machine learning &

Z
knowledge extraction m\D\Py

Article

Analytically Embedding Differential Equation
Constraints into Least Squares Support Vector
Machines Using the Theory of

Functional Connections

Carl Leake *0, Hunter Johnston 1, Lidia Smith 2 and Daniele Mortari !

1 Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA;

hunterjohnston@tamu.edu (H.J.); mortari@tamu.edu (D.M.)
2 Mathematics Department, Blinn College, Bryan, TX 77802, USA; lidia.smith@gmail.com
* Correspondence: leakec@tamu.edu

Received: 21 August 2019; Accepted: 5 October 2019; Published: 9 October 2019

Abstract: Differential equations (DEs) are used as numerical models to describe physical phenomena
throughout the field of engineering and science, including heat and fluid flow, structural bending,
and systems dynamics. While there are many other techniques for finding approximate solutions to
these equations, this paper looks to compare the application of the Theory of Functional Connections
(TEFC) with one based on least-squares support vector machines (LS-SVM). The TFC method uses
a constrained expression, an expression that always satisfies the DE constraints, which transforms
the process of solving a DE into solving an unconstrained optimization problem that is ultimately
solved via least-squares (LS). In addition to individual analysis, the two methods are merged into
a new methodology, called constrained SVMs (CSVM), by incorporating the LS-SVM method into
the TFC framework to solve unconstrained problems. Numerical tests are conducted on four sample
problems: One first order linear ordinary differential equation (ODE), one first order nonlinear ODE,
one second order linear ODE, and one two-dimensional linear partial differential equation (PDE).
Using the LS-SVM method as a benchmark, a speed comparison is made for all the problems by
timing the training period, and an accuracy comparison is made using the maximum error and mean
squared error on the training and test sets. In general, TFC is shown to be slightly faster (by an order
of magnitude or less) and more accurate (by multiple orders of magnitude) than the LS-SVM and
CSVM approaches.

Keywords: differential equation; numerical methods; support vector machines; function
approximation; least-squares; theory of functional connections

1. Introduction

Differential equations (DE) and their solutions are important topics in science and engineering.
The solutions drive the design of predictive systems models and optimization tools. Currently,
these equations are solved by a variety of existing approaches with the most popular based on the
Runge-Kutta family [1]. Other methods include those which leverage low-order Taylor expansions,
namely Gauss-Jackson [2] and Chebyshev-Picard iteration [3-5], which have proven to be highly
effective. More recently developed techniques are based on spectral collocation methods [6]. This
approach discretizes the domain about collocation points, and the solution of the DE is expressed by a
sum of “basis” functions with unknown coefficients that are approximated in order to satisfy the DE
as closely as possible. Yet, in order to incorporate boundary conditions, one or more equations must be
added to enforce the constraints.

Mach. Learn. Knowl. Extr. 2019, 1, 1058-1083; d0i:10.3390/make1040060 www.mdpi.com/journal/make

http://www.mdpi.com/journal/make
http://www.mdpi.com
https://orcid.org/0000-0002-3750-5067
https://orcid.org/0000-0002-8091-2987
https://orcid.org/0000-0003-0787-4547
http://dx.doi.org/10.3390/make1040060
http://www.mdpi.com/journal/make

Mach. Learn. Knowl. Extr. 2019, 1 1059

The Theory of Functional Connections (TFC) is a new technique that analytically derives a
constrained expression which satisfies the problem’s constraints exactly while maintaining a function
that can be freely chosen [7]. This theory, initially called “Theory of Connections”, has been renamed
for two reasons. First, the “Theory of Connections” already identifies a specific theory in differential
geometry, and second, what this theory is actually doing is “functional interpolation”, as it provides
all functions satisfying a set of constraints in terms of a function and any derivative in rectangular
domains of n-dimensional spaces. This process transforms the DE into an unconstrained optimization
problem where the free function is used to search for the solution of the DE. Prior studies [8-11], have
defined this free function as a summation of basis functions; more specifically, orthogonal polynomials.

This work was motivated by recent results that solve ordinary DEs using a least-squares support
vector machine (LS-SVM) approach [12]. While this article focuses on the application of LS-SVMs
to solve DEs, the study and use of LS-SVMs remains relevant in many areas. In reference [13] the
authors use the support vector machines to predict the risk of mold growth on concrete tiles. The mold
growth on roofs affects the dynamics of heat and moisture through buildings. The approach leads
to reduced computational effort and simulation time. The work presented in reference [14] uses
LS-SVMs to predict annual runoff in the context of water resource management. The modeling process
starts with building a stationary set of runoff data based on mode functions which are used as input
points in the prediction by the SVM technique when chaotic characteristics are present. Furthermore,
reference [15] uses the technique of LS-SVMs as a less costly computational alternative that provides
superior accuracy compared to other machine learning techniques in the civil engineering problem of
predicting the stability of breakwaters. The LS-SVM framework was applied to tool fault diagnosis for
ensuring manufacturing quality [16]. In this work, a fault diagnosis method was proposed based on
stationary subspace analysis (SSA) used to generate input data used for training with LS-SVMs.

In this article, LS-SVMs are incorporated into the TFC framework as the free function, and the
combination of these two methods is used to solve DEs. Hence, the contributions of this article are
twofold: (1) This article demonstrates how boundary conditions can be analytically embedded, via
TFC, into machine learning algorithms and (2) this article compares using a LS-SVM as the free function
in TFC with the standard linear combination of CP. Like vanilla TFC, the SVM model for function
estimation [17] also uses a linear combination of functions that depend on the input data points. While
in the first uses of SVMs the prediction for an output value was made based on a linear combination
of the inputs x;, a later technique uses a mapping of the inputs to feature space, and the model SVM
becomes a linear combination of feature functions ¢(x). Further, with the kernel trick, the function to
be evaluated is determined based on a linear combination of kernel functions; Gaussian kernels are a
popular choice, and are used in this article.

This article compares the combined method, referred to hereafter as CSVM for constrained
LS-SVMs, to vanilla versions of TEC [8,9] and LS-SVM [12] over a variety of DEs. In all cases, the
vanilla version of TFC outperforms both the LS-SVM and the CSVM methods in terms of accuracy
and speed. The CSVM method does not provide much accuracy or speed benefit over LS-SVM, except
in the PDE problem, and in some cases has a less accurate or slower solution. However, in every
case the CSVM satisfies the boundary conditions of the problem exactly, whereas the vanilla LS-SVM
method solves the boundary condition with the same accuracy as the remainder of the data points in
the problem. Thus, this article provides support that in the application of solving DEs, CP are a better
choice for the TFC free function than LS-SVMs.

While the CSVM method underperforms vanilla TFC when solving DEs, its implementation and
numerical verification in this article still provides an important contribution to the scientific community.
CSVM demonstrates that the TFC framework provides a robust way to analytically embed constraints
into machine learning algorithms; an important problem in machine learning. This technique can be
extended to any machine learning algorithm, for example deep neural networks. Previous techniques
have enforced constraints in deep neural networks by creating parallel structures, such as radial basis
networks [18], adding the constraints to the loss function to be minimized [19], or by modifying the

Mach. Learn. Knowl. Extr. 2019, 1 1060

optimization process to include the constraints [20]. However, all of these techniques significantly
modify the deep neural network architecture or the training process. In contrast, embedding the
constraints with TFC does not require this. Instead, TFC provides a way to analytically embed these
constraints into the deep neural network. In fact, any machine learning algorithm that is differentiable
up to the order of the DE can be seamlessly incorporated into TFC. Future work will leverage this
benefit to analyze the ability to solve DEs using other machine learning algorithms.

2. Background on the Theory of Functional Connections

The Theory of Functional Connections (TFC) is a generalized interpolation method, which provides
a mathematical framework to analytically embed constraints. The univariate approach [7] to derive
the expression for all functions satisfying k linear constraints follows,

k
f(8) =g(t) + ;771' pi(t), 1)

where ¢(t) represents a “freely chosen” function, 7; are the coefficients derived from the k linear
constraints, and p;(t) are user selected functions that must be linearly independent from g(t). Recent
research has applied this technique to embedding DE constraints using Equation (1), allowing for
least-squares (LS) solutions of initial-value (IVP), boundary-value (BVP), and multi-value (MVP)
problems on both linear [8] and nonlinear [9] ordinary differential equations (ODEs). In general, this
approach has developed a fast, accurate, and robust unified framework to solve DEs. The application
of this theory can be explored for a second-order DE such that,

y(to) = vo

()
y(to) = Yo

F(t,y,y,7) =0 subject to: {

By using Equation (1) and selecting p1(t) = 1 and py(t) = ¢, the constrained expression becomes,

y(t) =g(t) +m +nmt. 3)

By evaluating this function at the two constraint conditions a system of equations is formed in

terms of 7,
Yol _ |1 to] Jm
Yo 0 1] |m
which can be solved for by matrix inversion leading to,
1 = (Yo — 8o) —to (Yo — &o)
2 = Yo — 8o-
These terms can are substituted in Equation (3) and the final constrained expression is realized,
y(#) = g(t) + (¥o — go) + (£ —to) (Yo — o),

By observation, it can be seen that the function for y(t) always satisfies the initial value constraints
regardless of the function g(f). Substituting this function into our original DE specified by Equation (2)
transforms the problem into a new DE with no constraints,

F(t,,48)=0. (4)

Aside from the independent variable ¢, this equation is only a function of the unknown function
¢(t). By discretizing the domain and expressing g(t) as some universal function approximator, the

Mach. Learn. Knowl. Extr. 2019, 1 1061

problem can be posed as an unconstrained optimization problem where the loss function is defined by
the residuals of the F function. Initial applications of the TFC method to solve DEs [8,9] expanded g(#)
as some basis (namely Chebyshev or Legendre orthogonal polynomials); however, the incorporation
of a machine learning framework into this free function has yet to be explored. This will be discussed
in following sections. The original formulation expressed g(f) as,

g(t) =& h(x) where x = x(t),

where ¢ is an unknown vector of m coefficients and h(x) is the vector of m basis functions. In general
the independent variable is t € [to, ts] while the orthogonal polynomials are defined in x € [~1, +1].
This gives the linear mapping between x and ¢,

xf—xo

X =Xxp+ (f—to) ~ t=ty+

tf—i’o Xf— X0

Using this mapping, the derivative of the free function becomes,

dg d¢'h(x) & dh(x) dx
d

at — ~ dr x dt’
where it can be seen that the term % is a constant such that,
Xf— X
c:= f 0.
tr — to

Using this definition, it follows that all subsequent derivatives are,

k
B — cké’T

d*h(x)
dtk '

dxk

Lastly, the DE given by Equation (4) is discretized over a set of N values of ¢ (and inherently x).
When using orthogonal polynomials, the optimal point distribution (in terms of numerical efficiency)
is provided by collocation points [21,22], defined as,

F() =0, ©)

which can be solved using a variety of optimization schemes. If the original DE is linear then the new
DE defined by Equation (5) is also linear. In this case, Equation (5) is a linear system,

AZ=b,

which can be solved using LS [8]. If the DE is nonlinear, a nonlinear LS approach is needed, which
requires an initial guess for ¢y. This initial guess can be obtained by a LS fitting of a lower order
integrator solution, such as one provided by a simple improved Euler method. By defining the
residuals of the DE as the loss function £ := F(¢&), the nonlinear Newton iteration is,

oL
Ckt1 = Ck — (jijk)fljkTﬁk where J; := [aCL

Mach. Learn. Knowl. Extr. 2019, 1 1062

where k is the iteration. The convergence is obtained when the Ly-norm of £ satisfies L, [Ly] < ¢, where
e is a specified convergence tolerance. The final value of ¢ is then used in the constrained expression to
provide an approximated analytical solution that perfectly satisfies the constraints. Since the function is
analytical, the solution can be then used for further manipulation (e.g., differentiation, integration, etc.).
The process to solve PDEs follows a similar process with the major difference involving the derivative
of the constrained expression. The TFC extension to n-dimensions and a detailed explanation of the
derivation of these constrained expressions are provided in references [23,24]. Additionally, the free
function also becomes multivariate, increasing the complexity when using CPs.

3. The Support Vector Machine Technique

3.1. An Overview of SVMs

Support vector machines (SVMs) were originally introduced to solve classification problems [17].
A classification problem consists of determining if a given input, x, belongs to one of two possible
classes. The proposed solution was to find a decision boundary surface that separates the two
classes. The equation of the separating boundary depended only on a few input vectors called the
support vectors.

The training data is assumed to be separable by a linear decision boundary. Hence, a separating
hyperplane, H, with equation w'g(x) +b = 0, is sought. The parameters are rescaled such that
the closest training point to the hyperplane H, let’s say (x, yk), is on a parallel hyperplane H; with
equation w'g(x) + b = 1. By using the formula for orthogonal projection, if x satisfies the equation
of one of the hyperplanes, then the signed distance from the origin of the space to the corresponding
hyperplane is given by w'g(x)/w"w. Since w'g(x) equals —b for H, and 1 — b for Hy, it follows that
the distance between the two hyperplanes, called the “separating margin”, is 1/w"w. Thus to find the
largest separating margin, one needs to minimize w"w. The optimization problem becomes,

min% (w'w) subjectto: y;(w'e(x;))+b)>1, i=1,...,m.

If a separable hyperplane does not exist, the problem is reformulated by taking into account the
classification errors, or slack variables, ¢; , and a linear or quadratic expression is added to the cost
function. The optimization problem in the non-separable case is,

min% (w'w) +C () &) subjectto: y;j(w'e(x;) +b) >1—¢.

When solving the optimization problem by using Lagrange multipliers, the function ¢(t) always
shows up as a dot product with itself; thus, the kernel trick [25] can be applied. In this research, the
kernel function chosen is the radial basis function (RBF) kernel proposed in [12]. Hence, the function
@(t) can be written using the kernel [25],

K(t, 1) = (1) p(t) = exp (“”) , ®)

o2

Mach. Learn. Knowl. Extr. 2019, 1 1063

and its partial derivatives [12,26],

o2
L _1)\2
K](ti/ t]) _ (Pl(tl)T(P(t]) _ _2(t10_2 t]) exp (_ (tl o_zt]))
R L 4.)2
Kt) = 909/ (1) = W e (W))

2 4ti-t)? (t —)
T ENT ()] !]
Ki(ti) = @' (1)'9/ (1) = 5 — T exp (— 10),
where the Kernel bandwidth, o, is a tuning parameter that must be chosen by the user.

We follow the method of solving DEs using RBF kernels proposed in [12]. As an example, we
take a first order linear initial value problem,

v —p(t)y =r(t), subjectto: y(ty) = yo,

to be solved on the interval [to,t;]. The domain is partitioned into N sub-intervals using grid
points tg,t1,...,tN = ty, which from a machine learning perspective represents the training points.
The model,

N
g(x) =) wigi(x) +b=w'p(x) +b ®)
i=1

is proposed for the solution y(t). Note that the number of coefficients w; equals the number of grid
points t;, and thus the system of equations used to solve for the coefficient is a square matrix. Let e be
the vector of residuals obtained when using the model solution §() in the DE, that is, ¢; is the amount
by which 7(¢;) fails to satisfy the DE,

§'(t:) = p(t)g(t) —r(t) = e;.

This results in,
w'e/(t;) = p(t;)[w'e(t;) +b] +r(t;) +ei,

and for the initial condition, it is desired that,

w'p(ty) +b = yo,

is satisfied exactly. In order to have the model close to the exact solution, the sum of the squares of the
residuals, e”e, is to be minimized. This expression can be viewed as a regularization term added to the
objective of maximizing the margin between separating hyperplanes. The problem is formulated as an
optimization problem with constraints,

w'e/ (t;) — p(t;) (w'e(t;) +b) —r(t;) —e; =0

w'e(ty) +b—yo =0.

1
min 3 (w'w+ ye'e) subject to: {

Using the method of Lagrange multipliers, a loss function, £, is defined using the objective
function from the optimization problem and appending the constraints with corresponding Lagrange
multipliers «; and .

£ = 3 (o yete) +as[w'e (1) — plts) (w'p(t) +) — r(ty) —e] + Bw'plto) + b~ yo

Mach. Learn. Knowl. Extr. 2019, 1 1064

The values where the gradient of L is zero give candidates for the minimum.

oL N

S0 o w=Y wlylh) - plt)e(t)] + Pelto)
i=1

oL

% 0 — ve; = —a;

oL N

=0 - 0=Ywalt)—p

ob i=1

oL y .

9 =0 = 0=w'¢'(t) —p(t) (we(t)+b)—g(t:) —e

oL

@:0 — 0=w'g(to) +b—yo

Note that the conditions found by differentiating £ with respect to #; and B are simply the
constraint conditions, while the remaining conditions are the standard Lagrange multiplier conditions
that the gradient of the function to be minimized is a linear combination of the gradients of the
constraints. Using,

N
w = Z{"‘j [/ (t)) — p(t))e(t))] + Be(to),
=

we obtain a new formulation of the approximate solution

M=

Il
—_

9(t) =) a; [¢' (1) — p(t)e(t))] @(t) + Po(to)'(t) + b

]

where the inner products of ¢(t) can be re-written using Equations (6) and (7), and the parameter ¢ in
the kernal matrix is a value that is learned during the training period together with the coefficients w.
The remaining gradients of £ can be used to form a linear system of equations where «;, 8, and b are
the only unknowns. Note, that this system of equations can also be expressed using the kernal matrix
and its partial derivatives rather than inner-products of ¢.

3.2. Constrained SVM (CSVM) Technique

In the TFC method [7], the general constrained expression can be written for an initial value
constraint as,

y(t) = g(t) + (¥o — go),

where g(t) is a “freely chosen” function. In prior studies [8,9,11], this free function was defined by a
set of orthogonal basis functions, but this function can also be defined using SVMs,

N
g(t) = ;wi(l)i(f) =w'g(t),

where gy becomes,
N
8(to) =) wigi(to) = w'e(to).
i=1

This leads to the equation,
y(t) = w' [g(t) — @(to)] +yo, ©)

Mach. Learn. Knowl. Extr. 2019, 1 1065

where the initial value constraint is always satisfied regardless of the values of w and ¢(t). Through
this process, the constraints only remain on the residuals and the problem becomes,

min% (w'w + ye'e) subjectto: w'e(t;) — p(t;) [w'e(t;)) — w'e(to) +yo] — r(t;) —e; = 0.

Again, using the method of Lagrange multipliers, a term is introduced for the constraint on the
residuals, leading to the expression,

z

L(w,e n)= % (w'w +ye'e) — ; i [w'e (t;) — p(t;) (w'e(t;) — w'e(to) +yo) — r(t:) — el

The values where the gradient of L is zero give candidates for the minimum,

oL N ,

Se=0 = w= Y i [@ (1) — p(t) (p(t;) — @(to))]
i=1

oL - o

8761‘ =0 — e = r)/

oL

FY 0 = 0=w'¢(t)—pt) (w (p(t:) —e(to)) +yo) —(t:) —e;.
Using,

N
w = .Zi”‘f [/ (t;) — p(t;) (@(t)) — @(to))],
=

we obtain a new formulation of the approximate solution given by Equation (9), that can be expressed
in terms of the kernel and its derivatives. Combining the three equations for the gradients of £, we
can obtain a linear system with unknowns «;,

N
Mijaej = r(t;) + p(ti)yo.
=1

The coefficient matrix is given by,
M;j = K1 (t, t) — p(t;) [Ki(ti, t5) — K (ti, to)] — p(t)Ky (i,) + 65/,
where we use the notation,

Ka(ti ;) = K(ti, ;) — K(tj, to) — K(t;, to) + 1
Ky(ti, tj) = Kq(tj, ;) — Ki(tj, to) — p(tj)Ka(ti ;).

Finally, in terms of the kernel matrix, the approximate solution at the grid points is given by,

N
y(t) = Y aiKy(ti tj) + yo,
=

and a formula for the approximate solution at an arbitrary point ¢ is given by,

N
y(t) = ZlXjKy(t, f]) + Yo-
=1

Mach. Learn. Knowl. Extr. 2019, 1 1066

3.3. Nonlinear ODEs

The method for solving nonlinear, first-order ODEs with LS-SVM comes from reference [12].
Nonlinear, first-order ODEs with initial value boundary conditions can be written generally using
the form,

y'(t) = f(ty), y(to) =vyo, tE [tot].

The solution form is again the one given in Equation (8) and the domain is again discretized into
N sub-intervals, t, t1, ..., tN (training points). Let e; be the residuals for the solution 7(t;),

ei = 9'(t;) — f(ti, 9(t)).

To minimize the error, the sum of the squares of the residuals is minimized. As in the linear case,
the regularization term w"w is added to the expression to be minimized. Now, the problem can be
formulated as an optimization problem with constraints,

. w'e/(t;) = f(ti, yi) +ei
min 3 (w'w + ye'e) subjectto: { we(ty) +b = yo
yi = w'e(t;) +b.

The variables y; are introduced into the optimization problem to keep track of the nonlinear
function f at the values corresponding to the grid points. The method of Lagrange multipliers is used
for this optimization problem just as in the linear case. This leads to a system of equations that can be
solved using a multivariate Newton’s method. As with the linear ODE case, the set of equations to
be solved and the dual form of the model solution can be written in terms of the kernel matrix and
its derivatives.

The solution for nonlinear ODEs when using the CSVM technique is found in a similar manner,
but the primal form of the solution is based on the constraint function from TFC. Just as the linear ODE
case changes to encompass this new primal form, so does the nonlinear case. A complete derivation
for nonlinear ODEs using LS-SVM and CSVM is provided in Appendix B.

3.4. Linear PDEs

The steps for solving linear PDEs using LS-SVM are the same as when solving linear ODEs, and
are shown in detail in reference [27]. The first step is to write out the optimization problem to be
solved. The second is to solve that optimization problem using the Lagrange multipliers technique.
The third is to write the resultant set of equations and dual-form of the solution in terms of the kernel
matrix and its derivatives.

Solving linear PDEs using the CSVM technique follows the same solution steps except the primal
form of the solution is derived from a TFC constrained expression. A complete derivation for the
PDE shown in problem #4 of the numerical results section using CSVM is provided in Appendix C.
The main difficulty in this derivation stems from the numerous amount of times the function ¢ shows
up in the TFC constrained expression. As a result, the set of equations produced by taking gradients
of £ contain hundreds of kernel matrices and their derivatives. The only way to make this practical
(in terms of the derivation and programming the result) was to write the constrained expression in
tensor form. This was reasonable to perform for the simple linear PDE used in this paper, but would
become prohibitively complicated for higher dimensional PDEs. Consequently, future work will
investigate using other machine learning algorithms, such as neural networks, as the free function in
the TFC framework.

Mach. Learn. Knowl. Extr. 2019, 1 1067

4. Numerical Results

This section compares the methodologies described in the previous sections on four problems
given in references [12] and [27]. Problem #1 is a first order linear ODE, problem #2 is a first order
nonlinear ODE, problem #3 is a second order linear ODE, and problem #4 is a second order linear
PDE. All problems were solved in MATLAB R2018b (MathWorks, Natick, MA, USA) on a Windows 10
operating system running on an Intel® Core'" i7-7700 CPU at 3.60GHz and 16.0 GB of RAM. Since all
test problems have analytical solutions, absolute error and mean-squared error (MSE) were used to
quantify the error of the methods. MSE is defined as,

1 n

MSE = —) (vi — 7:)? (10)
i1

where 7 is the number of points, y; is the true value of the solution, and #; is the estimated value of the
solution at the i-th point.

The tabulated results from this comparison are included in Appendix A. A graphical illustration
and summary of those tabulated values is included in the subsections that follow, along with a short
description of each problem. These tabulated results also include the tuning parameters for each of the
methods. For TFC, the number of basis functions, m, was found using a grid search method, where the
residual of the differential equation was used to choose the best value of m. For L5-SVM and CSVM,
the kernel bandwidth, o, and the parameter v were found using a grid search method for problems
#1, #3, and #4. For problem #2, the value of ¢ for the LS-SVM and CSVM methods was tuned using
fminsearch while the value of ¢ was fixed at 1010 [12]. This method was used in problem #2 rather
than grid search because it did a much better job choosing tuning parameters that reduced the error of
the solution. For all problems, a validation set was used to choose the best value for o and -y [12,26].
It should be noted that the tuning parameter choice affects the accuracy of the solution. Thus, it may
be possible to achieve more accurate results if a different method is used to find the value of the tuning
parameters. For example, an algorithm that is better suited to finding global optimums, such as a
genetic algorithm, may find better tuning parameter values than the methods used here.

4.1. Problem #1
Problem #1 is the linear ODE,

, 14342 1+ 3¢t .
which has the analytic solution,
e—tz/z)
V= 1ye T

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #1 is shown in Figure 1.
The results were obtained using 100 training points. The top plot shows the error of the LS-SVM
solution divided by the error in the TFC solution, and the bottom plot shows the error of the LS-SVM
solution divided by the error of the CSVM solution. Values greater than one indicate that the compared
method is more accurate than the LS-SVM method, and vice-versa for values less than one.

Figure 1 shows that TFC is the most accurate of the three methods followed by CSVM and finally
LS-SVM. The error reduction when using CSVM instead of LS-SVM is typically an order of magnitude
or less. However, the error reduction when using TFC instead of the other two methods is multiple
orders of magnitude. The attentive reader will notice that the plot that includes TFC solution has
less data points in Figure 1 than the other methods. This is because the calculated points and the
true solutions vary less than machine level accuracy and when the subtraction operation is used the
resulting number becomes zero.

Mach. Learn. Knowl. Extr. 2019, 1 1068

108 ¢

10" .

108}

Accuracy Gain (LS-SVM/TFC)
L]

105 | | 1 |]
0 0.2 0.4 0.6 0.8 1

—

o
A
1

—_
o
T
L]
L]

Accuracy Gain (LS-SVM/CSVM)
SD
L]
-
L]
L]
L]
L]
[]

—
S

o

0.2 0.4 0.6 0.8 1
t

Figure 1. Accuracy gain for the Theory of Functional Connections (TFC) and constrained support
vector machine (CSVM) methods over least-squares support vector machines (LS-SVMs) for problem
#1 using 100 training points.

Tables A1-A3 in the appendix compare the three methods for various numbers of training points
when solving problem #1. Additionally, these tables show that TFC provides the shortest training
time and the lowest maximum error and mean square error (MSE) on both the training set and test set.
The CSVM results are the slowest, but they are more accurate than the LS-SVM results. The accuracy
gained when using CSVM compared to LS-SVM is typically less than an order of magnitude. On the
other hand, the accuracy gained when using TFC is multiple orders of magnitude. Moreover, the
speed gained when using LS-SVM compared to CSVM is typically less than an order of magnitude,
whereas the speed gained when using TFC is approximately one order of magnitude. An accuracy
versus speed comparison is shown graphically in Figure 2, where the MSE on the test set is plotted
against training time for five specific cases: 8, 16, 32, 50, and 100 training points.

Mach. Learn. Knowl. Extr. 2019, 1 1069

10710 9|é)4
+ X
10718 i * X *
.| % X
- %
% 1020}
3 i
g +
s i
c 10725
g [
=
1070} -+ TFC
+ + <+ X LS-SVM
_ ¥ csvm
10-35-\\ . . R S S R S| ; i
10 1073 1072

Solution Time (s)

Figure 2. Mean squared error vs. solution time for problem #1.

4.2. Problem #2
Problem #2 is the nonlinear ODE given by,

v =y>+t2, subjectto: y(0) =1, t€][0,0.5], (12)

which has the analytic solution,

where I' is the gamma function defined as,

I'(z) :/ ¥ lem™ dx
0

and | is Bessel function of first kind defined as,

(¢

12 =(3) X mre 51

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #2 is shown in Figure 3.
This figure was created using 100 training points. The top plot shows the error in the LS-SVM solution
divided by the TFC solution. The bottom plot provides the error in the LS-SVM solution divided by
the error in the CSVM solution.

Mach. Learn. Knowl. Extr. 2019, 1 1070

G e
L 1013 L
= * .
= oo® o ®
> Y [] o
@ °° o *
.
ﬁ o ® .o .
°

% o ° L] ° °® ° []
0] ° o® .
a | o® e ©
<
5

1012 | | | | |

0 0.1 0.2 0.3 0.4 0.5
t
< 106; oo A
= i ° L] L]
wn1.04 - (]
O [[] g L4
= . ®
= 1.02 - b °
> i i .
Un) 106 = = = = = = = = & Lo - - -
Cﬁ i ° . .
=098 .
= i . . *
(O] i ®
a0.96 . o ® o °
@ i ° b
g 0.94 = eo*® '. o o0
3 [
< 0.92 L | | ..-.. | | |
0 0.1 0.2 0.3 0.4 0.5
t

Figure 3. Accuracy gain for TFC and CSVM methods over LS-SVM for problem #2 using 100
training points.

Figure 3 shows that TFC is the most accurate of the two methods with the error being several
orders of magnitude lower than the LS-SVM method. It was observed that the difference in accuracy
between the CSVM and LS-SVM is negligible. The small variations in accuracy are a function of the
specific method. For this problem, the solution accuracy for both methods monotonically decreases
as t increases; however, the behavior of this decrease is not constant and is at different rates, which
produces a sine wave-like plot of the accuracy gain.

Tables A4-A6 in the appendix compare the two methods for various numbers of training points
when solving problem #2. Additionally, these tables show that solving the DE using TFC is faster than
using the LS-SVM method for all cases except the second case (using 16 training points). However,
the speed gained using TFC is less than one order of magnitude. Furthermore, TFC is more accurate
by multiple orders of magnitude as compared to the LS-SVM method over the entire range of test
cases. In addition, TFC continues to reduce the MSE and maximum error on the test and training set
as more training points are added, whereas the LS-SVM method error increases slightly between 8 and
16 points and then stays approximately the same. The CSVM method follows the same trend as the
LS-SVM method; however, it requires more time to train than the LS-SVM method. This is highlighted
in an accuracy versus speed comparison, shown graphically in Figure 4, where the MSE on the test set
is plotted against training time for five specific cases: 8, 16, 32, 50, and 100 training points.

Mach. Learn. Knowl. Extr. 2019, 1 1071

10‘5:- X% X X Wk K
+

-y

(=]
L
o
T

—

S
jary
(47]
T

-20 [

|

Mean Squared Error
— —
o o
n
[43]
T

sl TFC
10 30;' + 4+ _>IZ LS-SVM

¥ Ccsvm

10—35 ; [S R ; R A ;
107 1073 1072 10"
Solution Time (s)

Figure 4. Mean squared error vs. solution time for problem #2.

4.3. Problem #3
Problem #3 is the second order linear ODE given by,

i+ éy +y= —% e "5 cost, subject to: { te[0,2], (13)

which has the analytic solution,
sin(t
y(t) = =0

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #3 is shown in Figure 5.
The figure was created using 100 training points. The top plot shows the error in the LS-SVM solution
divided by the TFC solution, and the bottom plot shows the error in the LS-SVM solution divided by
the CSVM solution.

Tables A7-A9 in the appendix compare the two methods for various numbers of training points
when solving problem #3. These tables show that solving the DE using TFC is approximately an order
of magnitude faster than using the LS-SVM method for all cases. Furthermore, TFC is more accurate
than the LS-SVM method for all of the test cases. One interesting note is that when moving from 16
to 32 training points TFC actually loses a bit of accuracy, whereas the LS-SVM method continues to
gain accuracy. Despite this, TFC is still multiple orders of magnitude more accurate than the LS-SVM
method. Additionally, these tables show that the CSVM method is faster than the LS-SVM for all cases.
The speed difference varies from approximately twice as fast to an order of magnitude faster. The
LS-SVM and CSVM methods have a similar amount of error, and which method is more accurate
depends on how many training points were being used. However, LS-SVM is slightly more accurate
than CSVM for more cases than CSVM is slightly more accurate than LS-SVM. An accuracy versus
speed comparison is shown graphically in Figure 6, where the MSE on the test set is plotted against
training time for five specific cases: 8, 16, 32, 50, and 100 training points.

Mach. Learn. Knowl. Extr. 2019, 1 1072

2 108 -

= 45 °

= o . LIS

>]

) ° o * o ..o

c_rl) o _0y

S5~ ° ’

= E g 0, @

8 * e ® oo

5 .. e L]

o o

o e !

&)

< 104 | I I |
0 0.5 1 1.5 2

- .

s .

D T e -

8 [@ [°

s %o o o oo .

> ° . ° o %% o ®)

(@] o e % o o¢

» ¢ et * e e

o 4l e e o ™ o .

£10' ¢ i b

© j

(O] [

> L

0 .

S .

O

%)

< 10-2 1 | 1 1
0 0.5 1 1.5 2

Figure 5. Accuracy gain for TFC and CSVM methods over LS-SVMs for problem #3 using 100

training points.

Figure 5 shows that TFC is the most accurate of the three methods. The TFC error is 4-6 orders of
magnitude lower than the LS-SVM method. The LS-SVM method has error that is lower than the error
in the CSVM method by an order of magnitude or less.

Mach. Learn. Knowl. Extr. 2019, 1 1073

10-10 =
- X
;_ 107"° >
S _
L 10720 i * * * X *
87 X X
3 |
Uc) 102+
5 ,
=
10 + TFC
' + _I:"-l— % LS-SVM
_ ¥ csvm
10—35 . . [R . . i .
107 1073 1072

Solution Time (s)

Figure 6. Mean squared error vs. solution time for problem #3 accuracy vs. time.

4.4. Problem #4

Problem #4 is the second order linear PDE on (x,y) € [0,1] x [0,1] given by,

z(x,0) = xe
B . 0,y) =y
Vz(x,y) =e *(x —2+1y° +6 subiject to: A 14
(x,y) (Y’ +6y) subj 1) = e*(x 1 1) (14)
z(Ly) = (1+y)e!

which has the analytical solution,
z2(x,y) = (x +)

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #4 is shown in Figure 7.
The figure was created using 100 training points in the domain—training points in the domain means
training points that do not lie on one of the four boundaries. The top plot shows the log base 10 of the
error in the LS-SVM solution divided by the TFC solution, and the bottom plot shows the log base 10
of the error in the LS-SVM solution divided by the error in the CSVM solution.

Figure 7 shows that TFC is the most accurate of the two methods. The TFC error is orders of
magnitude lower than the LS-SVM method. The CSVM error is, on average, approximately one order
of magnitude lower than the LS-SVM method, but the error is still orders of magnitude higher than
the error when using TFC.

Mach. Learn. Knowl. Extr. 2019, 1 1074

Accuracy Gain log(LS-SVM/TFC)

12
10
8
-'c‘f.y‘::‘ﬁ‘f‘i'" AR Jgﬁ ; -Q‘ T 6
9:,.‘ ,‘Q, .5, \7 % AN
Y Jt’-“"!
"’" ¥ 0%y .
2
0
Accuracy Gain log(LS-SVM/CSVM)
5
4
e s
2 " II& ' ‘,tl“ _4’, " “ \.:"w ' “‘t ,l 2
0 %‘w.’ogbu ‘!‘ “‘,-:0" ‘“‘\: l‘\\‘ U .x. A o] s{i \"\g }’;Am‘ 1
24 v W‘WF«‘Y g“{,’ t? ‘ﬁ*ﬂ () ‘.a M G- 0
1 v ?v .x‘ "iyﬂﬂ !“’ 4 P "hf 3)
0.5 05 -2
-3

y (m) 0 0 x (m)

Figure 7. Accuracy gain for TFC and CSVM methods over LS-SVMs for problem #4 using 100 training
points in the domain.

Tables A10-A12 in the appendix compare the two methods for various numbers of training points
in the domain when solving problem #4. These tables show that solving the DE using TFC is slower
than LS-SVM by less than an order of magnitude for all test cases. The MSE error on the test set for TFC
is less than LS-SVM for all of the test cases. The amount by which the MSE error on the test set differs
between the two methods varies between 7 and 18 orders of magnitude. In addition, these tables show
that the training time for CSVM is greater than LS-SVM by approximately an order of magnitude or
less. The MSE error on the test set for CSVM is less than the MSE error on the test set for LS-SVM for
all the test cases. The amount by which the MSE error on the test set differs between the two methods
varies between one and three orders of magnitude. An accuracy versus speed comparison is shown
graphically in Figure 8, where the MSE on the test set is plotted against training time for five specific
cases: 9, 16, 36, 64, and 100 training points in the domain.

Mach. Learn. Knowl. Extr. 2019, 1 1075

105

- X

—

o
L
o

+ X%
X
*
¥
*

Mean Squared Error
—
o
r
o

1025 + TFC
+ X LS-SVM
0| -.t|-_ ¥ csvm
10-35 ; . . R R | . . . [S N
1073 1072 10"

Solution Time (s)

Figure 8. Mean squared error vs. solution time for problem #4 accuracy vs. time.

5. Conclusion

This article presented three methods to solve various types of DEs: TEC, LS-SVM, and CSVM.
The CSVM method was a combination of the other two methods; it incorporated LS-SVM into the
TFC framework. Four problems were presented that include a linear first order ODE, a nonlinear
first order ODE, a linear second order ODE, and a linear second order PDE. The results showed that,
in general, TFC is faster, by approximately an order of magnitude or less, and more accurate, by
multiple orders of magnitude. The CSVM method has similar performance to the LS-SVM method, but
the CSVM method satisfies the boundary constraints exactly whereas the L5-SVM method does not.
While the CSVM method underperforms vanilla TFC, it showed the ease with which machine learning
algorithms can be incorporated into the TFC framework. This capability is extremely important, as
it provides a systematic way to analytically embed many different types of constraints into machine
learning algorithms.

This feature will be exploited in future studies and specifically for higher-dimensional PDEs,
where the scalability of machine learning algorithms may give a major advantage over the orthogonal
basis functions used in TFC. In this article, the authors found that the number of terms when using
SVMs may become prohibitive at higher dimensions. Therefore, future work should focus on other
machine learning algorithms, such as neural networks, that do not have this issue. Additionally,
comparison problems should be looked at other than initial value problems. For example, problems
could be used for comparison that have boundary value constraints, differential constraints, and
integral constraints.

Furthermore, future work should analyze the effect of the regularization term. One observation
from the experiments is that the parameter v is very large, about 10'?, making the contribution from
w'w insignificant. However, w"w is the term meant to provide the best separating boundary surfaces.
Going farther in this direction, one could analyze whether applying the kernel trick is beneficial (if the
separating margin is not really achieved), or if an expansion similar to Chebyshev polynomials (CP),
but using Gaussians, could provide a more accurate solution with a simpler algorithm.

Author Contributions: Conceptualization, C.L., H.]J. and L.S.; Software, C.L. and H.J.; Supervision, L.S. and D.M.;
Writing original draft, C.L., H.]. and L.S.; Writing review and editing, C.L., H.J. and L.S.

Mach. Learn. Knowl. Extr. 2019, 1

1076

Funding: This work was supported by a NASA Space Technology Research Fellowship, Leake [NSTRF 2019]
Grant #: 80NSSC19K1152 and Johnston [NSTRF 2019] Grant #: 80NSSC19K1149.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BVP

CP

CSVM

DE

IVP

LS

LS-SVM
MSE
MvVP
ODE
PDE
RBF
SVM
TFC

Appendix A Numerical Data

differential equation

initial-value problem

least-squares

radial basis function
support vector machines
Theory of Functional Connections

boundary-value problem
Chebyshev polynomial
constrained support vector machines

least-squares support vector machines
mean square error
multi-value problem
ordinary differential equation
partial differential equation

The rows in Tables A1-A9 correspond to 8, 16, 32, 50, and 100 training points, respectively.

Table A1. TFC results for problem #1.

Number of .. Maximum MSE Maximum MSE
Trainin Training Error on on Error on on m
ning Time (s)
Points Training Set Training Set Test Set Test Set
8 7813 x 107> 6.035 x 107 1.057 x 10~ 6.187 x 107® 8.651 x 10712 7
16 1.406 x 107% 2012 x 10711 1257 x 1072 1.814 x 10711 8964 x 102 17
32 5.000 x 1074 2220 x 10716 1887 x 10732 3331 x 10716 2.086 x 10732 25
50 7500 x 107% 2220 x 10716 9368 x 1073 2220 x 10~ 1.801 x 10732 25
100 1.266 x 1073 4.441 x 10716 1.750 x 10732 2220 x 10716 1.138 x 10732 26
Table A2. LS-SVM results for problem #1.
Number of .. Maximum MSE Maximum MSE
Trainin; Training Error on on Error on on o
. & Time (s) . .. v
Points Training Set Training Set Test Set Test Set
8 1719 x 1073 1179 x 107° 5638 x 10711 1439 x 1075 7251 x 10711 5995 x 107 3.162 x 109
16 1719 x 1073 1710 x 107 1.107 x 10712 1.849 x 107 1.161 x 10712 3.594 x 10> 6.813 x 10!
32 2188 x107° 9792 x 1078 3439 x 10715 9525 x 1078 3.359 x 10715 3594 x 105 3.162 x 107!
50 4375 x 1073 1440 x 1078 2983 x 10°77 8586 x 1072 2356 x 10717 3.594 x 101> 3.162 x 107!
100 1.031 x 1072 3.671 x 1072 3781 x 10718 3673 x107° 3947 x 10718 2.154 x 103 3.162 x 10~}

Mach. Learn. Knowl. Extr. 2019, 1

Table A3. CSVM results for problem #1.

1077

Number of .. Maximum MSE Maximum MSE
.. Training
Training Time (s) Error on on Error on on v o
Points Training Set Training Set Test Set Test Set
8 3125 x 1074 1018 x 1075 4131 x 1071 1357 x 1075 5547 x 10711 2.154 x 103 3.162 x 109
16 1.406 x 1073 2.894 x 1077 2588 x 10714 2818 x 1077 2468 x 107 1% 5995 x 1017 6.813 x 101
32 5313 x 1073 2283 x 1078 1355 x 10710 2576 x 1078 1.494 x 10716 3594 x 105 3.162 x 107!
50 3281 x 1073 8887 x 1079 2055 x 107 1.072x 1078 2783 x 1077 7743 x 108 3.162 x 107}
100 1.078 x 1072 2230 x 1072 5571 x 107 2163 x107° 5337 x 1071 3.594 x 101> 1.468 x 10~}
Table A4. TFC results for problem #2.
Number of .. Maximum MSE Maximum MSE
. . Training
Training Time (s) Error on on Error on on m
Points Training Set Training Set Test Set Test Set
8 3437 x 107% 8994 x 107¢ 2242 x 1071 1192 x 1075 4132 x 10711 8
16 1.547 x 1073 4586 x 10712 6514 x 1072 9.183 x 10712 2431 x 1073 16
32 1.891 x 1073 3.109 x 10~ 9291 x 10731 4.885 x 107> 9590 x 10731 32
50 3125 x 1073 1.110 x 10715 2100 x 10731 2.665 x 10715 3954 x 10731 32
100 4828 x 1073 1.776 x 10715 3722 x 10731 2.665 x 10°15 4321 x 10731 32
Table A5. LS-SVM results for problem #2.
Number of .. Maximum MSE Maximum MSE
.. Training
Training Time (s) Error on on Error on on v 4
Points Training Set Training Set Test Set Test Set
8 7813 x 1074 1.001 x 1073 1965 x 10~7 1.001 x 1073 7.904 x 10~% 1.000 x 1019 3.704 x 107!
16 1.250 x 1073 4.017 x 1073 4.909 x 10°® 3.872 x 1073 4.514 x 10~ 1.000 x 1010 4.198 x 10!
32 6.875 x 1073 4.046 x 1073 4.834 x 107® 3.900 x 1073 4575 x 107® 1.000 x 1010 4536 x 1071
50 1203 x 1072 4.048 x 1073 4.792 x 107® 3902 x 1073 4.580 x 107 1.000 x 1010 4.666 x 10!
100 3156 x 1072 4.050 x 1073 4752 x 107 3903 x 1073 4582 x 10~© 1.000 x 100 4.853 x 10!
Table A6. CSVM results for problem #2.
Number of .. Maximum MSE Maximum MSE
. . Training
Training Time (s) Error on on Error on on ¥ 4
Points Training Set Training Set Test Set Test Set
8 1.250 x 1073 1.556 x 107° 7.644 x 1077 1480 x 1073 5.325 x 1077 1.000 x 1010 3.452 x 107!
16 1.563 x 1073 4.021 x 1073 4914 x 10°® 3.876 x 1073 4.517 x 10~ 1.000 x 1010 4.719 x 10!
32 2594 x 1072 4.047 x 1073 4.834 x 107 3901 x 1073 4575 x 10~® 1.000 x 10! 5.109 x 101
50 4109 x 1072 4.050 x 1073 4792 x 107 3.903 x 1073 4580 x 10~® 1.000 x 1010 5.252 x 101
100 9219 x 1072 4.051 x 1073 4753 x 107 3904 x 1073 4583 x 107° 1.000 x 1010 5469 x 107!
Table A7. TFC results for problem #3.
Number of Training Maximum Error MSE on Maximum Error MSE on
Training Points Time (s) on Training Set Training Set on Test Set Test Set
8 1.563 x 1074 1.313 x 10~° 5.184 x 1013 1.456 x 10~° 6818 x 10713 8
16 7969 x 107* 5551 x 10710 6123 x 10732 8882 x 10716 7229x 10732 15
32 7187 x 107* 1221 x 1071 2377 x 10731 9992 x 10716 2229 x 1073 15
50 5000 x 107% 7772 x 1071 3991 x 10732 5551 x 10716 3.672x 10732 15
100 9844 x 1074 7772 x 1071 5525 x 10732 6.661 x 10710 3518 x 10732 15

Mach. Learn. Knowl. Extr. 2019, 1 1078

Table A8. LS-SVM results for problem #3.

Number of Training Maximum Error MSE on Maximum Error MSE on -
Training Points Time (s) on Training Set Training Set on Test Set Test Set ¥
8 1.563 x 1073 1.420 x 10~° 8.300 x 1013 1.638 x 107¢ 6522 x 10713 5995 x 107 6.813 x 10°
16 1.875 x 1073 1.811 x 10~8 1.015 x 10716 1.871 x 108 1.014 x 10716 35594 x 105 3.162 x 10°
32 4687 x 1073 5455 x 10710 1.025 x 1071 9.005 x 10710 1.015 x 1071 5995 x 1017 1.468 x 10°
50 7.656 x 1073 8563 x 1071 3771 x 10721 8391 x 1071 3.646 x 10721 2,154 x 1013 1.468 x 10°
100 2688 x 1072 6441 x 1071 1500 x 1072 6128 x 10711 1.640 x 10721 2,154 x 1013 1.468 x 10°
Table A9. CSVM results for problem #3.
Number of Training Maximum Error MSE on Maximum Error MSE on -
Training Points Time (s) on Training Set Training Set on Test Set Test Set v
8 1.563 x 104 1.263 x 107° 7.737 x 10713 2,017 x 10~ 1.339 x 10712 1.000 x 102 6.813 x 10°
16 4687 x 1074 1.269 x 10~ 4961 x 10719 1.631 x 10~? 5342 x 10719 3.594 x 101> 3.162 x 10°
32 1.406 x 1073 1.763 x 10~ 8.308 x 1019 2.230 x 1077 1.248 x 10718 3594 x 105 3.162 x 100
50 3.281 x 1073 1.429 x 10~ 1.045 x 10718 1.569 x 107 1.017 x 10718 2,154 x 1013 1.468 x 100
100 1297 x 1072 8261 x 10710 8832x 1072 7209 x 10710 5589 x 10720 2154 x 10" 1.468 x 10°

The rows in Tables A10-A12 correspond to 9, 16, 35, 64, and 100 training points, respectively.

Table A10. TEC results for problem #4.

Number of
Training Points Training Maximum Error MSE on Maximum Error MSE on
. §*0 Time (s) on Training Set Training Set on Test Set Test Set
in Domain
9 4375 x 1073 1.107 x 1077 1.904 x 10~15 1.543 x 1077 4633 x1071° 8
16 5.000 x 10—3 3.336 x 10~° 2131 x 10718 4.938 x 10~° 3964 x 10718 9
36 6406 x 1073 6.628 x 1071 5165 x 10728 2333 x 10713 6961 x 107% 12
64 9.844 x 1073 4441 x 1071 2091 x 10732 8882 x 10716 8320 x 10732 15
100 1031 x 1072 3331 x 1071 1229x 1073 6661 x 10716 1246 x 10732 15
Table A11. LS-SVM results for problem #4.
Number of
Training Points Training Maximum Error MSE on Maximum Error MSE on v -
. . Time (s) on Training Set Training Set on Test Set Test Set
in Domain
9 2.031 x 1073 2578 x 1074 9.984 x 1077 3.941 x 1074 3533 x 1078 1.000 x 10* 6.635 x 10°
16 2.344 x 1073 2229 x 1075 6.277 x 10~ 1 3.794 x 1075 1.731 x 10710 1,000 x 10 3,577 x 10°
36 4219 x 1073 1.254 x 10° 2542 x 10713 2435 x 1076 4517 x 10713 1.000 x 101* 1.894 x 100
64 5.156 x 1073 2916 x 1077 1.193 x 1014 4962 x 1077 1.390 x 10°# 1.000 x 10 1.589 x 10°
100 1.297 x 102 1.730 x 107 3.028 x 10715 2,673 x 1077 3.668 x 10715 1.000 x 101* 9.484 x 107!
Table A12. CSVM results for problem #4.
Number of
Training Points Training Maximum Error MSE on Maximum Error MSE on y -
. . Time (s) on Training Set Training Set on Test Set Test Set
in Domain
9 5.000 x 103 1.305 x 10~° 1.936 x 1011 3325 x 1075 8262 x 1071 1.000 x 10™* 6.948 x 10°
16 1172 x 1072 2121 x107® 7965 x 10713 5507 x 107® 2530 x 10712 1.000 x 10 4.894 x 10°
36 1.891 x 102 2.393 x 10~7 6.242 x 1015 3.738 x 1077 1.341 x 107 1.000 x 10 2.154 x 10°
64 3.156 x 1072 9.501 x 108 1.021 x 1015 1.251 x 1077 1.165 x 10715 1.000 x 10 1.371 x 10°

100 8.453 x 1072 4362 x 1078 2.687 x 10716 5561 x 1078 2951 x 10716 1.000 x 10'* 8.891 x 10~}

Mach. Learn. Knowl. Extr. 2019, 1 1079

Appendix B Nonlinear ODE LS-SVM and CSVM Derivation

This appendix shows how the method of Lagrange multiplies is used to solve nonlinear ODEs
using the LS-SVM and CSVM methods. Equation (A1) shows the Lagrangian for the LS-SVM method.
The values where £ are zero give candidates for the minimum.

N
L(w,b,ey,uapB,1y) = 5(ww+ye'e) — ; i [w'e' (t;) — f(ti,yi) —] — Blw'e(to) + b — yo]

N —

N (A1)
=Y ni[w'e(t) +b—yi
i=

oL N al
Tm =0 7 w=) wg(t) +) me(t) + pelto)
i i=1
oL
3 = 0 = ye=—u
oL
3 = 0 — w'e' (t;) = f(ti,yi) +e
0‘1

9L o
a7
%
9B
oL N

— =0 — B+Y 1i=0
ob i=1

oL

Em =0 — aify(ti,yi) +1; =0

A system of equations can be set up by substituting the results found by differentiating £ with
respect to w and e; into the remaining five equations found by taking the gradients of £. This will
lead to a set of 3N + 2 equations and 3N + 2 unknowns, which are &;, #;, y;, B, and b. This system of
equations is given in Equation (A2),

N N "
}:% ajgp'(t)'¢/ (1) + Z% nie(t)'¢ (1) + Bo(to) '@’ () + ; = f(ti,y:)
j= j=
N N

2 ;' () (t;) + 21 ni@(t) () + Be(to) @(t;) +b—y; =0

j= j=

y o, N (A2)
gw (t)"e(to) + gnj(p(tj)wto) + Bo(to)'@(to) +b = yo

j= j=

N
,B+Z17j:0

=
wify(ti, yi) +1 =0

where i = 1,..., N. The system of equations given in Equation (A2) is the same as the system of
equations in Equation (20) of reference [12] with one exception: The regularization term, I/, in the
second row of the second column entry is missing from this set of equations. The reason is, while
running the experiments presented in this paper, that regularization term had an insignificant effect on
the overall accuracy of the method. Moreover, as has been demonstrated here, it is not necessary in the

Mach. Learn. Knowl. Extr. 2019, 1 1080

setup of the problem. Once the set of equations has been solved, the model solution is given in the

dual form by,
N

N
g(t) = ; wig' () p(t) + ; nig(t) (t)+

+ Po(to) (1) +b.
As with the linear ODE case, the set of 3N + 2 equations that need to be solved and dual form of

the model solution can be written in terms of the kernel matrix and its derivatives. The method for
solving the nonlinear ODEs with CSVM is the same, except the Lagrangian function is,

z

1 T T T
L(w, ey, 1) :E(w w+ye'e) — Y a; [w'e (t) — f(ti,yi) —ei
i=1

N
- ;m [w'(g(t:) — ¢(t0)) +yo — yil,

where the initial value constraint has been embedded via TFC by taking the primal form of the solution
to be,

9(t) = w'(e(t:) — ¢(to)) + yo-

Similar to the SVM derivation, taking the gradients of £ and setting them equal to zero leads to a
system of equations,

N N T
Y g/ (5)°9' (1) + i () — @) @r(t) = f(ti) +ai/ 7 =0
= j=

M=

g ()" (9(t) (ko)) + i’” ((t) (1)) ((t) = plt0)) + o — y: =0
£

j
wify(ti,yi) +1 =0

where i = 1,..,N. This can be solved using Newton’s method for the unknowns «;, #;, and y;.
In addition, the gradients can be used to re-write the estimated solution, #, in the dual form,

N N T
9() = Y i (1) (9(1) —@(to)) + L mi(9(t:) —@(t0)) (9(t) —g(t0)) +vo.
i=1 i=1
As with the SVM derivation, the system of equations that must be solved and the dual form of

the estimated solution can each be written in terms of the kernel matrix and its derivatives.

Appendix C Linear PDE CSVM Derivation

This appendix shows how to solve the PDE given by,

z(x,O) = cl(xlo)
Vel = ln) st 1500770
z(Ly) = ca(Ly)

using the CSVM method. Note, that this is the same PDE as shown in problem number four of the
numerical results section where the right-hand side of the PDE has been replaced by a more general
function f(x,y) and the boundary-value type constraints have been replaced by more general functions
cx(x,y) where k =1, ..., 4. Note, that throughout this section all matrices will be written using tensor
notation rather than vector-matrix form for compactness. In this article, we will let superscripts denote

Mach. Learn. Knowl. Extr. 2019, 1 1081

a derivative with respect to the superscript variable and a subscript will be a normal tensor index. For
example, the symbol Af;?‘ would denote a second-order derivative of the second-order tensor A;; with

. . PA;
respect to the variable x (i.e. axz’).

Using the Multivariate TFC [23], the constrained expression for this problem can be written as,

2(x,y) = Aijoivj + w;ej(x,y) — wiBijrvv;
0 c1(x,0) c3(x,1)
Ajj = |c2(0,y) —c1(0,0) —c3(0,1)
cs(lLy) —c1(1,0) —c3(1,1)

0 er(x,0) @x(x,1)
Bijk = | ok(0,y) —x(0,0) —¢(0,1)
ng(l,y) —qok(l,O) 7(Pk(1/1)

v; = {1 1—x x}
vj = [1 1-y y} .
where 2 will satisfy the boundary constraints c(x, y) regardless of the choice of w and ¢;. Now, the

Lagrange multiplies are added in to form L,

1
C(w,tx, e) = Ewiwi + %eiei — 0(1(231“6 + lﬂy — f[— 61),

where 27 is the vector composed of the elements 2(x,, y,) wheren =1, ..., Nj and there are N, training
points. The gradients of £ give candidates for the minimum,

oL vy _ pyy

dwp kT ar(y; — Brijvivj + ¢ — Byivivj) =0
aﬁ xx yy

—— =% v — — = O

a 27 + 27 f[er

oL v

—_— = — —_ = O

o 5 Gk 293 ,

where ¢y is the second order tensor composed of the vectors ¢;(xy,), B Lijk is the fourth order tensor
composed of the third order tensors B(x;,]/n)ijk/ and n = 1,...,, Np. The gradients of L can be used to
form a system of simultaneous linear equations to solve for the unknowns and write Z in the dual form.

The system of simultaneous linear equations is,

.A[]DC] = B[

U
Ai =¢ii gjii — Pk Bjixvivj + Pk i — @1k B
Y

XX . YY xx .. RYY vy xx _ Y
- BIijkvlv]?’]k + Biijx0iviBy9mVn + @1 9k — @i

XX XX XX XX
WiV — Bli]-kviv]'q)]k + B[fijinB]mnkUmUn

vy Yy ygYYy
I

v
BJiikvivj + @1 Pjic — i By vivj

1
Yy .. XX Yy . RpXX _npy ., VY Yy .., .pYY -
= Biij0ivj@jic + Biji0iB ik ¥mOn — By 0ivi @y + By viviBpy, i 0mvn + ,Y‘SU

_ XX, o Yy, ...
Br=f1— Aﬁjvlvj - Ah.jv,v]

Mach. Learn. Knowl. Extr. 2019, 1 1082

where v,, = v;, v, = v, and A lijk is the fourth order tensor composed of the third order tensors
A(xy, yn),»jk where n = 1, ..., N,. The dual-form of the solution is,

2(x,y) =Ajoivj + & {qv’f;i‘qv(x,y)k — Biiivivir(x,y) + o (%, y) — B%kvivquk(x/y)}
— g |:(pJIC]fB,‘ij)iZ)]' — B}Cl?]c-kZJinankUmvn + (P?gBiijin — B?%kvinankvmvn] .

The system of simulatenous linear equations as well as the dual form of the solution can be

written and were solved using the kernel matrix and its partial derivatives.

References

1. Dormand, J.; Prince, P. A Family of Embedded Runge-Kutta Formulae. J. Comp. Appl. Math. 1980, 6, 19-26.
[CrossRef]

2. Berry, M.M,; Healy, L.M. Implementation of Gauss-Jackson integration for orbit propagation. . Astronaut.
Sci. 2004, 52, 351-357.

3. Bai, X.; Junkins, J.L. Modified Chebyshev-Picard Iteration Methods for Orbit Propagation. J. Astronaut. Sci.
2011, 58, 583-613. [CrossRef]

4. Junkins,].L.; Younes, A.B.; Woollands, R.; Bai, X. Picard Iteration, Chebyshev Polynomials, and Chebyshev
Picard Methods: Application in Astrodynamics. J. Astronaut. Sci. 2015, 60, 623—-653. [CrossRef]

5. Reed,].; Younes, A.B.; Macomber, B.; Junkins, J.L.; Turner, D.]. State Transition Matrix for Perturbed Orbital
Motion using Modified Chebyshev Picard Iteration. |. Astronaut. Sci. 2015, 6, 148-167. [CrossRef]

6. Driscoll, T.A.; Hale, N. Rectangular spectral collocation. IMA J. Numer. Anal. 2016, 36, 108-132. [CrossRef]

7. Mortari, D. The Theory of Connections: Connecting Points. Mathematics 2017, 5, 57. [CrossRef]

8. Mortari, D. Least-squares Solutions of Linear Differential Equations. Mathematics 2017, 5, 48. [CrossRef]

9. Mortari, D.; Johnston, H.; Smith, L. High accuracy least-squares solutions of nonlinear differential equations.
J. Comput. Appl. Math. 2019, 352, 293-307. [CrossRef]

10. Johnston, H.; Mortari, D. Linear Differential Equations Subject to Relative, Integral, and Infinite Constraints.
In Proceedings of the 2018 AAS/AIAA Astrodynamics Specialist Conference, Snowbird, UT, USA, 19-23
August 2018.

11. Johnston, H.; Leake, C.; Efendiev, Y.; Mortari, D. Selected Applications of the Theory of Connections:
A Technique for Analytical Constraint Embedding. Mathematics 2019, 7, 537. [CrossRef]

12. Mehrkanoon, S.; Falck, T.; Johan, A.K. Approximate Solutions to Ordinary Differential Equations using
Least-squares Support Vector Machines. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1356-1367. [CrossRef]
[PubMed]

13. Freire, R.Z; Santos, G.H.d.; Coelho, L.d.S. Hygrothermal Dynamic and Mould Growth Risk Predictions for
Concrete Tiles by Using Least Squares Support Vector Machines. Energies 2017, 10, 1093. [CrossRef]

14. Zhao, X;; Chen, X;; Xu, Y.; Xi, D.; Zhang, Y.; Zheng, X. An EMD-Based Chaotic Least Squares Support Vector
Machine Hybrid Model for Annual Runoff Forecasting. Water 2017, 9, 153. [CrossRef]

15. Gedik, N. Least Squares Support Vector Mechanics to Predict the Stability Number of Rubble-Mound
Breakwaters. Water 2018, 10, 1452. [CrossRef]

16. Gao, C.; Xue, W.; Ren, Y.; Zhou, Y. Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary
Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor. Appl. Sci. 2017, 7.
[CrossRef]

17. Vapnik, V.N. Statistical Learning Theory; Wiley: Hoboken, NJ, USA, 1998.

18. Kramer, M.A.; Thompson, M.L.; Bhagat, PM. Embedding Theoretical Models in Neural Networks.
In Proceedings of the 1992 American Control Conference, Chicago, IL, USA, 24-26 June 1992; pp. 475-479.

19. Pathak, D.; Krdhenbiihl, P; Darrell, T. Constrained Convolutional Neural Networks for Weakly Supervised
Segmentation. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 11-18 December 2015; pp. 1796-1804.

20. Marquez-Neila, P; Salzmann, M.; Fua, P. Imposing Hard Constraints on Deep Networks: Promises and

Limitations. arXiv 2017, arXiv:1706.02025.

http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/10.1007/BF03321533
http://dx.doi.org/10.1007/s40295-015-0061-1
http://dx.doi.org/10.1007/s40295-015-0051-3
http://dx.doi.org/10.1093/imanum/dru062
http://dx.doi.org/10.3390/math5040057
http://dx.doi.org/10.3390/math5040048
http://dx.doi.org/10.1016/j.cam.2018.12.007
http://dx.doi.org/10.3390/math7060537
http://dx.doi.org/10.1109/TNNLS.2012.2202126
http://www.ncbi.nlm.nih.gov/pubmed/24807921
http://dx.doi.org/10.3390/en10081093
http://dx.doi.org/10.3390/w9030153
http://dx.doi.org/10.3390/w10101452
http://dx.doi.org/10.3390/app7040346

Mach. Learn. Knowl. Extr. 2019, 1 1083

21.

22.

23.

24.

25.

26.

27.

Lanczos, C. Applied Analysis. In Progress in Industrial Mathematics at ECMI 2008; Dover Publications, Inc.:
New York, NY, USA, 1957; Chapter 7, p. 504.

Wright, K. Chebyshev Collocation Methods for Ordinary Differential Equations. Comput.]. 1964, 6, 358-365.
[CrossRef]

Mortari, D.; Leake, C. The Multivariate Theory of Connections. Mathematics 2019, 7, 296. [CrossRef]

Leake, C.; Mortari, D. An Explanation and Implementation of Multivariate Theory of Functional Connections
via Examples. In Proceedings of the 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, ME,
USA, 11-15 August 2019.

Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Academic Press: Cambridge, MA, USA, 2008.
Mehrkanoon, S.; Suykens,].A. LS-SVM Approximate Solution to Linear Time Varying Descriptor Systems.
Automatica 2012, 48, 2502-2511. [CrossRef]

Mehrkanoon, S.; Suykens, J. Learning Solutions to Partial Differential Equations using LS-SVM.
Neurocomputing 2015, 159, 105-116. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/comjnl/6.4.358
http://dx.doi.org/10.3390/math7030296
http://dx.doi.org/10.1016/j.automatica.2012.06.095
http://dx.doi.org/10.1016/j.neucom.2015.02.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background on the Theory of Functional Connections
	 The Support Vector Machine Technique
	An Overview of SVMs
	Constrained SVM (CSVM) Technique
	Nonlinear ODEs
	Linear PDEs

	Numerical Results
	Problem #1
	Problem #2
	Problem #3
	Problem #4

	Conclusion
	Numerical Data
	Nonlinear ODE LS-SVM and CSVM Derivation
	Linear PDE CSVM Derivation
	References

