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Preface

Since the discovery of superconductivity more than a century ago—a milestone
in condensed matter physics—a large variety of superconducting materials have
been studied. Besides conventional superconductors, materials well described by
the Bardeen–Cooper–Schrieffer (BCS) theory, the so-called unconventional super-
conductors, came into play starting from the 80s. These are materials characterized
by at least one feature among multiband superconductivity, triplet spin state and
non-phononic coupling. If the coupling mechanism is non-phononic, Cooper pairs
are bound together by the exchange of a different boson with respect to phonons
(as for the BCS model). A typical example is spin fluctuations in superconductors
contiguous to a magnetic phase or even with a coexisting magnetic order. The cate-
gory of unconventional superconductors includes a number of compounds, such as
the cuprates, magnesium diboride and the recently discovered iron-based supercon-
ductors, that raised great interest for both their peculiar fundamental properties and
their potential for practical applications. All experimental methods meeting the need
for a complete characterization of such materials are useful to reach new insights and
a comprehensive understanding of their properties. Within this context, microwave
methods, and in particular resonant techniques, were revealed to be particularly
valuable and provided the motivation for this work.

The idea to write this book stems from the research work of Dr. D. Torsello
within his Ph.D. in Physics, started in 2017 at the Politecnico di Torino under the
supervision of Prof. G. Ghigo. The Ph.D. project focused on the influence of disorder
on the fundamental properties of Iron-Based Superconductors (IBS), investigated by
means of a microwave Coplanar-Waveguide Resonator (CPWR) technique. Indeed,
CPWR techniques have been used in our research group at Politecnico since the early
2000s, to study also other classes of superconductors, i.e. cuprates and magnesium
diboride (MgB2). Thus, we decided to extend the subject of this book to cover the
whole research activity on the study of unconventional superconductors by CPWR
methods. Not only do the experimental microwave techniques underlie all these
studies, but also some common physical aspects lead to similarmodeling approaches,
e.g. both MgB2 and IBS are multiband superconductors.
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vi Preface

The book is structured starting with a brief state of the art of methods and
approaches to themicrowave characterization of superconductors,with a short review
of techniques. Then, a detailed description of the adoptedCPWRmicrowavemethods
is given. Basically, the approach to study superconducting thin films is to pattern them
in the shape of coplanar resonators and to analyze their behavior as a function of
temperature, rf (radiofrequency) and dc field. To analyze single crystals, instead, we
adopted a perturbative approach, measuring the modifications of the transmission
parameters of a coplanar resonator to which the crystal under study is coupled. In
a second part, several cases of study are described, which comprehensively cover
a large spectrum of materials and issues. Particular emphasis is given to hot topics
about iron-based superconductors.

Thiswork is intended for a broad audience, fromPh.D. students to senior scientists.
The authors believe that the book will serve as a comprehensive guide, providing
inspiring examples of the use of CPWR techniques to address key topics in the field
of unconventional superconductivity.

The authors warmly acknowledge their colleagues from Politecnico di Torino,
Profs. Roberto Gerbaldo, Laura Gozzelino, Francesco Laviano andGiovanni Alberto
Ummarino, for providing them with support in the research work over the years and
with useful comments to write the book. The authors also acknowledge researchers
providing themwith high-quality samples of themost interesting and recently discov-
ered materials, namely Prof. T. Tamegai and his group at the University of Tokyo,
Japan; Prof. P. Canfield and his group at the Iowa State University, USA; and Dr. E.
Monticone and his group at INRIM, Italy. The results presented here were achieved
also through other precious collaborations, with R. Prozorov, M.A. Tanatar, V.S.
Stolyarov, D. Roditchev, the INFN-LNL staff, to name a few.

Turin, Italy
September 2021

Gianluca Ghigo
Daniele Torsello
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ARPES Angle Resolved Photoemission Spectroscopy
BCS Bardeen–Cooper–Schrieffer
CPW CoPlanar Waveguide
CPWR CoPlanar Waveguide Resonator
dpa Displacements per atom
e Elementary charge
E Complex permittivity
f 0 Resonance frequency
φ0 Magnetic flux quantum
F Ion-irradiation fluence
GB Grain Boundary
GBN Grain Boundary Network
�f , �Q Geometrical factors
�ij Interband scattering rate
Hc1 Lower critical magnetic field
Hc2 Upper critical magnetic field
Hrf rf magnetic field
HTS High critical Temperature Superconductors
IBS Iron-Based Superconductor
Irf rf current
j Imaginary unit

√−1
jc Critical current density
jdp Depairing current density
jrf rf current density
LAO LaAlO3

λL, λ London penetration depth
MOI Magneto-Optical Imaging
μ Complex magnetic permeability
NFMM Near-Field Microwave Microscope
NMR Nuclear Magnetic Resonance
QCP Quantum Critical Point
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QL Loaded quality factor
Q0 Unloaded quality factor
rf Radio Frequency
Rs Surface resistance
Sij S-parameter matrix
σ Complex conductivity
Tc, Tsc Superconducting critical temperature
τ Quasiparticle scattering time
VNA Vector Network Analyzer
WL Weak Link
Xs Surface reactance
YBCO YBa2Cu3O7–x

Zs Surface impedance
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