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Abstract: Internet of Things (IoT) is a physical network of
physical devices, such as widgets, structures, and other
objects, which can store program, sensors, actuators, and
screen configurations to allow the objects to assemble, con-
trol, display, and exchange data. The aim of this research
was to develop an autonomous system with automated
navigation. Using this approach, we are able to make use
of deep neural networks for automatic navigation as well
as the identification of pot holes and road conditions.
Additionally, it displays potholes in traffic and the correct
lane on the screen. The system stresses how important it is
to select the path from one node to the next.

Keywords: convolution neural network, pavement condi-
tion, congestion condition, pothole condition, traffic light
condition

1 Introduction

Globally, nearly 3,287 people die daily due to car accidents.
One of the major reasons behind this is the driver sleeping
in the car or trying to stop the car when it is at a very high
speed. Just as the industrial revolution freed humanity
from physical drudgery, artificial intelligence (AI) has the
potential to free humans from mental drudgery.

To reduce the number of accidents that occur on a
daily basis, it is critical to reduce the amount of human
error; it will be extremely fascinating if all we have to do is
fit our destination into our schedule and keep working
until we reach our goal without making any mental or
physical mistakes.

The use of a self-driving car can not only prevent acci-
dents, but also provide self-relief for minor daily activities.

The Internet of Things (IoT) is a network of standard
items such as motorized vehicles, the Internet, televisions,
and other contraptions that are specifically linked together,
enabling new types of correspondence between things and
people as well as between things themselves. Building the
IoT has advanced in recent years, adding another estimation
to the universe of data and correspondence movement
estimations.

Home automation or Smart Homes can be portrayed
as presentation of improvement inside the home condition
to give settlement, solace, security, and essential capacity
to its inhabitants. In addition, figuring out how to improve
home condition can give broadened singular satisfaction.
With the presentation of the IoT, the examination and use
of home mechanization are getting progressively standard.

Self-driving cars can help persons who are unable to
drive on their own due to infirmities such as blindness.
According to studies, a driver’s mistake is cited as a reason
in 94% of crashes, and self-driving vehicles can help elim-
inate driver error. Because it does not require rest like
people and can operate constantly for hours, it can increase
traffic congestion, save fuel, and reduce greenhouse gas
emissions.

Reduced travel time: Travel by a car should be safe
whether the car is going slowly or rapidly. Higher speeds
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are likely to be possible, because computers will eliminate
human error as a cause of accidents. Less expensive
insurance: If car insurance companies join the car move-
ment, your rates could decrease significantly. Risk alloca-
tion depends more on the vehicle than the driver, so you
can expect insurance premiums to go down. Redirecting
our emergency services’ efforts and resources will allow
us to redirect our emergency services to where they are
needed.

In order to further approach with the process, the
structural diagram will show the entire basic procedure
of the progress of the study.

The Figure 1 contains the basic flow information where
the data are gathered from the environment and then these
data are further processed and resulted in the different
maps of path observer, then the suitable path is chosen,
which taking the consideration of the lane tracking and
then the control is there while moving in the lane through
reading of the environment.

2 Literature review

We can better examine and grasp new research projects if
we have a broader view of the algorithms that can be
deployed alongside existing ones.

How is technology helping transform the world? There
have been great changes in the technology of self-driving
and automatic cars since the 1920s when the first ever
radio-controlled vehicle/car was introduced. In the years
following to this, many automatic electric cars were seen
on the roads that were powered by embedded circuits, and
by 1960 automatic cars which had same electronic guiding
system came in the picture. In the 1980s, vision-guided
autonomous vehicles (AVs), which were a great achieve-
ment of the technology at that time, were introduced. The

similar or slightly modified forms of this technology are
still being used today [1].

We can increase people’s trust in driverless cars.
Although public trust is crucial to widespread adoption,
this is the main obstacle. The goal of this study is to deter-
mine which variables are most important in increasing the
use of driverless cars. The study found that a vehicle’s
ability to meet performance expectations and its reliability
were important adoption determinants, according to
quantitative research. The major concerns that were raised
had to do with privacy, such as location, security, and the
like [2].

Robotic platforms allow for incremental development
of manual processes, and path planning has become a cri-
tical area even if the environment inside and outside the
building is unknown. Our challenge is to invent ways to
make the algorithms as intelligent or pre-established as
possible, and to arrive at our destination in the most effi-
cient manner. One of the most significant issues in this
field is finding a path that is free of static and dynamic
obstacles. In this article, a methodology is proposed to
cover the critical points and reach the initial key point in
a dynamic environment with the implementation details of
the robotic platform. The primary computation is taking
place inside the Raspberry Pi B + module, and other mod-
ules include compass, wheel encoders, and ultrasonic sen-
sors [3].

Convolution neural networks (CNNs) are used to create
a self-driving automobile based on monocular vision. The
authors of this research sought to develop a method for
modeling raw input photos to a specific steering angle
predicted by the CNN. CNN was trained using data acquired
from the vehicular road/platform Raspberry Pi 3 and a front
connected camera, as well as photos of the road and time-
synchronized steering wheel angle gained through manual
driving. Whether road markers were present or not, the
speed reached was 5–8 km/h [4].

CNN maps raw images that have been taken from a
front attached camera on the vehicle directly to the steering
wheel. This system works very well on traffic-filled roads
with or without markings on the road. The only training
data provided were human steering angles which were
then used to predict the particular angle at which the car
should be steered. This system has smaller networks and
better performance as minimal number of processing steps
are required and this performs better as components can
self-optimize [5].

Efficient and extremely compact CNNs were generated
in their study, which makes use of a novel sparse connec-
tion topology. Because of the sparseness of inter layer filter
dependencies, this results in a significant reduction in

Figure 1: Flow diagram of the proposed process.
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processing power consumption as well as a reduction in
the number of parameters required, without sacrificing
CNN accuracy. The article’s findings indicated that the sys-
tem’s accuracy was greater than that of CNN’s cutting-edge
architecture. When compared to previous models, the
model required 40% less parameters and was 31% faster
on the CPU, while preserving greater or similar efficiency [6].

By comparing different models of CNN while imple-
menting them on a self-driving car, they test which model
is the best and proves to be the most efficient in a simu-
lated environment. The CNN has been trained by the
manually obtained data by driving a car and using pre-
viously obtained data from end-to-end deep learning tech-
niques. When training is done, the CNN is tested in the
driving simulator by checking its ability to reduce the dis-
tance traveled by the car to go to the center, heading error,
and root mean square error. The conclusion drawn was
that adding long-short term memory layers in CNN pro-
duced better steering of the car which took into account
the previously predicted value by CNN and not just the new
predicted value or a single instance [7].

Level 2 automatic cars are implemented by the authors
by taking the inputs from the front-facing camera on the
vehicle and feeding them as steering inputs. The network
requires minimal human intervention as maximum vari-
able features are learnt from the camera inputs them-
selves. The data set used is from NVidia and Udacity, and
when the CNN is given real inputs it can adapt to real
environment driving given a controlled environment. The
setup consists of an ultrasonic sensor that will detect obsta-
cles and an red green blue depth camera working at 10 HZ
which outputs a steering angle [8].

OShea and Nash [9] have described the various Artificial
Neural Networks (ANNs) and their types, most significantly
CNN. CNNs are mostly used to solve difficult image-driven
tasks that require pattern recognition. These have precise
and simple architecture and are easy to implement; this
study gave great insight into ANN and especially CNN.

Unlike typical cars [10], self-driving cars can park any-
where. Instead, they can drive, fly, or cruise (circle around).
Vehicles are enticed to work together to clog roads. According
to San Francisco’s downtown data, self-driving cars might
roughly treble the number of vehicles entering, leaving,
and inside cities. Planned travels extend due to parking and
cruising. Parking subsidies may have the unintended conse-
quence of worsening congestion. According to the study’s
conclusions, the introduction of congestion pricing in cities
in the near future will be heavily reliant on AVs. Congestion
pricing should incorporate a time-based penalty as well as a
distance- or energy-based fee to internalize various external-
ities associated with driving.

Vehicle speed, eye-gazing, and hand gestures [11] all
reveal a driver’s purpose and attentiveness. The appear-
ance and behavior of a car indicate to passengers whether
the driver is likely to pay attention to the road. This
research aims to enable passengers to comprehend and
express their autonomous car awareness and intent to
pedestrians, which might be difficult if explicit interfaces
are avoided. The idea of an AV’s mission and awareness to
pedestrians was conducted. Four user interface prototypes
were designed and tested on Segway and cars. It is possible
to taste, touch, smell, and hear things out in the environ-
ment and combine the senses to do so.

Deep learning-based vehicle [12] control systems are
becoming more common. Before building a vehicle con-
troller, engineers must rigorously test it under various
driving conditions. Recent improvements in deep learning
algorithms promise to solve challenging non-linear control
problems and transfer knowledge from earlier events to
new situations. These significant advances have gotten
little attention. This study uncovers current and valuable
information on intelligent transportation systems, which is
vital for the field’s future. Control and perception are inter-
woven in this research.

Modern autonomous [13] driving systems rely on his-
torical mapping. Although prevalent in cities, precise maps
are difficult to develop, preserve, and transmit. Rural areas
have high turnover, making exact mapping challenging. A
self-driving automobile was tested in the countryside to
ensure its functionality. The car uses its local sensing
system to detect its road conditions. This system calculates
a car’s distance and speeds through recursive residual fil-
tering and odometer, allowing it to navigate complex road
networks easily.

This AI product features [14] should assist in mini-
mizing traffic congestion, road accidents, and social exclu-
sion. Future human transportation will have AI-powered
drivers. Despite its apparent benefits, people are still wary
about driverless cars. People’s trust in machines may help
build autonomous systems. This study assesses the accep-
tance of autonomous technologies. That is, future studies
should examine user trust and approval. Changes to the
roadway and subsurface infrastructure impacted traffic,
community attitudes and concerns, potential transferable
behaviors and requests, other business models, and strategy.
Malaysian law enforcement agencies must identify critical
elements to investigate AV manipulators’ conspiracy claims
appropriately.

A family of nonlinear [15] under-actuated systems was
found to be soluble. The vehicle’s lateral dynamic control
system incorporates the usage of forwarding and back-
ward controls. Even if the findings of theoretical studies
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on AV lateral control can be applied to multiple circum-
stances, the results can still be used in other applications.

In the study, the performance of the closed-loop system
was compared to that of a typical human driver.

AVs will completely [16] revolutionize ground trans-
portation. In the future, new cars that can judge and drive
themselves are expected to replace traditional cars. Sen-
sors help self-driving cars sense and comprehend their
surroundings, whereas 5G allows them to sense and com-
prehend distant environments. Local perception, like human
perception, can be helpful for short-range vehicle control.
Despite the fact that people’s perspectives have broadened,
they can still prepare for the future and drive with greater
caution while adhering to a set of norms (safety, energy
management, traffic optimization, comfort). Faults can
emerge as a result of background noise, ambient circum-
stances, or manufacturing problems, regardless of how
well an electronic sensor has previously worked. The
most practical solution to the shortcomings of individual
sensors is for them to be integrated. The goal of this
research is to talk about performance optimization for
local automated driving systems in automobiles.

Table 1 contains the multifunctionality of the AV and
the strategic issues and challenges which can really be
taken as the premium objective to work in this article
are as follows:
– An AV with a specific algorithm should contain more

amount of parameters for validation and testing.
– The involvement of the Deep Learning and AI model can

be enriched more to make the system more agile and
updated.

– It should contain more fusion-based approaches for
innovative vehicle systems.

– Effectiveness and accuracy in the fusion approaches can
be increased.

3 Problem formulation

As mentioned in the literature and through the different
challenges we received from the survey, to do the auto-
matic navigation, we need to have specific road measures.
These measures are kept in consideration; one by one we
discussed the standards and their factor which could affect
the data processing. The following observation should be
taken as reference.
– We need to verify all the road conditions and the feasi-

bility of the data receiving and processing through the
system.

– Then, by considering all the parameters, we need to
design the mode of solution.Ta
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Some factors that we will consider in optimization
of fuel-efficient routes are as follows:

– International Roughness Index (IRI) is pavement rough-
ness. The roughness parameter in Table 2 is calculated
by the vertical oscillations of the vehicle chassis per road
section (generally 100m). Its unit is mm/m. This table
describes the roughness factor for the different surface
parameter where it ranges up to 5.6 where it contains the
different characteristics and satisfies all the conditions.

Taking the shortest route and avoiding (Table 3) con-
gested overcrowded paths should be followed since they
might result in increased fuel consumption. Congestion is
graded on a scale of 1 to 5. In this table, there is a conges-
tion factor for several conditions of measurable factor that
contain distinct features; if the ranges vary within the
range, the choice factor for choosing the road can be
deviated or chosen.

We can save money by taking a route with less traffic
lights (Table 4), as opposed to spending a few minutes
standing in line to change signals and wasting fuel. This
can be classified on a scale of 1–5. These are the most
important factors to consider while determining the best
driving parameters for safety. It also defines the conditions
that are beneficial for moving from one node to another by
optimizing and selecting the best conditions for the
journey.

The path has fewer potholes. Potholes on the road can
be categorized on a scale of 1 to 5 (Table 5). Potholes are

Table 2: Pavement condition

Pavement
condition

Characteristics Roughness IRI
(mm/m)

PV1 Good driving limit
exceeded

≤1.39

PV2 Smooth surface 1.4–2.69
PV3 Uneven surface condition 2.7–4.19
PV4 Border of road uneven 4.2–5.59
PV5 Irregular road, undrivable

conditions
>5.6

PV1: very good pavement, PV2: good pavement, PV3: fair pavement, PV4:
poor pavement, PV5: very poor pavement.

Table 3: Congestion condition

Congestion
condition

Characteristics Congestion
factor

CC1 No traffic measurability ≤1
CC2 Slight rush ≤2
CC3 Specific crowd in area ≤3
CC4 Surface of the road is not

prevalent
≤4

CC5 Surface is so much even
and undrivable

≤5

CC1: very good congestion condition, CC2: good congestion condition,
CC3: fair congestion condition, CC4: poor congestion condition, CC5:
very poor congestion condition.

Table 4: Traffic light availability

Light condition Characteristics Traffic factor Light

TL1 Light visibility is good; all the objects in the navigation are clearly visible ≤1
TL2 All the objects in the navigation are visible ≤2
TL3 Driving visibility is there ≤3
TL4 Uneven driving visibility ≤4
TL5 No light visibility, uneven traffic conditions ≤5

TL1: very good traffic light condition, TL2: good traffic light condition, TL3: fair traffic light condition, TL4: poor traffic light condition, TL5: very poor
traffic light condition.

Table 5: Pothole condition

Pothole condition Characteristics Road factor

PC1 Smooth driving condition with no potholes ≤1
PC2 Rare pothole in long distance travelled ≤2
PC3 Pothole is minor, driving can be possible ≤3
PC4 Lot of potholes, slow and steady driving can be done ≤4
PC5 Lot of potholes, uneven phase for driving ≤5

Path reader and intelligent lane navigator by autonomous vehicle  5



also a key element in determining whether or not to travel
on a road, and these conditions may be taken to avoid
catastrophic accidents and to offer a smooth driving
experience for visitors who travel on that route. Potholes
have distinct circumstances in the road where it disrupts
the smooth driving element in the road and these are also
different factors which are required for determining the
road conditions and evaluating the distance.

3.1 Designing and development

First, calculate the optimized distance by consulting the
effecting pavment condition (EPV) from equation 1. These
factors helps to analyze the proper navigation. We will
convert the required map into a graph where each place
on potholes, the map will be depicted as the node on the
graph. This helps to detect the potholes in accurate manner.

A car has to enter the area or the place where it wants
to start the journey and set the destination area. If the car
has to go from one place to another, then all the routes
possible according to the map are depicted in the form of
Figure 2 as shown. What is being added with each distance
here is the factor effecting pavment condition (FEPV) value
that will help us find the best fuel-efficient path in the final
route.

( )= + + + + =
=
=

=

=

D D

P

C

T

R

Fepv Pr Cf TL Rf /4 Distance,

Pavement roughness,

Congestion factor,

Traffice light factor,

Road factor.

p p

r

f

l

f

(1)

After this we have to design an algorithm for the afore-
mentioned problem, and this project also aims to choose the
best optimized algorithm which will be used to find the
shortest path between two points entered by the user (Table 6).

4 Methodology

First, we need to do the setup of the car as shown in Figure
2 with the required hardware requirement. Take all the
four motors and connect jumping wires with them. Since
our H bridge can only handle only two motors at a time,
connect two motors with each other at one time. Assemble
all the motors in the plastic plates. Remember to cross-
couple to let the motors move in the same direction.
open source computer vision library stores the image in
the form of the BGR color format; however, we need to
change it to RGB color format which is important to adjust
the settings of the view we have. We will use a setup func-
tion for our camera to stabilize, then we will take region of
interest around these four corners.

We will take a sample, region of interest as shown in
Figure 3. For this we will define the region we want iden-
tify for lane to get focused by camera to move car in for-
ward direction. In the implementation process, we will

Table 6: Finding out the navigation path through the proposed
approach

Algorithm Finding out the navigation path through the
proposed approach

Input: Enter the Distance Nodes values
Output: Path Navigator and observed value
Begin

If nij = 0 if i = j Dij = 0 length (ni,nj) Cij = 0 otherwise NULL
for K = 0 to A-1
for J = 0 to A-1
nij(K + 1) = min(nij(k)),Epv(nij(k) + nij(k) + dij(k)

End
for

End
for

End

Figure 2: These two figures contain the frame for the region of interest
and actual region of interest calculated.

Figure 3: Calculation of the right and left position of the lane and the
gray scale image.
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convert our RGB image into gray scale to get the clear
vision through camera.

We define the threshold manually, initially setting a
specific value and creating a histogram for all values above
this threshold. These are converted into white pixels, while
all remaining values become black pixels. The next step,
involves identifying all edges and corners within the lane

using the Canny edge detection technique. This process facil-
itates easier object identification for our autonomous car.

Prior to image processing, we convert our RGB image
in Figure 4 into gray-scale for easier manipulation. We
define the threshold manually by setting a specific value.
Those greater than the threshold are turned into white
pixels, while all remaining values are turned into black
pixels.

The next step is finding all the edges and corners
coming in the lane so that it can help our car identify
objects easily, with the help of canny edge detection.
Canny edge detection basically detects the sudden change
in the image gradient. For getting canny edges, we will
apply sobel operator on our threshold image.

In sobel operator, suppose Gx is an image pixel where
each pixel contains the horizontal derivative and Gy is an
image pixel where each pixel contains the vertical deriva-
tive, then G = sqrt(Gx2 + Gy2) where G represents the image
gradient. Then we will find the exact position of the lane,
i.e., right position and the left position. The next step is
finding the left position and the right position of our lane
where our autonomous car will move in during its journey.

Green lines depict the lane finder. In the next step, we
will find the lane center using the left lane position and the
right lane position. The blue color in Figure 5 shows the
lane center.

In the next step, we will calibrate our lane center with
frame center (Figure 5). The green line depicts the lane
center and blue line depicts the frame center; we will shift
frame center towards the left so that it can calibrate with
lane center. In the next step, we will move our autonomous
car in different directions and check the difference between
lane center and frame center as a result.

In the following stage, wewill use CNNs (Figure 6). CNNs
are a type of neural network that have proven to be parti-
cularly effective in picture recognition and categorization.

Figure 4: Calculation of the center of the lane and calibrating lane center
with frame center.

Figure 5: Difference between lane center and frame center.

Figure 6: CNN model.
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The CNN design categorizes and is primarily utilized for
character recognition jobs, such as Classification, Convolu-
tion, Filters, Non-Linearity (ReLU) Activation Function,
Pooling, or Sub Sampling (Fully Connected Layer).

Since we are dealing with CNN, we will deal here with
conv2D, MaxPool2D layer which is present in Keras, and after
we have imported the sequential model we will first add
some convolutions layer. We will first add convolution layer
with 32 filters for the first two convolution layers having 5x5
kernel matrix filter, which can be involved on original image
for extracting the important feature from image.

The kernel matrix is applied on complete image matrix.
We have now incorporated a down-sampling filter, specifi-
cally Max2D, which reduces the image’s dimensions. This
process effectively shrinks the size of the image, simplifying
further manipulation and analysis.

Next, we must decide upon the pooling size. It is cri-
tical to select the pooling dimension as well. Also, we are
using convolution and pooling in this layer to allow our
model to learn more information.

Next, we will add two more convolution layers, with 64
filters and down sampling, at the conclusion. To get things

started, after we have finished pooling, we will go on to the
dropout layer, which is a regularization approach that ran-
domly sets the weights of a section of the nodes in the layer
to zero. The last step involves dealing with the feature that
causes certain nodes to randomly disconnect from the net-
work. This necessitates the remaining network to reach a
distributed solution.

When it comes to increasing generalization and con-
trolling over fitting, this strategy works well. (ReLu) is an
abbreviation for maximal activation function (0,x). The
rectifier activation function is used to introduce non-line-
arity into the system.

The flatten layer is used to convert the final feature
mappings into a single 1D vector representation. It will be
necessary to flatten the layers once they have been convo-
lution and max pooled in order to use completely con-
nected layers. Essentially, it combines into the convolution
layer all of the previously trained local properties.

As an alternative to digging deeper, we built an ANN
classifier based on the properties of the previous layer. The
final layer produces a distribution of the likelihood of each
class, which is displayed on the screen.

5 Result and analysis

The process has been thoroughly evaluated the crucial
aspects of the path by testing various parameters. While
updating the results, these parameters were analyzed in
relation to the condition of the pavement.

Table 7 contains the optimal path efficiency considering
the EPV factor in the various dimension of pavement level,
and this table contains the level which defines the five con-
straints from 0 to 1. This table defines the optimized path by

Table 7: Analysis of pavement by considering the EPV factor

Pavement
level

Level Noise SS RG LC EPV Optimal
path

PV1 0 0 0 0 0 NULL 0
PV2 0.25 1 1 0 0 Marginal 0.0055
PV3 0.5 1 1 0 0 Good 0.0066
PV4 0.75 1 1 1 0 Pleasant 0.0074
PV5 1 1 1 1 1 Best 0.0084

PV: pavement level, SS: smoothness, RG: roughness, LC: localization.

Figure 7: Optimal path by consideration of EPV factor and pavement level with different parameters.
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checking the notation of the noise value of the road, smooth-
ness, roughness, localization, and finally, the EPV factor.

Figure 7 contains the detail analysis for the optimal
path relation with the EPV and payment condition and
describes the feasible nature for the optimal decision-
making by the system.

Table 8 contains the analysis of the congestion condition
considering the EPV factor, and there was feasible observa-
tion in the levels 5 and 4 where the driving condition is best
by considering the multifactor analysis (Figure 8).

Table 9 analyzes the traffic condition and pothole con-
dition and contains the major feature balance for the

optimal detection of the path to identify the feasibility
for the driving. The table describes the conditions and
reading obtained during the testing phase in the road.

Figure 9 describes the functional analysis for the
optimal travel path for deciding the final route on the basis
of pothole condition and the traffic light condition by using
the EPV factor.

The figure discusses the setup model, and this model is
tested in the different road structure and domain. And it
shows the promised observation in the strategic road
condition.

Table 10 contains the comparison of the existing system
in terms of the following parameters: sensor fusion, percep-
tion, localization, mapping, and efficiency. The proposed
system shows better competency in deciding the path with
the existing system.

5.1 Cost of hardware components

The whole component which is required for the creation of
these projects is very optimal as compared to the other
components which were used. Table 11 contains the cost
of the hardware components in USD and INR.

Table 8: Analysis of congestion condition by considering the EPV factor

Congestion condition Traffic system Object identification Noise EPV calculation Optimal path

CC1 0 0 0 0 0
CC2 23 22 33.4 26.1 0.66
CC3 22 28 38 29.3 0.79
CC4 25 29 39 31 0.81
CC5 46 45 50 47 0.88

Figure 8: Analysis of the congestion condition.

Table 9: Analysis of pothole condition and traffic light condition by
considering the EPV factor

Pothole TL TS OI noise EPV Optimal path

PP1 TL1 8 12 8 9 0.3
PP2 TL2 28 27 46.9 34 0.68
PP3 TL3 29 54 56 46 0.74
PP4 TL4 29 59 39 42 0.87
PP5 TL5 46 45 50 47 0.96

TL: traffic light, TS: traffic system: OI: object identification, OP: optimal path.
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6 Conclusion

Based on the findings from the system analysis, our team
attempted to compare the results based on sensors, percep-
tion, and localization. We suggested that the system have a
multifunction choice for choosing the pathway, taking the
EPV component into account slightly to ensure it includes
the most prevalent path. With this approach, we were able

to identify the most efficient approach to take while dis-
cussing in a hostile environment. This was an effective way
to determine the most effective course of action as it takes
into account multiple factors such as sensors, perception,
and localization. Furthermore, it further strengthens our
team’s commitment to providing maximum efficiency with
minimum effort.
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