically supe-
rior results than the other strategies: the two baselines

(iPopulator and Kylin) and the variations of our approach
(DeepEx-BLSTM_WE, DeepEx-BLSTM, DeepEx-CRF ,
and DeepEx-BERT).

The DL variations of DeepEx performed better for the
majority of the properties. However, the DeepEx variation
with CRF extractor presents an average F-score below the
ones from the DL variations (see Table 4). DeepEx with the
transformer variation has surpassed only the performance of
Kylin.

Regarding the number of examples automatically labeled
by the approaches in each domain, many properties in which
DeepEx obtained a poor performance were the ones that
its Weak Supervision approach was able to label only a
small number of positive examples such as district (1584
examples) on the US county domain and ICAO (236) on

@ Springer

J. Moreira, L. Barbosa

Table 5 Results for the Wilcoxon signed-rank test

Comparisons p-value NullHypothesis & = 0.05
DeepEx-BLSTM+CNN vs

DeepEx-BLSTM_WE 0.0109 Reject

DeepEx-BLSTM 0.02235 Reject

DeepEx-CRF 0.02982 Reject

DeepEx-BERT 0.000008 Reject

iPopulator 0.01484 Reject

Kylin 0.00003 Reject

the Airline domain. Looking at the poor results of DeepEx-
BERT, comparing it to the other DeepEx variations, we can
notice that attributes as US County’s area_percentage (1308
examples) and Airline’s Callsign (603) are some cases in
which the number of labeled sentences could not be enough
for fine-tuning BERT. Additionally, the cases of US County’s
area_land_sq_mi(4216) and pop (7073) indicate that BERT
could not surpass the noise and struggles when running on
numeric properties. Another point to note by those numbers
is that the DeepEx’s Weak Supervision generates unbalanced
training sets. This was circumvented by the undersampling
process during the sentence classifier training as aforemen-
tioned.

The performance of Kylin was harmed by its autonomous
labeling strategy. Some properties of the Kylin pipeline
could not leverage a sufficient number of training samples
for the sentence classifiers, e.g., county, district and pop
do not labeled sufficient negative training examples, and
headquarters only 264 positive samples. In particular, for
the property district in the domain US County, our approach
extracted 1584 positive and 144,906 negative examples,
whereas Kylin only 616 positive example and none negative
instance.

Although iPopulator have managed to extract information
for almost all properties in the domains, the results presented
in Table 3 indicate a lack of recall in the extractions when
compared to the DeepEx variations. This may have happened
because iPopulator restricts its search for properties to only
a few first paragraphs of the article, e.g., properties like US
County’s area and density, and University’s type are rarely
found in the first paragraphs of the text. Also, the labeling of
property values fragment with the use of fuzzy matching has
generated noisy training data since it is too broad leading to
eventually a great number of false positive examples.

4.4 Weakly Supervised Annotation Evaluation
Given the results obtained from the pipeline execution

we can assume that the weakly supervised approach could
provide good annotated representations for training the

@ Springer

Table 6 Criteria for manual evaluation of labeled tokens (PROP and
VALUE)

Evaluation Criteria

text and numbers: the labeled tokens are exact
matches to the expected tokens

Matching

text: some tokens are labeled or there is some
semantic meaning with the expected value
(e.g., expected: pop, labeled: people, popula-
tion) numbers: the labeled token is close to the
expected value (e.g., expected: 209, labeled:
200)

text and numbers: there is no matching

between the expected value and the tagged
tokens

Partial Matching

No Matching

extractors. However, to better analyze the quality of the gen-
erated training data we performed the following evaluation:

e We randomly select 1% of automatically annotated pos-
itive sentences from each template attribute;

e We run our weakly supervised approach for tokens anno-
tation on each sentence;

e We manually evaluate each annotated sentence. We check
if the property and value coming from the reference tuple
are correctly matched by the sentence tokens;

e For each element of the tuple (property and value), we
apply the criteria in Table 6 to indicate if the sentence
contains a match of each element or not;

We select some automatically labeled training exam-
ples to illustrate how this manual evaluation was performed
(see Table 7). The results of this evaluation are shown in
Table 8. We present the proportion of the selected positively
labeled training sentences that contain rightfully predicted
tags (PROP, VALUE, or both). This metric takes into con-
sideration the matches and the partial matches as positive
tagging.

The DS in the column header stands for distant supervi-
sion, and consists in the traditional assumption of Mintz et
al. [25] that states “if two entities participate in a relation,
any sentence that contain those two entities might express

DeepEx: A Robust Weak Supervision System for Knowledge...

Table 7 Evaluation examples of the automatically labeled tokens for
training attribute extractors. TRUE PROP and TRUE VALUE indicate
the reference values expected to be tagged by the Soft TF-IDF approach.

PROP and VALUE EVAL indicate the manual evaluation of the tagged
tokens

LABELED SAMPLE

TRUE PROP

PROP EVAL. TRUE VALUE VALUE EVAL.

[As/O], [of/O], [the/O], [2010/0], [cen- pop
sus/O],[,/O], [the/O], [population/PROP], [was/O],
[13,801/VALUE], [./O]

[As/O], [of/O], [the/O], [2010/0],
[/O], [the/O], [population/PROP],
[20,662/VALUE], [./O]

[Johnson/O], [County/O], [is/O], [a/O], [county/O], state
[located/O], [in/O], [the/O], [U.S./O], [state/PROP],
[of/O], [Towa/VALUE], [./O]

[Batesville/O], [became/O], [the/O], [county/O], state
[seat/PROP], [./O]

[The/O], [county/O], [seat/PROP], [is/O], [the/O], state
[City/O], [of/O], [Fairfax/O], [,/O], [though/O],
[because/O], [it/O], [is/O], [an/O], [independent/O],

[city/O], [under/O], [Virginia/VALUE], [law/O],

[,/O], [the/O], [city/O], [of/O], [Fairfax/O], [is/O],

[not/O], [part/O], [of/O], [Fairfax/O], [County/O],

[./O]

[Geography/O], [According/O], [to/O], [the/O],
[U.S./0O], [Census/O], [Bureau/O], [,/O], [the/O],
[county/O], [has/O], [a/O], [total/O], [area/PROP],
[of/O], [347/0], [square/O], [miles/O], [(/O],
[900/0], [km2/0O], [)/O], [,/O], [of/O], [which/O],
[345/0], [square/O], [miles/O], [(/O], [890/0],
[km2/0], [)/O], [is/O], [land/O], [and/O], [1.3/0],
[square/O], [miles/O], [(/O], [3.4/0], [km2/0O], [)/O],
[(/O],[0.4/VALUE], [%/VALUE], [)/O], [is/O],
[water/O], [./O]

[The/O], [per/PROP],
[for/O], [the/O],
[16,509/0], [./O]

[census/O], pop
[was/O],

[capita/O],
[county/O], [was/O],

[income/O],
[$/0],

area percentage

area percentage

partial match 13,801 match

partial match 20,216 partial match

match Towa match

no match Texas no match

no match Virginia match

partial match 0.40% match

no match 6.00% no match

Table 8 Average proportion (by template class) of positively annotated
sentences that contain right annotations for tokens

DS SOFTTF-IDF
US COUNTY 0.50 0.75
AIRLINE 0.40 0.70
ARTIST 0.08 0.57
UNIVERSITY 0.18 0.64

that relation”, i.e., both elements of the tuple (property and
value) are required to be present in the sentence to define
the sentence as a positive sample. Hence, it is a conjunc-
tion of the matches for the tags PROP and VALUE. We use
the DS traditional approach as a baseline to benchmark with
our proposed approach using Soft TF-IDF. Additionally, the
annotation steps with heuristics for partial matching of tokens
proposed by Wu and Weld [48], for Kylin, is a close variation
of this distant supervision approach.

Wu and Weld [48] states that if the tuple value is present
in several sentences “KYLIN determines what percentage
of the tokens in the attribute’s name are in each sentence.
If the sentence matching the highest percentage of tokens
has at least 60% of these keywords, then it is selected as
a positive training example.”, i.e., they look at the number
of matched tokens between the entire property-value tuple
and the candidate sentence. Hence, either the traditional DS
approach and the Kylin baseline requires the presence of both
property and value in the sentence.

The result of the evaluation shown in Table 8 indicates that
our Soft TF-IDF approach annotates more training exam-
ples, since it does not require that both PROP and VALUE
are present in the same candidate sentence. Additionally,
this indicates that our proposed extractor can learn patterns
from sentences containing only tokens tagged as PROP or as
VALUE.

@ Springer

J. Moreira, L. Barbosa

5 Literature Review

Previous approaches have tried to enhance existing knowl-
edge bases by dealing with the issues of incorrect or
incomplete information about entities, relationships, types,
and literal values. Some of them have applied internal infor-
mation for that, using, for instance, only the knowledge
graph information itself to infer and add missing knowl-
edge or identify erroneous pieces of information. In this
direction, e.g., Nickel et al.[26] have focused on incorpo-
rating ontological knowledge to a factorization sparse vector
for learning relations of the YAGO Knowledge Base. Other
solutions (Paulheim and Bizer[29], Sleeman and Fini[30],
Sleeman et al [39]; [40]) used statistical and machine learn-
ing approaches, as probabilistic and topic modeling, focusing
on enhancing the DBpedia knowledge base.

Some other approaches have relied on the autonomous
extraction of information from semi-structured web pages
(Lockard et al.[21], [22]) or with human intervention Ristoski
et al. [37]. Hence, the majority of recent works on informa-
tion extraction for the semantic web (Martinez-Rodriguez
et al. [23]) do not present an end-to-end weakly supervised
pipeline with automatic labeling and classification of sen-
tence and tokens.

Lockard et al. [21] performs information extraction on
DOM trees by annotating training examples using a modifica-
tion of the Distant Supervision (Mintz et al. [25]) assumption
over semi-structured pages. First, the authors try to identify
the subject entity and object entities in the page, then the
next step is to annotate relations between the subject and
object entities. In the context of semi-structured pages the
subject entity is the topic entity of the page while the relation
is a given field in the structure and object entities are values
for that given field. The authors train a multinomial logistic
regression model with the annotated data receiving as input a
DOM tree and trying to predict the probability that this node
tree represents a particular relation.

Lockard et al. [22] performs Open and Closed IE over
semi-structured web pages by building a rich representation
of textfields and the relationships between them by using a
graph structure and applying a graph-based neural network
approach. The graph-attention network builds contextual fea-
tures that are passed to a binary classifier for OpenlE and a
Multi-class classifier for ClosedIE. Although the model does
not require the input of a known template to perform the
extraction, the built graph structure depends on the represen-
tation of textfields in the page as well as the relationships
between them, i.e., it requires semi-structured information.
Hence, this model focuses on learning patterns between fields
on semi-structured web pages in order to perform extraction,
as opposed to our solution, which deals with attribute extrac-
tion in the unstructured text present in articles.

@ Springer

Ristoski et al.[37] builds two strategies for relation extrac-
tion, the first is based on crawling web documents and the
second is by mining target relations from an external knowl-
edge graph. When generating candidate examples for training
the classification model the authors include a human-in-the-
loop strategy for filtering the number of candidates, improve
the data quality and avoid semantic drift. The classification
model is a neural network using lexical and sentence level
features with a softmax output layer for predicting customer-
supplier relation between two organizations.

Related to our work are the ones exploring external
unstructured sources for knowledge base augmentation.
Banerjee and Tsioutsiouliklis [3] explores Wikipedia corpus
and structures for relation extraction. It handles wrong label-
ing provided by Distant Supervision using DBpedia triples
and text from articles in Wikipedia. It uses confidence val-
ues provided by co-occurrence statistics of dependency paths
that are provided as weights to the a Multi-Encoder Model
with three LSTM layers. The model encodes features from
words, POS tags and dependency paths. The output of the hid-
den states is used to predict the relation. Another approach,
proposed by Sdez and Hogan [38] derives statistics from
Wikidata (Vrande¢i¢ and Krotzsch, [45]) to create infobox
instances. It ranks and prioritizes attribute-value pairs from
entities, using it to create Wikipedia infoboxes. It does not
use any other type of information such as manually-specified
templates, training data, or unstructured information.

Although, Banerjee and Tsioutsiouliklis [3] and Sdez and
Hogan [38] are close to the work performed here, the first
works in reduce the wrong labels provided by DBPedia and
the DS assumption, and the later work builds infoboxes from
Wikidata. The work proposed here work tries to build or
complete infoboxes from articles texts and using existing
infoboxes as the main source of supervision.

Infoboxer is a tool based on semantic web technologies
proposed by Yusetal. [50] that also deals with infoboxes’ cre-
ation and update. It identifies popular properties in infobox
instances on a category and uses the frequency to select
them. It also identifies attribute value types from the DBpedia
Ontology. However, the property values must still be manu-
ally informed by the user. When the value type for the schema
property comes from a semantic class, Infoboxer looks only
at the existing instances of this class on DBpedia to suggest
possible values for auto-completion. Hence, Infoboxer works
only as an auxiliary tool for infobox creation rather than an
automatic approach for structuring information.

More similar to our approach, Kylin (Wu and Weld [48]) is
a system that looks for pages with similar infoboxes, defines
common attributes, create training datasets, and trains CRF
extractors. It looks for autonomously creation and complete-
ness of Infoboxes, as well as automatic link generation for
identified nouns. Our system has focused on the first goal,
autonomous creation or completeness of infoboxes using

DeepEx: A Robust Weak Supervision System for Knowledge...

different strategies. Also, given the continuous updates of
Wikipedia texts, pages, and structures, Kylin is obsolete to
the current context mostly because of the strict heuristics
applied to build training datasets.

Also focused on infobox enhancement, iPopulator (Lange
et al. [19]) presents a process to extract information from
plain text and populate infobox instances. Different from
Kylin, iPopulator does not define the schema to be filled,
it makes use of all suggested attributes from evaluated tem-
plate types, and does not apply classifiers to filter irrelevant
sentences. Also, iPopulator does not use the entire article
text when looking for extractions, only the few first article
paragraphs. As stated before, to build training datasets Kylin
applies a set of heuristics, pursuing exact matches between
Infobox property-values and text sentences. Nevertheless, as
asserted by (Lange et al. [19]), often an attribute value and
its occurrence in the text do not precisely match. Based on
this assumption, iPopulator defines two different functions
based on similarities measures, one for numerical values and
the other for string values to detect matching from articles
text tokens and attribute values.

Our work differs from Infoboxer (Yus et al. [50]),
Kylin (Wu and Weld [48]) and iPopulator (Lange et al. [19])
which are systems directly related with the work proposed in
this paper. Infoboxer is a tool to assist users during infobox
creation and editing, while Kylin and iPopulator focus on
autonomous infobox generation through identifying Entity
properties and values for information extraction. Also, the
work of Sdez and Hogan[38] does not apply information
extraction in natural language texts as a means of infobox
creation, instead it generates derivatives from Wikidata struc-
tured information.

Regarding weak supervision approaches, Ratner et al.
[36] have recently proposed Snorkel, a system that com-
bines weak supervision sources to create training data for
building machine learning applications. The system is built
under the data programming paradigm (Ratner et al. [35]) in
which users can define labeling functions that represent weak
supervision strategies or heuristics. These labeling func-
tions are used to label subsets of the data and the “denoise”
of the labeling process is solved by a generative model.
Snorkel have shown superior performance in various tasks
beating traditional approaches as Distant Supervision, rules
and heuristics. However, this system still requires user inter-
vention in the definition of labeling functions. The pipeline
proposed here is end-to-end in the sense that no user inter-
vention is needed in order to label data.

6 Conclusion and Future Work

In this work, we proposed DeepEx, a system for extract-
ing structured information from text to augment Wikipedia’s

infoboxes. Itidentifies sentences that might mention attributes
of an entity in the text of a given Wikipedia article. A
deep-learning extraction model extracts the possible missing
values in those sentences. To build the models, the system
first runs a weak supervision strategy using Soft TF-IDF that
allows partial matches between the tokens in the articles’
infobox and their text, creating labels for sentence classifiers
and attribute extractors. Our experimental evaluation shows
that the average F-score of our approach on those datasets is
significantly higher than the baselines.

As future work, we plan to investigate strategies to
improve the labeling performed by the weak supervision step
by applying neural networks as the work of Qu et al. [33].
For sentence labeling we intend to study the use of topic-
based models and pattern correlations as in Takamatsu et al.
[43], as well as word attention and property features as in Qu
et al. [33]. Additionally, we intend to study the inclusion of
the Snorkel (Ratner et al. [36]) labeling system for building
training examples.

Author contributions JM, LB contributed to conceptualization; JM,
L contributed to methodology; JM contributed to formal analysis
and investigation; : JM contributed to software; JM contributed to
writing—original draft preparation; LB contributed to writing—review
and editing; Luciano Barbosa contributed to funding acquisition; LB
contributed to supervision.

Funding This work was supported by Fundacido de Amparo a Ciéncia
e Tecnologia do Estado de Pernambuco (FACEPE) under funding grant
No.IBPG-1172-1.03/16.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Data Availability The datasets used in this paper are publicly available
on https://cin.ufpe.br/~jms5/deepex-data.zip.

Code Availability The source code of our solution is publicly available
on https://github.com/guardiaum/DeepEx.

References

1. Baharudin B, Lee LH, Khan K (2010) A review of machine learning
algorithms for text-documents classification. J Adv Inf Technol
1:4-20

2. Balog K (2018) Entity-oriented search. the information retrieval
series. Springer International Publishing, New York

3. Banerjee S, Tsioutsiouliklis K (2018) Relation extraction using
multi-encoder Istm network on a distant supervised dataset. In:
IEEE 12th International Conference on Semantic Computing

4. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Free-
base: A collaboratively created graph database for structuring
human knowledge. Proceedings of the International Conference
on Management of Data

@ Springer

https://cin.ufpe.br/~{}jms5/deepex-data.zip
https://github.com/guardiaum/DeepEx

J. Moreira, L. Barbosa

10.

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algo-
rithm for bound constrained optimization. SIAM J Sci Comput
16:1190

Chang CC, Lin CJ (2011) Libsvm: a library for support vector
machines. ACM Trans Intell Syst Technol 2(3):1-27

Chiu JP, Nichols E (2016) Named entity recognition with bidirec-
tional LSTM-CNNS. Trans Assoc Comput Linguist 4:357-370
Cohen WW, Ravikumar P, Fienberg SE, et al. (2003) A comparison
of string distance metrics for name-matching tasks. In: Proceedings
of the International Conference on Information Integration on the
Web, p 73-78

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20:273-293

Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-
training of deep bidirectional transformers for language under-
standing. In: Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Asso-
ciation for Computational Linguistics

Dong X, Gabrilovich E, Heitz G, Horn W, Lao N, Murphy K,
Strohmann T, Sun S, Zhang W (2014) Knowledge vault: a web-
scale approach to probabilistic knowledge fusion. Proceedings of
the 20th International Conference on Knowledge Discovery and
Data Mining pp 601-610

Dozat T (2016) Incorporating nesterov momentum into adam.
International Conference on Learning Representations Workshop
Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur
AA, Lally A, Murdock JW, Nyberg E, Prager J, Schlaefer N, Welty
C (2010) Building watson: an overview of the DeepQA project. Al
Magazine 31:59-79

Graves A, Schmidhuber J (2005) Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network architec-
tures. Neural Netw 18:602-610

Halevy A, Norvig P, Pereira F (2009) The unreasonable effective-
ness of data. IEEE Intell Syst 24:8—12

Hartmann J, Huppertz J, Schamp C, Heitmann M (2019) Com-
paring automated text classification methods. Int J Res Market
36:20-38

Kim Y (2014) Convolutional neural networks for sentence classi-
fication. In: Proceeding of the Conference on Empirical Methods
in Natural Language Processing

. Lafferty JD, McCallum A, Pereira FCN (2001) Conditional ran-

dom fields: Probabilistic models for segmenting and labeling
sequence data. In: Proceeding of the 18th International Conference
on Machine Learning

Lange D, Bohm C, Naumann F (2010) Extracting structured
information from wikipedia articles to populate infoboxes. In: Pro-
ceeding of the 19th ACM International Conference on Information
and Knowledge Management

Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes
PN, Hellmann S, Morsey M, Van Kleef P, Auer S et al (2015)
Dbpedia-a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web 6(2):167-195

Lockard C, Dong XL, Einolghozati A, Shiralkar P (2018) Ceres:
Distantly supervised relation extraction from the semi-structured
web. Proceeding VLDB Endowment

Lockard C, Shiralkar P, Dong XL, Hajishirzi H (2020)
ZeroShotCeres: Zero-shot relation extraction from semi-structured
webpages. In: Proceeding of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics

Martinez-Rodriguez JL, Hogan A, Lopez-Arevalo I (2020) Infor-
mation Extraction meets the Semantic Web: A Survey, vol 11
Min B, Grishman R, Wan L, Wang C, Gondek D (2013) Distant
supervision for relation extraction with an incomplete knowledge
base. Proceeding of the Conference of the North American Chapter

@ Springer

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

of the Association for Computational Linguistics: Human Lan-
guage Technologies

Mintz M, Bills S, Snow R, Jurafsky D (2009) Distant supervision
for relation extraction without labeled data. In: Proceeding of the
Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Process-
ing, vol 2

Nickel M, Tresp V, Kriegel HP (2012) Factorizing yago: Scalable
machine learning for linked data. In: Proceeding of the 21st Inter-
national Conference on World Wide Web

Paulheim H (2016) Knowledge graph refinement: a survey of
approaches and evaluation methods. Semant Web 8:12

Paulheim H (2017) Data-driven joint debugging of the dbpedia
mappings and ontology. Semant Web 81:404—418

Paulheim H, Bizer C (2013) Type inference on noisy rdf data. in
the semantic web. Springer, Berlin

Paulheim H, Bizer C (2014) Improving the quality of linked data
using statistical distributions. Int J] Semant Web Inf Syst 10:63-86
Pennington J, Socher R, Manning C (2014) Glove: Global Vec-
tors for Word Representation. In: Proceeding of the Conference on
Empirical Methods in Natural Language Processing

Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K,
Zettlemoyer L (2018) Deep contextualized word representations.
In: Proceeding of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), Association for Computa-
tional Linguistics

Qu J, Ouyang D, Hua W, Ye Y, Li X (2018) Distant supervision
for neural relation extraction integrated with word attention and
property features. Neural Netw 100:59-69

Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improv-
ing language understanding by generative pre-training

Ratner A, Sa CD, Wu S, Selsam D, Ré C (2016) Data program-
ming: Creating large training sets, quickly. In: Proceedings of the
30th International Conference on Neural Information Processing
Systems, p 3574-3582

Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, Ré C (2020)
Snorkel: rapid training data creation with weak supervision. VLDB
129(2):709-730

Ristoski P, Gentile AL, Alba A, Gruhl D, Welch S (2020) Large-
scale relation extraction from web documents and knowledge
graphs with human-in-the-loop. J Web Semant 600:100546

Sédez T, Hogan A (2018) Automatically generating wikipedia info-
boxes from wikidata. In: Companion Proceeding of the The Web
Conference 2018, WWW ’18, p 1823-1830

Sleeman J, Finin T (2013) Type prediction for efficient coreference
resolution in heterogeneous semantic graphs. Proceeding of the
IEEE 7th International Conferenec on Semantic Computing
Sleeman J, Finin T, Joshi A (2015) Topic modeling for RDF graphs.
CEUR Workshop Proceeding

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929-1958

Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of
semantic knowledge. Proceeding of the 16th International Con-
ference on World Wide Web p 697-706

Takamatsu S, Sato I, Nakagawa H (2012) Reducing wrong labels
in distant supervision for relation extraction. In: Proceeding of the
50th Annual Meeting of the Association for Computational Lin-
guistics: Long Papers, pp 721-729

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser u, Polosukhin I (2017) Attention is all you need. In:
Proceeding of the 31st International Conference on Neural Infor-
mation Processing Systems, p 6000-6010

VrandeCi¢ D, Krotzsch M (2014) Wikidata: a free collaborative
knowledgebase. Commun ACM 57(10):78-85

DeepEx: A Robust Weak Supervision System for Knowledge...

46.

47.

48.

Wallace E, Wang Y, Li S, Singh S, Gardner M (2019) Do NLP
models know numbers? probing numeracy in embeddings. In:
Proceeding of the 2019 Conf. on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference
on Natural Language Processing, pp 5307-5315

Wilcoxon F (1945) Individual comparisons by ranking methods.
Biom Bull 55:192

Wu F, Weld DS (2007) Autonomously semantifying wikipedia.
In: Proceeding of the 16th ACM Conference on Information and
Knowledge Management, pp 41-50

49.

50.

Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in
deep learning based natural language processing [Review Article].
IEEE Comput Intell Mag 13(3):55-75

Yus R, Mulwad V, Finin T, Mena E, et al. (2014) Infoboxer:
using statistical and semantic knowledge to help create wikipedia
infoboxes. In: 13th International Semantic Web Conference

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	DeepEx: A Robust Weak Supervision System for Knowledge Base Augmentation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Knowledge Base
	2.2 Entity
	2.3 Entity Attributes
	2.4 Infoboxes
	2.5 Infobox Template
	2.6 Wikicode

	3 Knowledge Base Augmentation System
	3.1 Data Labeling
	3.2 Model Training
	3.3 Extraction Pipeline

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.1.1 Dataset
	4.1.2 Approaches

	4.2 Performance Measures
	4.3 Results
	4.4 Weakly Supervised Annotation Evaluation

	5 Literature Review
	6 Conclusion and Future Work
	References

