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Preface

Mechanics is the paradise of mathematical sciences,
because with that one comes to the mathematical fruit.

LEONARDO DI SER PiERO DA ViINCT (1452-1519)
Pure mathematicians sometimes are satisfied with show-
ing that the non-existence of a solution implies a logical
contradiction, while engineers might consider a numerical

result as the only reasonable goal. Such one sided views
seem to reflect human limitations rather than objective

1
values. RicHarRD CourANT (1888-1972)

To those who do not know mathematics it is difficult
to get across a real feeling as to the beauty, the deepest
beauty, of nature... If you want to learn about nature,
to appreciate nature, it is necessary to understand the
language that she speaks in. ... It’s an appreciation of the
mathematical beauty of nature, of how she works inside.

RicHARD PHILLIPS FEYNMAN (1918-1988)
It is certain that continuum mechanics, which emerged
during the 1950th, would not have experienced such rapid
growth without amazing efficiency of the mathematical

methods that were so well adapted to the problems
formulated in the context of theoretical mechanics. [217]

PauL GErRMAIN (1920-2009)

Mechanics have accompanied the development of mankind since ancient times
and ultimately called for rational thinking, primarily based on more or less rigorous
mathematical tools. And conversely, in this way, mechanics have served historically
as a constant and probably main inspiration for mathematics. Such Interaction be-
tween Mechanics and Mathematics, being reflected also by the name of this Springer
series, accelerated the development of modern mathematical tools in twentieth cen-
tury when mathematics becomes relatively well applicable also to various nonlinear
and coupled problems in mechanics and thermomechanics.

A very particular interaction has been developed between mechanics of contin-
uum media and the theory of partial differential equations. Important concepts have
been created on both sides, and a lot of mechanicians have become fairly applied
mathematicians and vice versa.

In spite of such occasional and well-connecting “bridges”, there are barriers be-
tween continuum mechanics and applied mathematics, caused probably partly by a
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traditional way of education on specialized departments with very diverse profes-
sional accents. In this way, mechanical engineers and computational physicists do
not support their models even by a very basic qualitative analysis and very typically
use models whose solutions may even not exist under some generic circumstances.
Usually, they also use approximations whose numerical stability and convergence
are not granted and even sometimes there is a numerical evidence that they do not
converge to any solution of a continuous model (in some cases because such solu-
tions even may not exist). And quite often, prefabricated software packages are used
without a solid knowledge what they really calculate, and such unrealistic trust and
overuse of digital technology sometimes result in the deterioration of cognitive abil-
ities of young generations.? A large portion of computational simulations performed
in engineering and in physics, nowadays under euphemistic labels like “computa-
tional modeling”, “numerical modeling”, or “computational analysis”, have unin-
tentionally moved rather to a position that can be called, with possibly a little exag-
geration, a “computer-assisted science fiction”. On the other hand, this is also partly
due to mathematicians because they often slide into very academic models, which
have a little or no relevance for real-world demands, and into very particular results
which, when in addition expressed in complicated mathematical language, are not
understandable even for mathematically oriented mechanicians and physicists.

Viewed from the optimistic perspective, these (both historically developed and
newly arising) barriers yield even more challenges both to design more applicable
mathematics and to apply it to even more interesting (often of a “multi-character”)’
problems in continuum (thermo)mechanics. It is certainly not possible to smear out
these barriers by only a single book. Anyhow, this book aims at contributing at least
a bit to make these barriers smaller. It tries to present selected basic mechanical con-
cepts in the context of their (at least to some extent rigorous) mathematical handling,
typically focused on existence of solutions of particular models possibly together
with some additional attributes as smoothness or uniqueness, outlining their approx-
imations that would suggest computationally implementable algorithms. To make it
readable for engineers or computational physicists, advanced analytical tools and re-
sults are suppressed to a minimal reasonable level, most of them being only briefly
exposed in the four Appendices (A-D) without proofs, and we intentionally avoid
really “exotic” concepts like non-metrizable topologies, measures which are only
finitely additive, or convergence in terms of nets instead of conventional sequences.
We also reduce advanced analytical tools handling set-valued and nonsmooth map-
pings, except those which arise from convex analysis.

The primal focus is on static boundary-value problems arising in mechanics of
solids at large or at small strains (Part I) and their various evolution variants (Part II).
As the title already suggests, we intentionally exclude fluids, although some spots
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as Sects. 3.6, 5.7, 6.6, 7.6, or 8.6 have a slight relevance to fluid mechanics, too.
This still represents a very ambitious plot, henceforth some (otherwise important)
areas are omitted: in particular contact mechanics, i.e. phenomena like friction, ad-
hesion, or wear will not be addressed. Also, homogenization methods for compos-
ite materials and various dimensional reductions of three-dimensional continua to
two-dimensional plates, shells, or membranes, or one-dimensional beams, trusses,
or rods are omitted, too. Numerical approximation as a wide and important area of
computational mechanics is presented only in its very minimal extent. At this point,
specialized monographs at pp.473-478 as a further reading are advisable.

The book can serve as an advanced textbook and introductory scientific mono-
graph for graduate or Ph.D. students in programs such as mathematical modeling,
applied mathematics, computational continuum physics, or mechanical engineering.
Henceforth, also some exercises (sometimes with solutions outlined on pp.557-
574) are involved, too. Besides, we believe that experts actively working in theoreti-
cal or computational continuum mechanics and thermomechanics of solids will find
useful material here.

The book reflects both our experience with graduate classes within the program
“Mathematical modeling” at Charles University in Prague taught during 2005-2018
and some other occasional teaching activities in this area,* reflecting also our own
research’ during the past several decades. Particular spots of the book benefit from
our own computational activity in this area of continuum mechanics during many
decades and from our collaboration with experts in mechanical engineering. The
presented computer simulations have been provided by Barbora BeneSova, José
Reinoso, Jan Valdman, and Roman Vodi¢ka to whom we thus express our truly
deep thanks. We are also deeply indebted to Katharina Brazda and Riccarda Rossi
for careful reading of some chapters.

Eventually, we truly appreciate a constructive attitude of the Springer publisher
allowing for printing this book essentially from our own pdf-file (only with reflect-
ing a partial language corrections made in India®).

Prague, July 2018 Martin KruZik & Tomds Roubicek
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