

Bosnian Journal of Basic Medical Sciences ISSN: 1512-8601 (Print) | ISSN: 1840-4812 (Online) | OPEN ACCESS Journal Impact Factor® (2020): 3.36 <u>CiteScore® (2020): 4.0</u> www.bjbms.org | blog.bjbms.org

The BJBMS publishes an "Advanced online" manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate). An "Advanced online" manuscript is published online prior to copyediting, formatting for publication and author proofing, but is nonetheless fully citable through its Digital Object Identifier (doi®). Nevertheless, this "Advanced online" version is NOT the final version of the manuscript. When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc. the new final version will be accessible through the same doi and this "Advanced online" version of the paper will disappear.

RESEARCH ARTICLE

MOLECULAR BIOLOGY

Kim, et al: Identification of OGCT associated variants using WES

Whole-exome sequencing reveals rare genetic variations in ovarian granulosa cell tumor

Seungyeon Kim¹, Songmi Kim^{1,3}, Seyoung Mun^{2,3}, Yongsik Kwak³, Kwang-Sun Suh⁴, Song-Yi Choi^{4*}, and Kyudong Han^{1,3*}

¹ Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea

² Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea

³ Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea

⁴ Department of Pathology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea

***Corresponding author**: Dr. Kyudong Han, Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Republic of Korea E-mail: <u>kyudong.han@gmail.com</u>

Dr. Song-Yi Choi, Department of Pathology, School of Medicine, Chungnam National

University, Daejeon, Republic of Korea

E- mail: sweetssong79@gmail.com

DOI: <u>https://doi.org/10.17305/bjbms.2021.6789</u>

Submitted: 19 October 2021/Accepted: 11 November 2021/ Published online: 30

November 2021

Conflict of interest: The authors declare that there is no conflict of interest regarding the publication of this paper.

Funding: This work was supported by Chungnam National University Hospital Research Fund 2016-CF-014.

Licence: © The Author(s) (2022). This work is licensed under a Creative Commons

Attribution 4.0 International License

ABSTRACT

Ovarian granulosa cell tumor (OGCT) is a rare ovarian tumor that accounts for about 2-5% of all ovarian tumors. Despite the low grade of ovarian tumors, high and late recurrences are common in OGCT patients. Even though this tumor usually occurs in adult women with high estrogen levels, the cause of OGCT is still unknown. To screen genetic variants associated with OGCT, we collected normal and matched-tumor formalin-fixed paraffin-embedded (FFPE) from 11 OGCT patients and performed whole-exome sequencing (WES) using Illumina NovaSeq 6000. A total of 1,067,219 single nucleotide polymorphisms (SNPs) and 162,155 insertions/deletions (indels) were identified from 11 pairs of samples. Of these, we identified 44 tumor-specific SNPs in 22 genes and four tumor-specific indels in one gene that were common to 11 patients. We used three cancer databases (TCGA, COSMIC, and ICGC) to investigate genes associated with ovarian cancers. Nine genes (SEC22B, FEZ2, ANKRD36B, GYPA, MUC3A, PRSS3, NUTM2A, OR8U1, and KRTAP10-6) associated with ovarian cancers were found in all three databases. In addition, we identified seven rare variants with MAF \leq 0.05 in two genes (PRSS3 and MUC3A). Of seven rare variants, five variants in MUC3A are potentially pathogenic. Furthermore, we conducted gene enrichment analysis of tumor-specific 417 genes in SNPs and 106 genes in indels using cytoscape and metascape. In GO analysis, these genes were highly enriched in "selective autophagy", and "regulation of anoikis". Taken together, we suggest that MUC3A is implicated in OGCT development, and MUC3A could be used as a potential biomarker for OGCT diagnosis.

KEYWORD: Whole-exome sequencing; Ovarian granulosa cell tumor; Single-nucleotide polymorphism; Indels; Ovarian cancer

INTRODUCTION

Ovarian granulosa cell tumor (OGCT) is a rare sex cord-stromal tumor that Rokitansky first described in 1855 (1). It accounts for only 2-5% of all ovarian tumors and is estimated to occur in 0.6-1.0 per 100,000 women annually worldwide (2, 3). The incidence of OGCT is highest in postmenopausal women, especially between the ages of 50 to 55, and juvenile GCT occurs in less than 5% of pre-pubescent girls and women younger than 30 years of age (4, 5). The symptoms of OGCT are vaginal bleeding, pain abdomen, abdominal distension, menstrual abnormalities, or amenorrhea (2).

About 70-80% of OGCTs are diagnosed at stage I disease, the 10-year survival rate in stage I is 84-95%, decreases to 50-65% in stage II, and 17-33% in stages III and IV (6). Although OGCT has a low grade, high and late recurrences are common in patients with OGCT (7). Recurrence occurs in about 50% of patients, and it is known that 50-80% of patients die from recurrence (8). When recurrence occurs, the prognosis for the patient is poor, and conventional chemotherapy is not effective for recurrence (9). Although this tumor is usually known to occur in adult women with high estrogen levels, the cause of OGCT is still unclear (10).

To date, several types of research have been conducted to elucidate the pathogenesis and treatment of OGCT. Shah et al. reported that more than 95% of OGCT patients were found to have a *FOXL2* c.402C>G point mutation (C134W), which is a crucial transcription factor that regulates ovarian development and function (11-13). Interestingly, WGS revealed that the *FOXL2* (c.402C>G) mutation is specific for OGCT but not commonly found in other cancers (12). *FOXL2* regulates the crucial signaling pathways in the ovary, such as TGF- β /BMP signaling, MAP-kinase signaling, steroid signaling, PI3K/Akt signaling, involved in cell proliferation and apoptosis (14). A recent study by Alexiadis et al. reported the high frequency of the *TERT* g. -124C>T mutation in the recurrent adult GCT (15). *TERT* encodes the catalytic subunit of telomerase involved in oncogenesis. The mutation of the *TERT* promoter is a biomarker for the prognosis of various cancers, including hepatocellular carcinoma, chondrosarcoma, and primary glioblastoma (16-18). Despite efforts to understand the development and recurrence of OGCT, the pathogenesis is still insufficient. Here, we aimed to detect genetic variants involved in OGCT development in normal and matched-tumor tissues from 11 OGCT patients by whole-exome sequencing (WES).

MATERIALS AND METHODS

Ethics statement

The study protocol was approved by the Institutional Review Board (IRB) of Chungnam National University Hospital and complied with the tenets of the Declaration of Helsinki (2016-12-056).

Patient

A total of 11 OGCT patients from the Chungnam university hospital were included in this study. The age of patients was 27-78 years old. Patients were diagnosed at various times by individuals from 2011 to 2017. We collected normal and matched-tumor formalin-fixed paraffin-embedded (FFPE) from 11 OGCT patients. The tumor with an average size of about 10 cm (range 3.3-22.5 cm) was collected from each of the 11 patients (Table 1). According to the manufacturer's instructions, DNAs were extracted from twenty-two FFPE samples from 11 patients using the Maxwell 16 FFPE plus LEV DNA purification kit (Promega, USA). The paired normal tissue was the contralateral ovarian tissue from each patient. The pathologist then made a microscopic diagnosis of normal and tumor tissue using hematoxylin and eosin (H&E)-stained biopsy slides.

Whole-Exome Sequencing and variant calling

Preparation for capturing libraries with an Agilent SureSelect Target Enrichment Kit (Agilent, USA) followed the manufacture's protocols. The libraries were sequenced with an Illumina NovaSeq 6000 with a 2 x 150 bp paired-end read. After that, sequencing reads were aligned to the human reference genome using the Burrows-Wheeler Alignment tool (BWA 0.7.12) with -M parameters. Picard (picard-tools-1.130) was used to remove PCR duplicates, and the Genome Analysis Tool kit (GATKv3.4.0) was performed for variant calling with -T and -knownSites parameters. Here, we only used the variants more than 30 depths in coverage. Functional annotation was conducted using SnpEff (SnpEff_v4.1g) with default settings.

Cancer databases

We used The Catalogue Of Somatic Mutations In Cancer (COSMIC), International Cancer Genome Consortium (ICGC), and The Cancer Genome Atlas (TCGA) to find ovarian cancer-related genes. Three databases contain mutational signatures in the cancer genome.

Gene Set Enrichment Analysis

We performed a gene ontology (GO) enrichment analysis of the variants with tumorspecific genes to investigate the biological relevance of the candidate genes using Metascape software (<u>https://metascape.org/gp/index.html</u>). The significant gene sets are classified into three classes: biological process, cellular component, and molecular function. In addition, to determine their biological functions related to cancer and associated pathway, we performed molecular and genetic interaction networks analysis using Cytoscape software (cytoscape_v3.7.0 and ClueGO_v.2.5.7). We used the Benjamini & Hochberg (BH) adjustment to correct the p-value in ClueGO.

Pathogenic variants analysis

We used three databases to analyze the Exome Aggregation Consortium (ExAC) (n = 60,706, http://exac.broadinstitute.org/), 1000 Genomes project phase 3 database (1000 G; n = 2,504, http://www.internationalgenome.org/), and National Heart, Lung, and Blood Institute (NHLBI) (n = 6,503, <u>http://evs.gs.washington.edu/EVS/</u>) to investigate the rare variants in the general population. We collected nonsynonymous variants with MAF \leq 0.05, shared by 11 patients. In addition, we performed a pathogenic analysis of the variants to predict protein functional effects using Sorting Intolerant From Tolerant (SIFT) (<u>http://sift.jcvi.org</u>) and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) tools.

RESULTS

Subjects and Whole-exome sequencing

We recruited 11 patients from the Chungnam university hospital. The mean age was 56 (range 27-78) years. The size of the tumor is an average of 10.00 cm (Table 1). We obtained 22 fresh-frozen samples, including 11 normal and matched- tumor FFPE from OGCT patients for WES. On Illumina NovaSeq 6000 platform with 150 bp paired-end reads, WES data were generated with an average of 128 Gb sequences. The post-alignment average read depth of the whole-exome sequencing was 258X and 169.7X in tumor and normal samples, respectively. Sequencing quality for Q30 value was 91.5% and 92.8% in tumor and normal tissues, respectively (Table S1).

Identification of OGCT related variants

A total of 1,067,219 single nucleotide polymorphisms (SNPs) and 162,155 insertions/deletions (indels) were identified from WES data of 22 samples. To identify OGCT related variants, we collected 29,998 SNPs and 3,437 indels, shared by 11 patients (Table 2). In the variant calling step, we selected only the variants with at least 30 depth coverage to eliminate possible errors in library preparation and sequencing data production and to determine the substantial variants in OGCT. As a result, variants with 31.7 minor depth and 417 average depth were selected. To identify OGCT related variants, we identified 7,957 SNPs and 234 indels in the exonic region (Table 2). Of these, we identified 4110 nonsynonymous

variants, including missense, nonsense, and unknown variants, and 137 frameshift indels, including nonsense and unknown variants that could affect protein functions (Table 3). To analyze the variants associated with OGCT development and recurrence, we focused on 44 tumor-specific nonsynonymous variants in 22 genes (PABPC3, ZNF595, MUC3A, OR2T4, SEC22B, PRSS3, NBPF14;NBPF19;NBPF26;NBPF9, FEZ2, ANKRD36C, ANKRD36B, GYPA, PRIM2, VWDE, CFTR, NUTM2A, MUC6, OR8U1;OR8U8, GOLGA6L3, TPSD1, NPIPB15, SHC2, and KRTAP10-6) and four tumor-specific frameshift indels in ZNF595 (Table 3). PABPC3 encodes a protein that binds to the poly (A) tail and regulates mRNA stability. Previous studies reported that WES reveals high-risk frameshift mutations and somatic mutations for *PABPC3* in breast cancer patients (19, 20) and malignant ovarian germ cell tumors, respectively (21). ZNF595 encodes a protein belonging to the C2H2 zinc finger protein family that is involved in transcriptional regulation. Recent studies revealed that zinc finger protein families are closely related to various cancer and tumor types, such as tumorigenesis or tumor suppressor genes (22). For example, overexpression of ZNF304 transcriptionally regulates $\beta 1$ integrin, resulting in metastasis of ovarian cancer (23). $\beta 1$ integrin, a member of the integrin family, is involved in cell adhesion and recognition in immune response, tissue repair, and tumor cell metastasis. In addition, ZKSCAN3 (ZFN306) also contributes to tumor metastasis in colorectal cancer cells, prostate cancers, and hepatocellular carcinoma (24-26). For a 5-year survival rate, ZKSCAN3 is used for the potential prognostic marker of hepatocellular carcinoma patients. ZKSCAN3 increases the expression of *ITGB4* (integrin β4) binding to its promoter, resulting in promoting migration, invasion, and EMP progress. *ITGB4* activates the AKT signaling pathway involved in cell proliferation (26).

Furthermore, we investigated 22 genes for whether the genes were related to OGCT using three cancer-related databases (TCGA, ICGC, and COSMIC) that contain cancer-associated genes across all cancer types. We found nine genes (*SEC22B*, *FEZ2*, *ANKRD36B*, *GYPA*, *MUC3A*, *PRSS3*, *NUTM2A*, *OR8U1*, and *KRTAP10-6*) in all three databases, which were highly associated with ovarian cancer (Figure 2). *FEZ2* is a family of FEZ proteins involved in axonal growth in *Caenorhabditis elegans*. FEZ proteins are involved in neuronal development, neurological disorders, viral infection, and autophagy. *FEZ1* is a tumor suppressor gene and is implicated in ovarian carcinogenesis. *FEZ1* was evaluated as a prognostic and diagnostic marker for ovarian neoplasia (27). *NUTM2A* (NUT family member 2A), also known as *FAM22A*, reported that *YWHAE-NUTM2A* fusion transcript is associated with aggressive endometrial stromal sarcomas (28). *SEC22B*, a member of the *SEC22* family of vesicle-

trafficking proteins, is involved in the membrane fusion of vesicle trafficking between the endoplasmic reticulum (ER) and Golgi apparatus, secretory autophagy, and antigen crosspresentation (29). Several studies have reported that *SEC22B* is highly related to tumorigenesis that the mutations in *SEC22B* were found in various cancers. Interestingly, the fusion of *SEC22B*-NOTCH2 activates the NOTCH pathway to the proliferation and survival of tumor cells in aggressive breast cancers and mantle cell lymphoma (30-32).

Enrichment and pathway analysis

To understand the functional relevance, we analyzed the gene ontology of 507 genes (16 overlapping genes in SNPs and indels), including 417 and 106 genes in tumor-specific SNPs and tumor-specific indels, respectively, in cellular compounds (CC), molecular functions (MF), and biological processes (BP) through metascape analysis (Figure 3; Table S2). The most significantly enriched gene set in the cellular component is "extracellular matrix (23 genes)", "clathrin-coated pit (16 genes)", "autophagosome (8 genes)", and "ciliary base (10 genes)" (Figure 3A). For the molecular function, "inorganic molecular entity transmembrane transporter activity (31 genes)" and "protein kinase binding (29 genes)" showed the most significantly enriched (Figure 3B). The most significant gene set enrichment is "response to starvation (20 genes)", "chloride transmembrane transport (21 genes)", "selective autophagy (31 genes)", and "regulation of cell morphogenesis (43 genes)" in the biological process (Figure 3C). Interestingly, two candidate genes (SEC22B and FEZ2), which were highly associated with ovarian cancer in three cancer databases, were identified in the term "selective autophagy". In addition, we performed gene-gene interaction analysis using ClueGO (p-value <0.05; Benjamini-Hochberg). The genes were highly enriched in "selective autophagy (9 genes)", "cellular component assembly in morphogenesis (9 genes)", "regulation of anoikis (4 genes)", and "regulation of cell morphogenesis (17 genes)" (Figure 4; Table S3).

Pathogenic variants in OGCT

To identify pathogenic variants in OGCT, we collected variants with MAF less than 0.05 using the 1,000 genomes project database, NHLBI exome sequencing project (ESP), and ExAC database (http://exac.broadinstitute.org). Of the 16 variants in nine genes found in three cancer databases, we identified seven nonsynonymous SNPs, except unknown variants with MAF \leq 0.05, including five SNPs (p.Thr343Ile, p.Met357Ile, p.Glu364Ala, p.Glu364Asp, and p.Ser366Thr) in *MUC3A* and two SNPs (p.Ser7Asn and p.Gly8Val) in *PRSS3* (Table 4). In investigating rare functional variants using the public database, Allele Frequency Aggregator

(ALFA), we confirmed that the seven selected variants have an infrequent MAF of 0.0092 on average in the Asian population (Table 4) (33).

PRSS3 is a member of the trypsin family of serine proteases. The serine proteases are secreted by several enzymes that promote tumor growth and metastatic progression in various cancers, including lung adenocarcinoma, prostate cancer, and pancreatic cancer (34, 35). Interestingly, the expression of *PRSS3* showed a significant increase in epithelial ovarian cancer tissue compared to normal ovarian samples at mRNA and protein levels (36). *MUC3A* is a member of the membrane mucin gene family that encodes secreted and membrane bounding epithelial glycoproteins and also referred to as a potent modifier of epidermal growth factor receptor (EGFR) and is known to lead to poor prognosis by upregulated and downregulated expression of programmed cell death-ligand 1 (PD-L1) in non-small cell lung cancer (37). In addition, we used SIFT and polyphen-2 program to analyze seven variants for the potentially deleterious effects. Of these, two SNPs (p.Ser7Asn and p.Gly8Val) in *PRSS3* were predicted to be tolerant or benign in the SIFT and Polyphen-2 (Table 4). 5 SNP variants in *MUC3A* were predicted to be "unknown" in SIFT and Polyphen-2 (Table 4).

DISCUSSION

Today, high throughput next-generation sequencing (NGS) is a technology that helps make genetic testing faster and cheaper. Whole-exome sequencing (WES), one of the NGS technologies, is widely used to investigate the genetic variations and mechanisms of rare diseases and cancers. Although exons account for only about 2% of the human genome, exons contain approximately 85% of the mutations in Mendelian disorders with significant effects (38, 39).

In ovarian cancer, there are various factors to increase the risks, such as aging, obesity, hormone therapy after menopause, and smoking. However, the development and causes of ovarian granulosa cell tumor (OGCT) is still unclear. OGCT accounts for about 5% of ovarian cancers, but the prognosis is poor due to a high recurrence rate of over 50%. Thus, early diagnosis and treatment using genetic mutations are important.

Several studies tried to understand the mechanism of occurrence for ovarian granulosa cell tumors (OGCTs) using NGS sequencing. *FOXL2* mutation (C134W) was found using whole-transcriptome paired-end RNA sequencing and whole-genome sequencing (13, 40). The *FOXL2* is strongly expressed in granulosa cells as one of the earliest markers of ovarian differentiation. *FOXL2* C134W mutation is the loss of function mutation that is prevalent in adult OCCT patients. Two *TERT* promoter mutations (C228T and C250T) might be a biomarker of OGCT using whole-exome sequencing and targeted sequencing (15). These two mutations are involved in telomerase activation in several cancers, including central nervous system tumors, hepatocellular carcinomas, bladder cancers, and thyroid cancers. Significantly, they are hot-spot mutations found in about 15.9% of ovarian clear cell carcinomas.

Mucins protect epithelial tissues against external environments under normal physiological conditions (41). The mucins are a family of O-glycoproteins that play an important role in epithelial cell regeneration, cell adhesions, immune response, and cell signaling. Reduced expression levels of several mucin genes, including *MUC3*, *MUC4*, and *MUC5B* in patients with Crohn's disease, suggest primary or early mucosal defect of these genes (42). Chauhan et al. showed that *MUC13* is more overexpressed in malignant ovarian tumors than in benign ovarian tumors (43). *MUC16* is overexpressed in epithelial ovarian cancer and used as a biomarker (CA125) (44-46). On the other hand, the expression of *MUC3* and *MUC4* was significantly reduced as the cancer stage increased (47). *MUC3A* plays a role in the pathogenesis and progression of cancers (48). Abnormal overexpression of *MUC3A* in

clear-cell renal cell carcinoma (ccRcc), breast, pancreatic, gastric, colorectal, appendiceal, and prostate cancer is associated with poor prognosis (49-52). The abnormal expression of *MUC3A* is highly associated with a poor prognosis in many tumor types, although the roles of *MUC3A* in cancer development are not yet clear. In addition, hypomethylation contributes to the expression of *MUC3A* in cancer cells (53). The methylation status of *MUC3A* is also utilized as an epigenetic diagnostic marker for carcinogenic risk and prognosis in cancer patients.

Gene enrichment analysis showed that tumor-specific variants are highly enriched in anoikis and autophagy pathways. Anoikis resistance represents a critical and distinguishing feature underlying the aggressiveness of ovarian cancer cells. Several studies reported that enhanced anoikis resistance is closely related to activating the Src/Akt/Erk signaling pathway, which is a critical cellular process including aggressiveness and tumorigenicity (54, 55). In addition, autophagy has been implicated in both tumor suppression and growth, and regulates oncogenic protein substrates and angiogenesis (56, 57). Autophagy can inhibit cancer by preventing angiogenesis in prostate, breast, and colon cancer cells. Cai et al. reported that a high rate of metabolism and autophagy is associated with increased anoikis resistance, and blocking these metabolic pathways significantly increases anoikis and inhibits tumor development *in vitro* and *in vivo* (54).

CONCLUSION

In summary, we identified five rare variants for the potentially deleterious effects in *MUC3A* though WES. Our findings suggest that *MUC3A* may contribute to OGCT development, although little is known about the functional role of *MUC3A* in cancer pathology. It also suggests that *MUC3A* may be used as a potential biomarker for OGCT. For this, further investigation with more tumor samples is required to understand the development of OGCT.

REFERENCES

- 1. Rokitansky C. Uber abnormalitiaten des corpus luteum. Allg Wien Med. 1859(1859):4.
- Chen YC, Chang LC, Soong RS. A late recurring and easily forgotten tumor: ovarian granulosa cell tumor. World J Surg Oncol. 2012;10:85.
- Hillman RT, Celestino J, Terranova C, Beird HC, Gumbs C, Little L, et al. KMT2D/MLL2 inactivation is associated with recurrence in adult-type granulosa cell tumors of the ovary. Nat Commun. 2018;9(1):2496.
- Pectasides D, Pectasides E, Psyrri A. Granulosa cell tumor of the ovary. Cancer Treat Rev. 2008;34(1):1-12.
- 5. Ukah CO, Ikpeze OC, Eleje GU, Eke AC. Adult granulosa cell tumor associated with endometrial carcinoma: a case report. J Med Case Rep. 2011;5:340.
- Schwartz PE, Smith JP. Treatment of ovarian stromal tumors. Am J Obstet Gynecol. 1976;125(3):402-11.
- Ayhan A, Salman MC, Velipasaoglu M, Sakinci M, Yuce K. Prognostic factors in adult granulosa cell tumors of the ovary: a retrospective analysis of 80 cases. J Gynecol Oncol. 2009;20(3):158-63.
- Roze J, Monroe G, Kutzera J, Groeneweg J, Stelloo E, Paijens S, et al. Whole Genome Analysis of Ovarian Granulosa Cell Tumors Reveals Tumor Heterogeneity and a High-Grade TP53-Specific Subgroup. Cancers (Basel). 2020;12(5).
- Sun HD, Lin H, Jao MS, Wang KL, Liou WS, Hung YC, et al. A long-term follow-up study of 176 cases with adult-type ovarian granulosa cell tumors. Gynecol Oncol. 2012;124(2):244-9.
- Schumer ST, Cannistra SA. Granulosa cell tumor of the ovary. J Clin Oncol. 2003;21(6):1180-9.
- Jamieson S, Butzow R, Andersson N, Alexiadis M, Unkila-Kallio L, Heikinheimo M, et al. The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. Mod Pathol. 2010;23(11):1477-85.
- Schrader KA, Gorbatcheva B, Senz J, Heravi-Moussavi A, Melnyk N, Salamanca C, et al. The specificity of the FOXL2 c.402C>G somatic mutation: a survey of solid tumors. PLoS One. 2009;4(11):e7988.
- 13. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med. 2009;360(26):2719-29.

- 14. Georges A, L"Hote D, Todeschini AL, Auguste A, Legois B, Zider A, et al. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. Elife. 2014;3.
- 15. Alexiadis M, Rowley SM, Chu S, Leung DTH, Stewart CJR, Amarasinghe KC, et al. Mutational Landscape of Ovarian Adult Granulosa Cell Tumors from Whole Exome and Targeted TERT Promoter Sequencing. Mol Cancer Res. 2019;17(1):177-85.
- 16. Lee HW, Park TI, Jang SY, Park SY, Park WJ, Jung SJ, et al. Clinicopathological characteristics of TERT promoter mutation and telomere length in hepatocellular carcinoma. Medicine (Baltimore). 2017;96(5):e5766.
- 17. Zhang Y, Chen Y, Yang C, Seger N, Hesla AC, Tsagkozis P, et al. TERT promoter mutation is an objective clinical marker for disease progression in chondrosarcoma. Mod Pathol. 2021;34(11):2020-7.
- Mosrati MA, Malmstrom A, Lysiak M, Krysztofiak A, Hallbeck M, Milos P, et al. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 2015;6(18):16663-73.
- 19. Hamdi Y, Boujemaa M, Ben Rekaya M, Ben Hamda C, Mighri N, El Benna H, et al. Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases. J Transl Med. 2018;16(1):158.
- 20. Kim YC, Soliman AS, Cui J, Ramadan M, Hablas A, Abouelhoda M, et al. Unique Features of Germline Variation in Five Egyptian Familial Breast Cancer Families Revealed by Exome Sequencing. PLoS One. 2017;12(1):e0167581.
- 21. Chen J, Li Y, Wu J, Liu Y, Kang S. Whole-exome sequencing reveals potential germline and somatic mutations in 60 malignant ovarian germ cell tumorsdagger. Biol Reprod. 2021;105(1):164-78.
- 22. Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, et al. Zincfinger proteins in health and disease. Cell Death Discov. 2017;3:17071.
- 23. Aslan B, Monroig P, Hsu MC, Pena GA, Rodriguez-Aguayo C, Gonzalez-Villasana V, et al. The ZNF304-integrin axis protects against anoikis in cancer. Nat Commun. 2015;6:7351.
- 24. Zhang X, Jing Y, Qin Y, Hunsucker S, Meng H, Sui J, et al. The zinc finger transcription factor ZKSCAN3 promotes prostate cancer cell migration. Int J Biochem Cell Biol. 2012;44(7):1166-73.

- 25. Yang L, Hamilton SR, Sood A, Kuwai T, Ellis L, Sanguino A, et al. The previously undescribed ZKSCAN3 (ZNF306) is a novel "driver" of colorectal cancer progression. Cancer Res. 2008;68(11):4321-30.
- 26. Li J, Hao N, Han J, Zhang M, Li X, Yang N. ZKSCAN3 drives tumor metastasis via integrin beta4/FAK/AKT mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Cell Int. 2020;20:216.
- 27. Califano D, Pignata S, Pisano C, Greggi S, Laurelli G, Losito NS, et al. FEZ1/LZTS1 protein expression in ovarian cancer. J Cell Physiol. 2010;222(2):382-6.
- 28. Kruse AJ, Croce S, Kruitwagen RF, Riedl RG, Slangen BF, Van Gorp T, et al. Aggressive behavior and poor prognosis of endometrial stromal sarcomas with YWHAE-FAM22 rearrangement indicate the clinical importance to recognize this subset. Int J Gynecol Cancer. 2014;24(9):1616-22.
- 29. Sun W, Tian BX, Wang SH, Liu PJ, Wang YC. The function of SEC22B and its role in human diseases. Cytoskeleton (Hoboken). 2020;77(8):303-12.
- 30. Veeraraghavan J, Ma J, Hu Y, Wang XS. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications. Breast Cancer Res Treat. 2016;158(2):219-32.
- 31. Tashkandi H, Petrova-Drus K, Batlevi CL, Arcila ME, Roshal M, Sen F, et al. Divergent clonal evolution of a common precursor to mantle cell lymphoma and classic Hodgkin lymphoma. Cold Spring Harb Mol Case Stud. 2019;5(6).
- 32. Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 2011;17(12):1646-51.
- 33. ALFA: Allele frequency aggregator [Internet]. Nih.gov. [cited 2021 Dec 24]. Available from: <u>http://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/</u>
- 34. Ma H, Hockla A, Mehner C, Coban M, Papo N, Radisky DC, et al. PRSS3/Mesotrypsin and kallikrein-related peptidase 5 are associated with poor prognosis and contribute to tumor cell invasion and growth in lung adenocarcinoma. Sci Rep. 2019;9(1):1844.
- 35. Jiang G, Cao F, Ren G, Gao D, Bhakta V, Zhang Y, et al. PRSS3 promotes tumour growth and metastasis of human pancreatic cancer. Gut. 2010;59(11):1535-44.
- 36. Ma R, Ye X, Cheng H, Ma Y, Cui H, Chang X. PRSS3 expression is associated with tumor progression and poor prognosis in epithelial ovarian cancer. Gynecol Oncol. 2015;137(3):546-52.

- 37. Luo Y, Ma S, Sun Y, Peng S, Zeng Z, Han L, et al. MUC3A induces PD-L1 and reduces tyrosine kinase inhibitors effects in EGFR-mutant non-small cell lung cancer. Int J Biol Sci. 2021;17(7):1671-81.
- Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59(1):5-15.
- 39. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096-101.
- 40. Pilsworth JA, Cochrane DR, Neilson SJ, Moussavi BH, Lai D, Munzur AD, et al. Adulttype granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res. 2021;7(3):243-52.
- 41. Gendler SJ, Spicer AP. Epithelial mucin genes. Annu Rev Physiol. 1995;57:607-34.
- 42. Buisine MP, Desreumaux P, Debailleul V, Gambiez L, Geboes K, Ectors N, et al. Abnormalities in mucin gene expression in Crohn's disease. Inflamm Bowel Dis. 1999;5(1):24-32.
- 43. Chauhan SC, Kumar D, Jaggi M. Mucins in ovarian cancer diagnosis and therapy. J Ovarian Res. 2009;2:21.
- 44. Yin BW, Lloyd KO. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J Biol Chem. 2001;276(29):27371-5.
- 45. Theriault C, Pinard M, Comamala M, Migneault M, Beaudin J, Matte I, et al. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol Oncol. 2011;121(3):434-43.
- 46. Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, et al. MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 2014;13:129.
- 47. Giuntoli RL, 2nd, Rodriguez GC, Whitaker RS, Dodge R, Voynow JA. Mucin gene expression in ovarian cancers. Cancer Res. 1998;58(23):5546-50.
- 48. Niu T, Liu Y, Zhang Y, Fu Q, Liu Z, Wang Z, et al. Increased expression of MUC3A is associated with poor prognosis in localized clear-cell renal cell carcinoma. Oncotarget. 2016;7(31):50017-26.
- 49. Wang RQ, Fang DC. Alterations of MUC1 and MUC3 expression in gastric carcinoma: relevance to patient clinicopathological features. J Clin Pathol. 2003;56(5):378-84.

- 50. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol. 2005;18(10):1295-304.
- 51. Park HU, Kim JW, Kim GE, Bae HI, Crawley SC, Yang SC, et al. Aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl Le(x) antigen in pancreatic intraepithelial neoplasia. Pancreas. 2003;26(3):e48-54.
- 52. Leroy X, Devisme L, Buisine MP, Copin MC, Aubert S, Gosselin B, et al. Expression of human mucin genes during normal and abnormal renal development. Am J Clin Pathol. 2003;120(4):544-50.
- 53. Yamada N, Kitamoto S, Yokoyama S, Hamada T, Goto M, Tsutsumida H, et al. Epigenetic regulation of mucin genes in human cancers. Clin Epigenetics. 2011;2(2):85-96.
- 54. Cai Q, Yan L, Xu Y. Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene. 2015;34(25):3315-24.
- 55. Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol. 2012;2012:306879.
- 56. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401-10.
- 57. Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016;30(17):1913-30.

TABLES AND FIGURES

Patient no	Tumor	Normal	Age	Date of diagnosis	Size of tumor
1	T1	N1	50	15-08-21	14
2	T2	N2	54	16-12-30	7.6
3	Т3	N3	78	17-03-03	10
4	T4	N4	63	17-04-26	2.7
5	Т5	N5	63	17-08-18	6.5
6	T6	N6	43	11-03-02	7
7	T7	N7	56	11-12-29	7.5
8	T8	N8	52	13-08-05	3.3
9	Т9	N9	58	14-02-14	18
10	T10	N10	73	15-03-17	11
11	T11	N11	27	15-03-13	22.5

 Table 1. Clinical characteristics of patients with OGCT

Variant		SNPs			Indels	
variant	Normal	Common	Tumor	Normal	Common	Tumor
Intragenic						
Exonic	22 (10)	7877 (4170)	58 (27)	2 (2)	228 (188)	4 (1)
Intronic	70 (66)	15993 (6105)	346 (300)	35 (35)	2319 (1831)	83 (78)
Exonic; Splicing	-	5 (5)	-	-	25 (23)	-
Splicing	-	33 (33)	-	-	56 (47)	-
5"UTR	2 (2)	649 (555)	4 (4)	-	86 (84)	6 (6)
3"UTR	5 (5)	923 (778)	11 (10)	-	114 (108)	9 (8)
5"UTR;3"UTR	-	2 (2)	1 (1)	-	-	-
Intergenic	17 (9)	1330 (459)	33 (22)	4 (3)	156 (91)	4 (4)
Upstream;Downstrea m	-	27 (24)	-	-	7 (5)	-
Upstream	6 (6)	381 (277)	15 (11)	-	62 (55)	4 (4)
Downstream	1 (1)	172 (124)	6 (5)	-	19 (19)	3 (2)
ncRNA exonic	5 (4)	839 (378)	31 (20)	1 (1)	82 (70)	1 (1)
ncRNA splicing	-	2 (2)	-	-	1 (1)	-
ncRNA intronic	10 (9)	1091 (406)	30 (25)	2 (2)	120 (93)	3 (2)

Table 2. The number of candidate variants in OGCT patients

ncRNA exonic;	_	1 (1)	_	_	1 (1)	_
splicing		1 (1)			1 (1)	
Total variants	138	29,325	535	44	3,276	117
(Total Genes)	112	13,319	425	43	2,616	106

T 11 A	T100 4	e	• 4	•	41	•	•	
Table 4	Effects	of v	ariants	ın	the	exonic	regions	
Lable 5.	Litte		ariants	***	unc	caome	1 cgroins	

Variant officiat		SNPs			Indels	
v arrant errect	Normal	Common	Tumor	Normal	Common	Tumor
Nonsynonymous SNV	15 (9)	3782(2347)	35 (19)	-	-	-
Synonymous SNV	7 (3)	3826 (2571)	14 (9)	-	-	-
Unknown	-	235 (70)	9 (3)	-	57 (51)	4 (1)
Start loss	-	9 (9)	-	-	1 (1)	-
Stop loss	-	3 (3)	-	-	-	-
Stop gain	-	22 (17)	-	-	4 (4)	-
Nonframeshift insertion	-	-	-	1 (1)	53 (51)	-
Nonframeshift deletion	-	-	-	1 (1)	42 (42)	-
Frameshift insertion	-	-	-	-	33 (26)	-
Frameshift deletion	-	-	-	-	38 (28)	-
Total variants (Total Genes)	22 (12)	7877 (5017)	58 (31)	2 (2)	228 (203)	4 (1)

Table 4. Detail of rare variants with deleterious effects

Tune	Como	Desition	ng number	Dof	A 14	Construns	Amino acid	MAF in	SIFT	II.um Div	HumVon
туре	Gelle	Position	rs_number	Kei	Alt	Genotype	change	Asian	516 1	HUIIDIV	nuiii v ar
		chr7:100550447	rs776762595	С	Т	c.1028C>T	p.Thr343Ile	0	unknown	unknown	unknown
	МИСЗА	chr7:100550490	rs796897629	G	А	c.1071G>A	p.Met357Ile	0.009	unknown	unknown	unknown
		chr7:100550510	rs796842434	А	С	c.1091A>C	p.Glu364Ala	0.019	unknown	unknown	unknown
SNPs		chr7:100550511	rs74435283	G	С	c.1092G>C	p.Glu364Asp	0	unknown	unknown	unknown
		chr7:100550515	rs796491364	Т	А	c.1096T>A	p.Ser366Thr	0.019	unknown	unknown	unknown
	DDCC2	chr9:33794809	rs201061108	G	А	c.20G>A	p.Ser7Asn	0.006	Tolerant	Benign	Benign
	1 11355	chr9:33794812	rs199873220	G	Т	c.23G>T	p.Gly8Val	0.012	Tolerant	Benign	Benign

Figure 1. Comparison criteria for OGCT rare variant with 11 patients. The normal and cancer tissue isolated from 11 OGCT patients were involved in identification of rare mutation using whole-exome sequencing. Green and red boxes indicate normal and matched-tumor samples, respectively. The scope was narrowed step by step, and the critical nonsynonymous variants closely related to OGCT were finally identified by evaluating the influence of phenotype.

Figure 2. Venn diagram of the three cancer-related databases (ICGC, TCGA, and COSMIC). The Venn diagram shows the genes harboring tumor-specific nonsynonymous variants matched with each database, including TCGA (yellow), ICGC (pink), and COSMIC (blue) cancer genome projects. Nine were included in the common set as commonly identified genes in all databases.

(C)

Figure 3. GO function enrichment analysis of candidate genes in OGCT patients. GO enrichment analysis of tumor-specific genes common to 11 patients was retrieved using Metascape software. Significantly (*P*-value<0.05) enriched GO terms in cellular components (A), molecular functions (B), and biological processes (C) branches are presented. Bar chart of enriched GO term clusters; color intensity statistical significance.

Figure 4. Gene ontology (GO) functional network analysis. Statistically significant enriched GO terms visualized by Cytoscape software add-on ClueGO plugin. *P*-value was adjusted by Benjamini–Hochberg false discovery rate (FDR). Node represents each statistically significant enriched GO term. The different size of nodes indicates the number of mapped genes in each GO term. In GO functional network analysis, the most significant and representative GO term is highlighy in bold and the offspring categories are connected with gray title.

SUPPLEMENTAL DATA

Table S1. Summary statistics of sequencing quality

		Sta	atistic	5			pr	e-alig	nment stat	istics				post-al	ignmen	t stat	tistics	
Sam ple Type	Sa m ple na me	Analy zeID	Q2 0(%)	Q3 0(%)	G C(%)	total read s	Av era ge Re ad Le ngt h (bp	To tal Yi eld (M bp)	Target Regions (bp)	average depth (pre- alignment)	Initi al Map pabl e Read s	% Initi al Ma ppa ble Rea ds	Non- Red und ant Rea ds	% Non - Red und ant Rea ds	On- Targ et Rea ds	% O n- Ta rg et Re ad s	On- Target Yield (bp)	mean depth (post- alignment)
Tumo	T1	\$15- 47822 F8	95. 9	93. 2	51. 5	154, 922, 590	101 .0	15, 64 7	60,456,9 63	258.8	154,6 66,55 9	99.8	146, 238, 992	94.5	107, 089, 858	73. 2	9519341 374	157.4
r	T2	S16- 26915 B2	94. 0	90. 6	48. 9	146, 251, 212	101 .0	14, 77 1	60,456,9 63	244.3	144,8 47,86 4	99.0	137, 360, 326	94.8	100, 970, 699	73. 5	8776113 111	145.1

Т3	S17- 4139 B2	93. 9	90. 4	50. 0	140, 902, 596	101 .0	14, 23 1	60,456,9 63	235.3	139,5 10,35 0	99.0	131, 593, 379	94.3	96,8 61,9 21	73. 6	8377216 650	138.5
T4	S17- 7934 RG1	94. 2	90. 8	51. 5	139, 881, 802	101 .0	14, 12 8	60,456,9 63	233.6	138,6 20,24 3	99.0	126, 740, 170	91.4	97,8 19,8 24	77. 1	8674285 663	143.4
T5	\$17- 16790 9	93. 9	90. 4	49. 6	137, 737, 678	101 .0	13, 91 1	60,456,9 63	230.1	136,4 31,00 2	99.0	130, 239, 288	95.4	88,5 95,6 30	68. 0	7656389 803	126.6
T6	S11- 2891 RG5	96. 0	93. 4	50. 6	141, 676, 368	101 .0	14, 30 9	60,456,9 63	236.6	141,4 87,30 8	99.8	129, 578, 037	91.5	98,5 68,6 22	76. 0	8834348 644	146.1
T7	S11- 23811 F3	94. 7	91. 5	51. 2	137, 817, 696	101 .0	13, 91 9	60,456,9 63	230.2	136,7 81,99 7	99.2	129, 567, 516	94.7	97,1 02,2 30	74. 9	8577862 313	141.8
Т8	S13- 15636 E	94. 6	91. 3	53. 0	149, 231, 118	101 .0	15, 07 2	60,456,9 63	249.3	147,9 72,07 5	99.1	136, 115, 183	91.9	102, 461, 498	75. 2	9127763 553	150.9
Т9	S15- 4531 F3	95. 2	92. 1	51. 2	186, 402, 720	101 .0	18, 82 6	60,456,9 63	311.4	185,7 64,68 3	99.6	162, 876, 676	87.6	121, 222, 036	74. 4	1085281 2049	179.5

	T1 0 T1 1	\$14- 2813 F2 \$15- 4343 F3	95.094.5	91. 9 91. 0	50. 6 51. 0	176, 522, 844 187, 438, 318	101 .0 101 .0	17, 82 8 18, 93	60,456,9 63 60,456,9 63	294.9 313.1	175,7 12,74 2 186,6 51,21 3	99.5 99.5	164, 580, 604 172, 497, 815	93.6 92.4	120, 107, 606 130, 551, 091	72.975.6	1059107 8346 1161678 8824	175.1
avera ge			94. 7	91. 5	50. 8	154, 434, 995	101 .0	15 59 7.5	6045696 3	258.0	1534 9509 4	99.3	1424 8981 7	92.9	1055 7736 5	74. 0	9327636 394	154.2
	N1	S15- 14897 7	96. 0	93. 7	51. 6	102, 506, 078	101 .0	10, 35 3	60,456,9 63	171.2	101,9 85,11 7	99.4	98,0 97,6 41	96.1	73,6 19,1 68	75. 0	6519310 788	107.8
norm	N2	S16- 26915 A2	95. 8	93. 1	49. 8	101, 839, 794	101 .0	10, 28 5	60,456,9 63	170.1	101,6 51,54 5	99.8	96,0 68,7 09	94.5	70,1 28,2 38	72. 9	6154444 800	101.8
al	N3	S17- 4139 A9	96. 1	93. 6	50. 1	93,6 96,8 90	101 .0	9,4 63	60,456,9 63	156.5	93,55 9,850	99.8	89,1 09,5 81	95.2	66,5 61,9 45	74. 6	5865228 861	97.0
	N4	S17- 7934 6	95. 6	92. 8	50. 2	97,0 11,0 68	101 .0	9,7 98	60,456,9 63	162.0	96,81 6,305	99.7	92,0 12,2 19	95.0	67,2 43,2 31	73. 0	5905584 438	97.6

N5	S17- 16790 6	95. 9	93. 3	50. 0	97,2 23,0 98	101 .0	9,8 19	60,456,9 63	162.4	97,04 9,431	99.8	91,6 54,4 93	94.4	67,3 67,4 23	73. 5	5908120 791	97.7
N6	S11- 2891 1	94. 5	91. 3	51. 4	106, 083, 920	101 .0	10, 71 4	60,456,9 63	177.2	105,0 34,51 6	99.0	98,9 43,9 08	94.2	74,6 64,5 62	75. 4	6566599 356	108.6
N7	S11- 23854 A7	95. 8	93. 1	51. 6	97,8 29,8 20	101 .0	9,8 80	60,456,9 63	163.4	97,68 6,402	99.8	92,1 29,7 98	94.3	70,4 22,8 77	76. 4	6284707 183	103.9
N8	S13- 15636 A2	96. 2	93. 7	52. 9	99,2 17,5 86	101 .0	10, 02 0	60,456,9 63	165.7	99,09 9,123	99.8	92,1 98,0 33	93.0	71,9 28,4 73	78. 0	6470534 331	107.0
N9	\$14- 2899 1	94. 9	91. 9	51. 4	110, 325, 136	101 .0	11, 14 2	60,456,9 63	184.3	109,2 58,65 7	99.0	103, 899, 206	95.0	81,0 88,6 25	78. 0	7178763 168	118.7
N1 0	S15- 4394 4	95. 0	92. 0	51. 1	111, 616, 652	101 .0	11, 27 3	60,456,9 63	186.4	110,6 82,42 4	99.1	105, 490, 521	95.3	79,4 43,6 64	75. 3	7035610 192	116.3
N1 1	S15- 4570	95. 2	92. 2	50. 2	100, 436, 964	101 .0	10, 14 4	60,456,9 63	167.7	99,99 7,253	99.5	93,3 97,5 11	93.4	68,2 36,2 07	73. 0	6036506 480	99.8

avera	95	92	50	101,	101	10	6045696		1011		9572		7188	75	6356855	
ge	5	8	9	617, 001	.0	26 2.8	3.0	169.7	6551 1.2	99.5	7420 .0	94.6	2219 .4	0	490	105.1

Table S2. List of GO terms associated with tumor-specific genes in OGCT

(A) Cellular components

Group ID	Category	Term	Description	Description LogP Log(q-value) In _In		InTerm _InList	Symbols
1	GO Cellular Components	GO:0031012	extracellular matrix	-3.77659	-0.891	23/570	CTSC,COL15A1,COL17A1,GLG1,MMP17, MUC4,MUC6,NID1,OVGP1,TPSAB1,HSP9 0B1,ADAMTSL2,POSTN,HPSE,ADAMTS20 ,ITIH5,FBN3,COL25A1,NAV2,COL24A1,L AMA1,EYS,MXRA7
2	GO Cellular Components	GO:0005905	clathrin-coated pit	-3.69213	-0.891	7/70	LDLR,ITSN1,CUBN,PICALM,AAK1,FCHO 1,EPN3,BLK,PIK3C3,PTK2,GNA13,FERM T2,ATG14,WIPI2,VPS13C,WIPI1
3	GO Cellular Components	GO:0005776	autophagosome	-3.43643	-0.850	8/101	PEG3,PIK3C3,ATG14,WIPI2,TEX264,WIPI 1,MCOLN3,MAP1LC3C
4	GO Cellular Components	GO:0097546	ciliary base	-3.27694	-0.850	5/39	GLI2,PRKAR1A,PRKAR1B,TULP3,FANK1, PIK3C3,ATG14,CFAP46,CFAP54,CFAP22 1
5	GO Cellular Components	GO:0031932	TORC2 complex	-3.25381	-0.850	3/10	TTI1,SMG1,PRR5L

6	GO Cellular Components	GO:0031414	N-terminal protein acetyltransferase complex	-3.25381	-0.850	3/10	NAA25,NAA15,NAA38
7	GO Cellular Components	GO:0030496	midbody	-3.19835	-0.850	11/196	ECT2,PIK3C3,SAFB,HSP90B1,PKP4,TRIO BP,ZFYVE26,EXOC2,ZFYVE19,AGAP2,AS PM
8	GO Cellular Components	GO:0005911	cell-cell junction	-2.97449	-0.737	19/494	AQP7,COL17A1,CXADR,ECT2,NOTCH1,V AV1,SYMPK,PKP4,PTPRU,PATJ,FERMT2, EPB41L3,FRMD4B,ADGRL3,AH11,IQGAP 3,PLEKHA7,PIKFYVE,LAMA1
9	GO Cellular Components	GO:0032580	Golgi cisterna membrane	-2.88731	-0.713	7/95	<i>FUT2,B4GALT5,SCFD1,UXS1,COG3,GOL</i> <i>GA8IP,GOLGA8B,HOOK3</i>
10	GO Cellular Components	GO:0005770	late endosome	-2.8771	-0.713	13/282	SLC31A1,DYNC1LI2,LDLR,CHMP1A,PIK3 C3,PRKAR1A,PRKAR1B,MAPK3,RNF13,M COLN3,VIPAS39,GALNTL5,PIKFYVE
11	GO Cellular Components	GO:0030894	replisome	-2.70284	-0.629	3/15	PRIM2,RPA1,DONSON,BCL6,TEX264
12	GO Cellular Components	GO:0016234	inclusion body	-2.69771	-0.629	6/76	AGL,PICALM,XRN2,FBXO7,SFMBT2,PRD M16
13	GO Cellular Components	GO:0005813	centrosome	-2.59469	-0.617	21/615	BICD1,CTSC,CHD3,DYNC1L12,PRKAR1A, CIR1,KIAA0586,PATJ,CEP152,TTLL5,BIC D2,UBR4,ZFYVE26,AH11,CCDC77,HOOK

							3,ZFYVE19,CEP295,PLEKHA7,CEP120,AS
							PM
14	GO Cellular	GO:0031143	pseudopodium	-2.46582	-0.549	3/18	ACTNA ACTN2 MAPK3
	Components						AC1104, AC1102, MALKS
15	GO Cellular	GO:0031258	lamellipodium	_2 21213	-0.349	3/22	NCKAP1 FERMT2 SYNF2
	Components		membrane	-2.21213			
16	GO Cellular						ACTN2,DAGLA,GABRR2,PTPRD,PTPRS,I
	Components	GO:0097060	synaptic membrane	-2.13866	-0.292	14/384	TSN1,PICALM,SLC6A5,DGKI,SLC4A8,RI
	Components						MS1,SYNE1,GRIP1,CHRNA10
						1	

(B) Molecular functions

Group	Category	Term	Description	LogP	Log(q-value)	InTerm	Symbols
1	GO Molecular Functions	GO:0015318	inorganic molecular entity transmembrane transporter activity	-4.78765	-1.591	_ INLIST 30/740	AQP7,ATP4B,CFTR,SLC31A1,COX6B1,GA BRR2,KCNH2,KCNJ12,FXYD3,KCNQ4,SL C6A5,SLC4A8,SLC12A7,DMAC2L,ANO7,S LC45A2,SLC38A2,MCOLN3,SLC2A9,CHR NA10,ANO2,SLC25A28,SLC12A8,CACNA2 D4,PKD1L2,SLC5A11,ANO4,OTOP1,CCT8 L2,KCNJ18,SLC30A9
2	GO Molecular Functions	GO:0019901	protein kinase binding	-4.7295	-1.591	28/671	BICD1,CBLB,ACE,KIF11,MEF2A,PPEF2, PRKAR1A,PRKAR1B,MAP2K3,PTK2,WAR S1,CIR1,SLC12A7,FERMT2,ATF7,RNF13, CEP152,SHC2,FBX07,TRIB2,GPRC5B,EX OC2,TRIM5,AGAP2,TRIM6,DUSP19,SIK1, GFRAL,LDHA
3	GO Molecular Functions	GO:0004566	beta-glucuronidase activity	-4.69734	-1.591	3/4	KL,HPSE,GUSBP3,AGL,GALC,OVGP1,GL B1L,IL1RAP

4	GO Molecular Functions	GO:0005509	calcium ion binding	-4.6731	-1.591	29/713	ACTN4,ACTN2,CBLB,CDH16,CLGN,F10, HABP2,LDLR,NID1,NOTCH1,PLCB2,PNL IPRP1,PPEF2,PRSS3,ITSN1,HSP90B1,CU BN,CELSR1,ADGRL3,HPCAL4,SYT17,LRP 1B,MCTP1,SYT15,FBN3,PKD1L2,RASEF, EYS,NOTCH2NLA
5	GO Molecular Functions	GO:0005201	extracellular matrix structural constituent	-4.3262	-1.446	12/172	COL15A1,COL17A1,MUC3A,MUC4,MUC 6,NID1,TUFT1,POSTN,FBN3,COL25A1,C OL24A1,LAMA1,ACTN2,BICD1,COPB1,R PL4,TPM1,CCDC6,KRT38,EPB41L3,KLHL 3,NUP54,NUP85,TLN2
6	GO Molecular Functions	GO:0051020	GTPase binding	-4.23155	-1.446	16/294	AP1G1,BICD1,ECT2,PICALM,NCKAP1,TR IOBP,ATG14,RIMS1,BICD2,FNBP1L,EXO C2,FGD6,RANBP17,DOCK7,FMNL2,IQG AP3
7	GO Molecular Functions	GO:0015144	carbohydrate transmembrane transporter activity	-4.22694	-1.446	6/40	AQP7,SLC2A3,SLC45A2,SLC2A9,SLC5A11 ,SLC2A14,SLC6A5,SLC4A8,SLC12A7,SLC3 8A2,SLC12A8,ATP4B,CFTR,COX6B1

8	GO Molecular Functions	GO:0004791	thioredoxin-disulfide reductase activity	-3.77215	-1.043	3/7	SELENOT,NXN,TXNRD3,ERO1B
9	GO Molecular Functions	GO:0015103	inorganic anion transmembrane transporter activity	-3.4719	-0.856	10/153	CFTR,GABRR2,FXYD3,SLC4A8,SLC12A7, ANO7,ANO2,SLC12A8,ANO4,CCT8L2,SLC 2A3,SLC6A5,SLC38A2,SFXN5,SLC2A14
10	GO Molecular Functions	GO:0032266	phosphatidylinositol-3- phosphate binding	-3.07825	-0.737	5/43	SNX13,ZFYVE26,WIPI2,WIPI1,ZFYVE19,A CTN2,TULP3,PICALM,FERMT2
11	GO Molecular Functions	GO:0001784	phosphotyrosine residue binding	-3.03199	-0.710	5/44	CBLB,MAPK3,VAV1,PTPN5,SHE
12	GO Molecular Functions	GO:0034452	dynactin binding	-3.00173	-0.698	3/12	BICD1,BICD2,HOOK3,EPB41L3,SMC3
13	GO Molecular Functions	GO:0016757	glycosyltransferase activity	-2.91876	-0.650	13/279	AGL,FUT2,RPN1,UGT8,UMPS,B4GALT5, UGT2A1,TIPARP,GALNTL5,STT3B,DPY19 L2P2,UGT2A2,ALG1L2
----	---------------------------	------------	-----------------------------------	----------	--------	--------	--
14	GO Molecular Functions	GO:0030276	clathrin binding	-2.8186	-0.612	6/72	AP1G1,LDLR,PICALM,SYT17,EPN3,SYT15
15	GO Molecular Functions	GO:0051015	actin filament binding	-2.79174	-0.599	11/220	ACTN4,ACTN2,TPM1,FERMT2,TRIOBP,S YNE2,SYNE1,TLN2,FMNL2,MYOM3,IQGA P3
16	GO Molecular Functions	GO:0043138	3"-5" DNA helicase activity	-2.70284	-0.539	3/15	FBH1,NAV2,HELQ
17	GO Molecular Functions	GO:0008236	serine-type peptidase activity	-2.68268	-0.539	10/194	CTSC,ACE,DPP6,F10,HABP2,HGF,PRSS3 ,TPSAB1,TPSD1,PRSS3P2,MMP17,CHMP 1A,CPZ,ADAM21,ADAMTSL2,PSMD14,UF SP2,ADGRG6,ADAMTS20,TRABD2A

18	GO Molecular Functions	GO:0030674	protein-macromolecule adaptor activity	-2.67848	-0.539	13/297	AP1G1,BICD1,UBXN8,SEC22B,EPB41L3, SYNE2,BICD2,SYNE1,GRIP1,FBXO7,TRI M5,TRIM6,DUSP19,ITSN1
19	GO Molecular Functions	GO:0004725	protein tyrosine phosphatase activity	-2.66071	-0.533	7/104	CDKN3,PTPRD,PTPRS,PTPRU,PTPN5,TP TE2,DUSP19,PPEF2,PHLPP2,MTMR9,PI KFYVE
20	GO Molecular Functions	GO:0003951	NAD+ kinase activity	-2.53945	-0.458	3/17	DGKI,NADK,DGKH

(C) Biological processes

Group	Catagomy	Torm	Description	LogD		InTerm	Symbols
ID	Category	Term	Description	Logr	Log(q-value)	_InList	Symbols
							ACAT1,ASNS,PIK3C3,MAPK3,ATG14,WIP
1	GO Biological	CO.0042504	response to stariation	5 02062	1.021	14/107	I2,SLC38A2,MIOS,WIPI1,EIF2A,SIK1,EIF
I	Processes	00.0042394	response to starvation	-3.03902	-1.021	14/197	2AK4,MAP1LC3C,LOC102724428,POSTN,
							AGL,BCHE,LDHA,LDLR,GFRAL
							CFTR,GABRR2,SLC4A8,SLC12A7,ANO7,A
	GO Biological		chloride				NO2,SLC12A8,ANO4,FXYD3,CD47,ACE,S
2	Brocossos	GO:1902476	transmembrane	-4.70628	-1.021	8/67	LC2A3,SLC6A5,PLA2R1,SLC38A2,SLC2A9
	FIOCESSES		transport				,SFXN5,SLC51B,SLC2A14,CCT8L2,SLC51
							Α
							MAPK3,CERS1,ATG14,WIPI2,KLHL3,TEX
							264,VPS13C,MAP1LC3C,PIK3C3,SEC22B,
	CO Biological						FEZ2,SCFD1,WIPI1,PIKFYVE,SMG1,VIPA
3	Brocossos	GO:0061912	selective autophagy	-4.61147	-1.021	8/69	S39,HGF,FBXO7,FNBP1L,MTMR9,TRIM5,
	FIGUESSES						TRIM6,RAB20,HOOK3,ACTN2,CHMP1A,S
							MARCE1,TPSAB1,TRIOBP,SUPT16H,NAV
							3
	GO Biological		regulation of cell				ACTN4,ITGA7,PTK2,PTPRD,TPM1,SEMA
4	Brocossos	GO:0022604	morphogenesic	-4.51809	-1.021	17/309	3E,POSTN,FERMT2,TRIOBP,RIMS1,EPB4
	FIUCESSES		morphogenesis				1L3,GRIP1,SYT17,FGD6,DOCK5,LARP4,F

							MNL2,ACTN2,BCL6,COL17A1,MUC4,NID 1,NOTCH1,HPSE,BMPR1A,LDLR,PTPRS, CLOCK,TRAK1,ADGRA2,TENM4,HOOK3, DOCK7,ASPM,BDKRB1,CD47,F10,HGF, MAPK3 MAP2K3 SPN SYNF2 FLP5
5	GO Biological Processes	GO:0072385	minus-end-directed organelle transport along microtubule	-4.30501	-0.972	3/5	BICD1,RAB6A,BICD2,HOOK3
6	GO Biological Processes	GO:0022027	interkinetic nuclear migration	-4.30501	-0.972	3/5	HOOK3,DOCK7,CEP120,SYNE2,ACTN4,B ICD1,BLK,CFTR,MEF2A,CHMP1A,RAB6A ,PICALM,ATG14,TRAK1,BICD2,FNBP1L, WIPI1,ASPM
7	GO Biological Processes	GO:0010927	cellular component assembly involved in morphogenesis	-3.99831	-0.886	9/107	ACTN2,MEF2A,PRKAR1A,TPM1,UGT8,ZP BP,EPB41L3,TENM4,PIKFYVE,CTSC,GAL C,HGF,B4GALT5,ADGRG6
8	GO Biological Processes	GO:0048232	male gamete generation	-3.96841	-0.886	24/590	BCL6,CFTR,ACE,FANCA,MSH4,NOTCH1, CCNA1,CLOCK,ZPBP,XRN2,UBR2,SYNE1 ,MORC1,SPATA6L,STRBP,VIPAS39,TXNR D3,TDRD9,SLC2A14,CFAP54,GALNTL5,A SPM,C14orf39,DPY19L2P2,CXADR,PRKA R1A,RXFP2,EQTN

9	GO Biological Processes	GO:0006898	receptor-mediated endocytosis	-3.92374	-0.886	14/249	AP1G1,BICD1,LDLR,ITSN1,CUBN,PICAL M,CALCRL,AAK1,PLA2R1,FCHO1,LRP1B ,AHI1,FNBP1L,PIKFYVE,PIK3C3,MAPK3, EQTN,EPN3,MTMR9,MCTP1,ARHGAP12
10	GO Biological Processes	GO:0140694	non-membrane- bounded organelle assembly	-3.78465	-0.867	18/389	ACTN2,BICD1,KIF11,MEF2A,CHMP1A,P RKAR1A,TPM1,SMC3,CEP152,MRT04,EI F2A,CEP295,CEP120,DEUP1,ASPM,GOL GA8IP,MCIDAS,GOLGA8B,CHD3,PATJ,D YNC1LI2,TTLL5,BICD2,CFAP46,ULK4,H OOK3,DOCK7,NAV3
11	GO Biological Processes	GO:1990573	potassium ion import across plasma membrane	-3.72229	-0.849	6/49	ATP4B,KCNH2,KCNJ12,SLC12A7,SLC12A 8,KCNJ18,ACTN2,DPP6,FXYD3,SUMO1,K CNQ4,CCT8L2,ACTN4,BDKRB1,SLC31A1, COX6B1,SLC6A5,SLC4A8,DMAC2L,MCO LN3,SLC2A9,CHRNA10,SLC25A28,CACN A2D4,PKD1L2,OTOP1,SLC2A3,CFTR,MA PK3,RAB20
12	GO Biological Processes	GO:0032989	cellular component morphogenesis	-3.58157	-0.784	27/744	ACTN2,GLI2,MEF2A,NOTCH1,PRKAR1A, PTK2,PTPRD,PTPRS,TPM1,UGT8,PICAL M,B4GALT5,FEZ2,SEMA3E,POSTN,NCKA P1,ZPBP,TRAK1,RIMS1,EPB41L3,GRIP1,

							TENM4,SYT17,DOCK7,PIKFYVE,LAMA1,
							EIF2AK4
							ACTN4,BCL6,BLK,CBLB,CD47,FUT2,GLI
	CO Biological		regulation of call				2,NID1,NOTCH1,PRKAR1A,PTK2,SPN,TP
13	Processes	GO:0030155	adhasion	-3.51805	-0.746	27/751	M1,VAV1,PKP4,SEMA3E,PTPRU,POSTN,
	FIGCESSES		aunesion				NFAT5,FERMT2,TRIOBP,TMEM131L,AB
							CA12,GPAM,DOCK5,CARD11,LAMA1
14	GO Biological	GO:00/2733	embryonic digit	3 40055	0.606	6/56	BMPR1A,GLI2,NOTCH1,TULP3,LMBR1,T
14	Processes	00.0042733	morphogenesis	-3.40033	-0.090	0/30	BC1D32
15	GO Biological	GO:00/82/6	macrophage	-3 33039	-0.666	5/38	ΜΑΡΚ3 ΡΤΚ2 ΜΤΙΙΩΙ ΝΙΙΡ85 ΤΑΓΑΛ
15	Processes	00.00+02+0	chemotaxis	-3.33037	-0.000	5/50	
	GO Biological		cortical actin				
16	Processes	GO:0030866	cytoskeleton	-3.22508	-0.635	5/40	ECT2,NCKAP1,AKAP11,EPB41L3,FMNL2
	110005505		organization				
17	GO Biological	GO·2000209	regulation of anoikis	-3 15263	-0 590	4/24	NOTCHI PTK2 BRMSI SIKI
17	Processes	00.2000209	regulation of anomits	0.110200	0.090		
	GO Biological		diacylglycerol				DAGLA,DGKI,GPAM,DGKH,LDLR,ATG14
18	Processes	GO:0046339	metabolic process	-3.08282	-0.540	4/25	,SIK1,PIK3C3,PLCB2,SMG1,TTC7A,MTM
	110005505						R9,TPTE2,PIKFYVE
19	GO Biological	GO·0014910	regulation of smooth	-3 05418	-0.521	7/89	BMPR1A,ACE,TPM1,POSTN,GNA13,DOC
17	Processes	00.0011/10	muscle cell migration	5.05 110	0.021	1102	K5,DOCK7

20	GO Biological Processes	GO:0051493	regulation of cytoskeleton organization	-3.01088	-0.513	20/529	ACTN2,BICD1,CD47,ECT2,CHMP1A,MAP K3,PTK2,TPM1,CELSR1,SEMA3E,PATJ,N CKAP1,FERMT2,TRIOBP,BICD2,CEP295, NAV3,IQGAP3,CEP120,WHAMMP3,ACTN 4,BCL6,CXADR,KCNH2,MEF2A,PRKAR1 A,HSP90B1,AKAP11,EPB41L3,SYNE2,FN BP1L,FGD6,ARHGAP12,FMNL2,AGAP2
----	----------------------------	------------	---	----------	--------	--------	---

1D	Term	Ontology Source	Ter m PVal ue	Term PValue Corrected with Benjamini- Hochberg	Group PValue	Group PValue Corrected with Benjamini- Hochberg	GO Levels	GO Groups	% Associated Genes	Nr. Genes	Associated Genes Found
GO:0005509	calcium ion binding	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.01	[5]	Group00	4.12	31.00	ACTN2, ACTN4, ADGRL3, CBLB, CDH16, CELSR1, CLGN, CUBN, EYS, F10, FBN3, HABP2, HPCAL4, HSP90B1, ITSN1, LDLR, LRP1B, MCTP1,

 Table S3. List of biological network analysis with cytoscape

											NBPF26,
											NID1,
											NOTCH1,
											NOTCH2NLA,
											PKD1L2,
											PLCB2,
											PNLIPRP1,
											PPEF2,
											PRSS3,
											RASEF,
											SYT15, SYT17,
											VWDE
		GO_Biolo									
		gicalProce									
		ss-EBI-									B4GALT5,
	O alvean	UniProt-					[6.8				GALNTL5,
GO:0016266	processing	GOA-	0.00	0.04	0.00	0.01	[0, 8, 9]	Group01	9.09	6.00	<i>MUC12</i> ,
	processing	ACAP-					7]				МИСЗА,
		ARAP_13									MUC4, MUC6
		.05.2021_									
		00h00									

GO:0016410	N- acyltransfer ase activity	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.00	0.01	[5]	Group02	7.21	8.00	BRPF3, CERS1, CLOCK, GDF1, NAA15, NAA25, SLC38A2, SMARCE1
GO:0019901	protein kinase binding	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.01	0.01	[5]	Group03	4.09	29.00	ACE, AGAP2, ATF7, BICD1, CBLB, CEP152, CIR1, DUSP19, EXOC2, FBXO7, FERMT2, GFRAL, GPRC5B, KIF11, MAP2K3,

											MEF2A,
											PPEF2,
											PRKAR1A,
											PRKAR1B,
											PTK2, RNF13,
											SHC2, SIK1,
											SLC12A7,
											TRIB2,
											TRIM5,
											TRIM6,
											TRIM6-
											TRIM34,
											WARS1
		GO_Biolo									
		gicalProce									
	cortical	ss-EBI-									AKAP11,
	actin	UniProt-									ECT2,
GO:0030866	cytoskeleto	GOA-	0.00	0.03	0.00	0.01	[4, 7]	Group04	12.50	5.00	EPB41L3,
	n	ACAP-									FMNL2,
	organization	ARAP_13									NCKAP1
		.05.2021_									
		00h00									

											AP1G1,
											CARD11,
											CD47,
											CLOCK,
											CTSC,
		CO Piele									GPRC5B,
		do_bloid									KLRC2,
											LDLR,
	positive	UniProt									МАРКЗ,
GO:0031340	regulation	GOA	0.00	0.03	0.00	0.01	[3, 4,	Group05	4 92	19.00	<i>MUC12</i> ,
00.0031349	of defense		0.00	0.03	0.00	0.01	5,6]	Gloupos	4.92	19.00	МИСЗА,
	response										MUC4,
		05 2021									MUC6,
		.05.2021_ 00b00									OSMR,
		001100									PSMD14,
											TRIM5,
											TRIM6,
											TRIM6-
											TRIM34,
											VAV1
		1	1		1		1	1	1		

GO:0031414	N-terminal protein acetyltransf erase complex	GO_Cellu larCompo nent-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.01	[3, 4, 6]	Group06	27.27	3.00	NAA15, NAA25, NAA38
GO:0004566	beta- glucuronida se activity	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.00	0.00	[5]	Group07	60.00	3.00	GUSBP3, HPSE, KL
GO:0032580	Golgi cisterna membrane	GO_Cellu larCompo nent-EBI- UniProt-	0.01	0.04	0.01	0.01	[5, 6, 7, 8, 9]	Group08	7.22	7.00	B4GALT5, COG3, FUT2, GOLGA8B,

		GOA-									GOLGA8IP,
		ACAP-									SCFD1, UXS1
		ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
		ss-EBI-									MADV2
	maananhaaa	UniProt-					ΓΛ 5				MAFKS,
GO:0048246	chemotaxis	GOA-	0.01	0.04	0.01	0.01	6, 7, 8]	Group09	10.20	5.00	MIUSI,
		ACAP-					0, 7, 8]				NUPOJ, DTV2 TAEAA
		ARAP_13									ΓΙΚΖ, ΙΑΓΑ4
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
GO:0051642		ss-EBI-									ASPM,
		UniProt-	0.01	0.04	0.01	0.01	[3]	Group10	12.12	4.00	BICD2,
	localization	GOA-			0.01						DINCILIZ,
		ACAP-									SINEZ
		ARAP_13									

		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
		ss-EBI-									BMPR1A,
	cardiac	UniProt-					[4, 5,				NOTCH1,
GO:0060038	muscle cell	GOA-	0.01	0.04	0.01	0.01	6, 7, 8,	Group11	9.80	5.00	PRKAR1A,
	proliferation	ACAP-					9]				TENM4,
		ARAP_13									ZFPM2
		.05.2021_									
		00h00									
											ACTN2, AHI1,
		GO_Biolo									ASPM,
		gicalProce									ATG14,
		gicalProce ss-EBI-									ATG14, BICD1,
	orronalla	gicalProce ss-EBI- UniProt-									ATG14, BICD1, CEP120,
GO:0070925	organelle	gicalProce ss-EBI- UniProt- GOA-	0.00	0.03	0.00	0.00	[5]	Group12	4.11	41.00	ATG14, BICD1, CEP120, CEP152,
GO:0070925	organelle assembly	gicalProce ss-EBI- UniProt- GOA- ACAP-	0.00	0.03	0.00	0.00	[5]	Group12	4.11	41.00	ATG14, BICD1, CEP120, CEP152, CEP295,
GO:0070925	organelle assembly	gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13	0.00	0.03	0.00	0.00	[5]	Group12	4.11	41.00	ATG14, BICD1, CEP120, CEP152, CEP295, CFAP221,
GO:0070925	organelle assembly	gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_	0.00	0.03	0.00	0.00	[5]	Group12	4.11	41.00	ATG14, BICD1, CEP120, CEP152, CEP295, CFAP221, CFAP46,
GO:0070925	organelle assembly	gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[5]	Group12	4.11	41.00	ATG14, BICD1, CEP120, CEP152, CEP295, CFAP221, CFAP46, CFAP54,
GO:0070925	organelle assembly	gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[5]	Group12	4.11	41.00	ATG14, BICD1, CEP120, CEP152, CEP295, CFAP221, CFAP46, CFAP54, CHMP1A,

				DEUP1,
				EIF2A,
				EXOC2,
				FEZ2,
				GOLGA8B,
				GOLGA8IP,
				IL1RAP,
				KIAA0586,
				<i>KIF11,</i>
				MAP1LC3C,
				MCIDAS,
				MEF2A,
				MRTO4,
				NOTCH1,
				РІКЗСЗ,
				PIKFYVE,
				PRKAR1A,
				PTPRD,
				PTPRS,
				RAB20,
				SCFD1,
				SEC22B,
1	1	1		

											SMC3,
											SYNE2,
											TBC1D32,
											TPM1, WIPI1,
											WIPI2, ZPBP
		GO_Biolo									
		gicalProce									AP1G1, BLK,
	regulation	ss-EBI-									DGKI,
	of regulated	UniProt-					[5.6				KLRC2,
GO:1903305	orretory	GOA-	0.01	0.05	0.01	0.01	[3, 0, 7 81	Group13	5.96	9.00	NOTCH1,
00.1705505	secretory	ACAP-					7,0]				RIMS1,
	paniway	ARAP_13									SLC4A8,
		.05.2021_									SYT15, SYT17
		00h00									
	nogotivo	GO_Biolo									
	regulation	gicalProce									
GO:2000104		ss-EBI-					[7 0				BCL6,
	01 DNA-	UniProt-	0.01	0.04	0.01	0.01	[7, 8,	Group14	17.65	3.00	DONSON,
	DNA	GOA-					9]				FBH1
	DNA	ACAP-									
	replication	ARAP_13									

		.05.2021_ 00h00									
GO:0010669	epithelial structure maintenanc e	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.01	0.01	[4, 6]	Group15	12.50	4.00	CXADR, MUC4, MUC6, SRFBP1
GO:0010812	negative regulation of cell- substrate adhesion	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.00	0.01	[4, 5, 6]	Group16	9.09	6.00	ACTN4, BCL6, NOTCH1, POSTN, PTPRU, SEMA3E

GO:0001784	phosphotyro sine residue binding	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.00	0.01	[5]	Group17	10.87	5.00	CBLB, MAPK3, PTPN5, SHE, VAV1
GO:0016234	inclusion body	GO_Cellu larCompo nent-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.05	0.01	0.01	[3]	Group18	7.69	6.00	AGL, FBXO7, PICALM, PRDM16, SFMBT2, XRN2
GO:0035335	peptidyl- tyrosine dephosphor ylation	GO_Biolo gicalProce ss-EBI- UniProt-	0.01	0.04	0.01	0.01	[7, 8]	Group19	6.78	8.00	CDKN3, DUSP19, MTMR9, PTPN5,

		GOA-									PTPRD,
		ACAP-									PTPRS,
		ARAP_13									PTPRU,
		.05.2021_									TPTE2
		00h00									
		GO_Biolo									CDKN3
		gicalProce									CDRIVS,
	protain	ss-EBI-									MTMP0
	turosino	UniProt-									DTDN5
GO:0004725	tyrosine who owhoto co	GOA-	0.01	0.04	0.01	0.01	[8, 9]	Group19	6.78	8.00	PIPNJ,
	phosphatase	ACAP-									PIPKD,
	activity	ARAP_13									PIPRS,
		.05.2021_									PIPRU,
		00h00									TPTE2
		GO_Cellu									
		larCompo									
	TOD	nent-EBI-									00051
GO:0038201	IOK	UniProt-	0.00	0.04	0.00	0.01	[3]	Group20	21.43	3.00	PKKSL,
	complex	GOA-									SMG1, 1111
		ACAP-									
		ARAP_13									

		.05.2021_ 00h00									
GO:0031932	TORC2 complex	GO_Cellu larCompo nent-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.01	[4]	Group20	27.27	3.00	PRR5L, SMG1, TT11
GO:0046339	diacylglycer ol metabolic process	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[6, 7]	Group21	15.38	4.00	DAGLA, DGKH, DGKI, GPAM

GO:0003951	NAD+ kinase activity	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.00	0.00	[7]	Group21	17.65	3.00	DGKH, DGKI, NADK
GO:0051020	GTPase binding	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.02	0.00	0.00	[4]	Group22	5.83	18.00	AP1G1, ATG14, BICD1, BICD2, DGKI, DOCK7, ECT2, EXOC2, FGD6, FMNL2, FNBP1L, GOLGA8B, IQGAP3, NCKAP1,

											PICALM,
											RANBP17,
											RIMS1,
											TRIOBP
											AP1G1,
											BICD1,
											BICD2, DGKI,
		GO_Mole									DOCK7,
		cularFunct									ECT2,
		ion-EBI-									EXOC2,
	small GTPase	UniProt-			0.00	0.00					FGD6,
GO:0031267		GOA-	0.00	0.03			[5]	Group22	5.82	16.00	FMNL2,
	binding	ACAP-									GOLGA8B,
		ARAP_13									IQGAP3,
		.05.2021_									NCKAP1,
		00h00									PICALM,
											RANBP17,
											RIMS1,
											TRIOBP
		GO_Biolo					F4 5				BMPR1A,
GO:0042733		gicalProce	0.00	0.03	0.01	0.01	[4, 5, 6, 7, 8] Group23	10.00	6.00	GLI2, LMBR1,	
	digit	ss-EBI-		0.03		0.01		7, 8]			NOTCH1,
				1	1	1	1	1	1	1	1

	morphogene	UniProt-									TBC1D32,
	sis	GOA-									TULP3
		ACAP-									
		ARAP_13									
		.05.2021_									
		00h00									
	smoothened	GO_Biolo									
	signaling	gicalProce									
	nothway	ss-EBI-									
	involved in	UniProt-					[5, 6,				<i>GLI</i> 2,
GO:0060831		GOA-	0.00	0.03	0.01	0.01	7, 8, 9,	Group23	23.08	3.00	TBC1D32,
	dorsal/ventr	ACAP-					10]				TULP3
	al neural	ARAP_13									
	tube	.05.2021_									
	patterning	00h00									
	multi	GO_Biolo									
	ciliated	gicalProce									
	onithalial	ss-EBI-									<i>CEP152</i> ,
GO:1903251	epithelial	UniProt-	0.00	0.03	0.01	0.01	[5, 6]	Group24	33.33	3.00	DEUP1,
	differentiati	GOA-									MCIDAS
	unreientiati	ACAP-									
	On	ARAP_13									

		.05.2021_ 00h00									
GO:0098534	centriole assembly	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.01	0.01	[4, 5, 6, 8]	Group24	10.64	5.00	CEP120, CEP152, CEP295, DEUP1, MCIDAS
GO:0043276	anoikis	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.05	0.01	0.01	[5]	Group25	11.43	4.00	BRMS1, NOTCH1, PTK2, SIK1

GO:2000209	regulation of anoikis	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.01	0.01	[6, 7]	Group25	15.38	4.00	BRMS1, NOTCH1, PTK2, SIK1
GO:0030276	clathrin binding	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.00	0.00	[3]	Group26	8.33	6.00	APIGI, EPN3, LDLR, PICALM, SYT15, SYT17
GO:0005905	clathrin- coated pit	GO_Cellu larCompo nent-EBI- UniProt-	0.00	0.03	0.00	0.00	[3, 4, 5]	Group26	9.21	7.00	AAKI, CUBN, EPN3, FCHO1,

		GOA-									ITSN1, LDLR,
		ACAP-									PICALM
		ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									-
		gicalProce									
		ss-EBI-									AAK1,
	clathrin-	UniProt-									FCHO1,
GO:0072583	dependent	GOA-	0.01	0.04	0.00	0.00	[5, 7]	Group26	9.43	5.00	FNBP1L,
	endocytosis	ACAP-									ITSN1,
		ARAP_13									PICALM
		.05.2021_									
		00h00									
	oxidoreduct	GO_Mole									
	ase activity,	cularFunct									
	acting on a	ion-EBI-									NXN,
GO:0016668	sulfur group	UniProt-	0.00	0.04	0.00	0.01	[4]	Group27	20.00	3.00	SELENOT,
	of donors,	GOA-									TXNRD3
	NAD(P) as	ACAP-									
	acceptor	ARAP_13									

		.05.2021_									
		00h00									
		GO_Mole									
		cularFunct									
	protein-	ion-EBI-									
	disulfide	UniProt-					Γ4 5				NXN,
GO:0047134	reductase	GOA-	0.00	0.03	0.00	0.01	[4, 5,	Group27	27.27	3.00	SELENOT,
	(NAD(P))	ACAP-					0]				TXNRD3
	activity	ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
	thiorodovin	ss-EBI-									
	digulfido	UniProt-									NXN,
GO:0004791	uisuitue	GOA-	0.00	0.03	0.00	0.01	[5, 8]	Group27	50.00	3.00	SELENOT,
		ACAP-									TXNRD3
	activity	ARAP_13									
		.05.2021_									
		00h00									
CO:0051647	nucleus	GO_Biolo	0.00	0.04	0.00	0.01	[4]	Croup 2º	14.20	4.00	<i>CEP120</i> ,
00:0031047	localization	gicalProce	0.00	0.04	0.00	0.01	[4]	Group28	14.29	4.00	DOCK7,

		ss-EBI-									НООКЗ,
		UniProt-									SYNE2
		GOA-									
		ACAP-									
		ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
		ss-EBI-									CEP120
	nuclear	UniProt-									CEI 120, DOCK7
GO:0007097	migration	GOA-	0.00	0.03	0.00	0.01	[4, 5]	Group28	18.18	4.00	НООКЗ
	mgration	ACAP-									SYNE2
		ARAP_13									SINEZ
		.05.2021_									
		00h00									
		GO_Biolo									
	interkinetic	gicalProce					[5 6				CFP120
GO:0022027	nuclear	ss-EBI-	0.00	0.03	0.00	0.01	789	Group28	50.00	3.00	DOCK7
50.0022027	migration	UniProt-	0.00	0.05	0.00	0.01	101	Group20	20.00	5.00	HOOK3
	mgiuton	GOA-					10]				noons
		ACAP-									

		ARAP_13									
		.05.2021_									
		00h00									
											ACTN4,
											DOCK5,
											EPB41L3,
		GO Biolo									FERMT2,
		gicalProce									FGD6,
		ss_FRI_									FMNL2,
	regulation	UniProt-									GRIP1,
GO:0022604	of cell		0.00	0.03	0.00	0.01	[4 5]	Group29	5 20	17.00	ITGA7,
00.0022004	morphogene	ACAP-	0.00	0.05	0.00	0.01	[-, 5]	Group29	5.20	17.00	LARP4,
	sis	ARAP 13									POSTN,
		05 2021									PTK2,
		00h00									PTPRD,
		001100									RIMS1,
											SEMA3E,
											SYT17, TPM1,
											TRIOBP
	regulation	GO_Biolo									ACTN4,
GO:0010769	of cell	gicalProce	0.01	0.05	0.00	0.01	[5, 6]	Group29	7.00	7.00	DOCK5,
	morphogene	ss-EBI-									FERMT2,

	sis involved	UniProt-									POSTN,
	in	GOA-									PTK2,
	differentiati	ACAP-									PTPRD,
	on	ARAP_13									TRIOBP
		.05.2021_									
		00h00									
		GO_Biolo									
	regulation	gicalProce									A CTNA
	of substrate	ss-EBI-									ACIN4,
	of substrate	UniProt-					[5 6				DOCKJ,
GO:1900024	dan an dant	GOA-	0.00	0.03	0.00	0.01	[5, 0,	Group29	9.68	6.00	FERMI2,
	dependent	ACAP-					/]				POSIN,
	cell	ARAP_13									PIK2,
	spreading	.05.2021_									IRIOBP
		00h00									
		GO_Biolo									ACE,
		gicalProce									BMPR1A,
		ss-EBI-									DOCK5,
GO:0014812		UniProt-	0.01	0.04	0.01	0.01	[4, 5]	Group30	7.61	7.00	DOCK7,
	mgrauon	GOA-									POSTN,
		ACAP-									SLC6A5,
		ARAP_13									TPM1

		.05.2021_ 00h00									
GO:0014909	smooth muscle cell migration	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.05	0.01	0.01	[5, 6]	Group30	8.11	6.00	ACE, BMPRIA, DOCK5, DOCK7, POSTN, TPMI
GO:0014910	regulation of smooth muscle cell migration	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.01	0.01	[5, 6, 7]	Group30	9.09	6.00	ACE, BMPR1A, DOCK5, DOCK7, POSTN, TPM1
GO:0099587	inorganic ion import	GO_Biolo gicalProce	0.01	0.05	0.02	0.02	[4, 5, 6, 7]	Group31	6.93	7.00	ATP4B, KCNH2,

	across	ss-EBI-									KCNJ12,
	plasma	UniProt-									KCNJ18,
	membrane	GOA-									SLC12A7,
		ACAP-									SLC12A8,
		ARAP_13									SLC31A1
		.05.2021_									
		00h00									
		GO_Biolo									
	inorgania	gicalProce									ATP4B,
	antion	ss-EBI-									KCNH2,
	import	UniProt-					[5 6				KCNJ12,
GO:0098659	aarooo	GOA-	0.01	0.05	0.02	0.02	[5, 0,	Group31	6.93	7.00	KCNJ18,
	nlaama	ACAP-					7,0]				SLC12A7,
	piasilia	ARAP_13									SLC12A8,
	memorane	.05.2021_									SLC31A1
		00h00									
	notossium	GO_Biolo									ATP4B,
	ion import	gicalProce									KCNH2,
CO:1000573		ss-EBI-	0.00	0.03	0.02	0.02	[6, 7,	Group21	12 50	6.00	KCNJ12,
00.1990373	nlaama	UniProt-	0.00	0.03	0.02	0.02	8,9]	Gloupsi	12.30	0.00	KCNJ18,
	piasina	GOA-									SLC12A7,
	memorane	ACAP-									SLC12A8

		ARAP_13 .05.2021_ 00h00									
GO:0055075	potassium ion homeostasis	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.02	0.02	[8]	Group31	12.50	4.00	ATP4B, KCNH2, SLC12A7, SLC12A8
GO:0010927	cellular component assembly involved in morphogene sis	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[3, 4, 5]	Group32	8.33	9.00	ACTN2, EPB41L3, MEF2A, PIKFYVE, PRKAR1A, TENM4, TPM1, UGT8, ZPBP

GO:0007272	ensheathme nt of neurons	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.00	0.00	[2, 5, 6]	Group32	6.29	9.00	ADGRG6, B4GALT5, CTSC, EPB41L3, GALC, HGF, PIKFYVE, TENM4, UGT8
GO:0008366	axon ensheathme nt	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.00	0.00	[3, 6, 7]	Group32	6.29	9.00	ADGRG6, B4GALT5, CTSC, EPB41L3, GALC, HGF, PIKFYVE, TENM4, UGT8
GO:0042552	myelination	GO_Biolo gicalProce ss-EBI- UniProt-	0.01	0.04	0.00	0.00	[4, 7, 8]	Group32	6.38	9.00	ADGRG6, B4GALT5, CTSC, EPB41L3,

		GOA-									GALC, HGF,
		ACAP-									PIKFYVE,
		ARAP_13									TENM4,
		.05.2021_									UGT8
		00h00									
		GO_Biolo									
		gicalProce									
		ss-EBI-									EDB/113
	myolin	UniProt-					[4 5				LI D41LJ, DIVEVVE
GO:0032288	nyenn	GOA-	0.00	0.03	0.00	0.00	[4, 3,	Group32	18.18	4.00	TENMA
	assembly	ACAP-					0, 8, 9]				
		ARAP_13									0018
		.05.2021_									
		00h00									
		GO_Mole									
		cularFunct									
	demo atin	ion-EBI-									BICD1,
GO:0034452	dynactin	UniProt-	0.00	0.03	0.00	0.00	[4]	Group33	25.00	3.00	BICD2,
	binding	GOA-									HOOK3
		ACAP-									
		ARAP_13									
		.05.2021_									
------------	--------------	------------	------	------	------	------	--------	---------	-------	------	---
		00h00									
		GO_Biolo									BICD2.
	retrograde	gicalProce									COG3
	vesicle-	ss-EBI-									COPRI
	mediated	UniProt-									
GO:0006890	transport,	GOA-	0.00	0.03	0.00	0.00	[4, 6]	Group33	8.42	8.00	$\mathbf{K}\mathbf{I}\mathbf{F}\mathbf{I}\mathbf{I},$
	Golgi to	ACAP-									KABOA,
	endoplasmi	ARAP_13									SCFDI,
	c reticulum	.05.2021_									SEC22B,
		00h00									TMED10P1
		GO_Biolo									
		gicalProce									
		ss-EBI-									GOG
	intra-Golgi	UniProt-									COG3,
GO:0006891	vesicle-	GOA-	0.01	0.05	0.00	0.00	[4, 6]	Group33	11.11	4.00	COPBI,
	mediated	ACAP-									GOLGA8B,
	transport	ARAP_13									RAB6A
		.05.2021									
		00h00									
GO 0024077	protein	GO_Biolo	0.01	0.04	0.00	0.00	[6]	G 92	12.22	1.00	BICD2,
GO:0034067	localization	gicalProce	0.01	0.04	0.00	0.00	[6]	Group33	13.33	4.00	RAB6A,

	to Golgi	ss-EBI-									TMED10P1,
	apparatus	UniProt-									VPS13C
		GOA-									
		ACAP-									
		ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
	directed	ss-EBI-									
		UniProt-					[5 6				BICD1,
GO:0072385	organette	GOA-	0.00	0.04	0.00	0.00	[5, 0,	Group33	60.00	3.00	BICD2,
	transport	ACAP-					7,8]				RAB6A
	along	ARAP_13									
	microtubule	.05.2021_									
		00h00									
	miaratuhula	GO_Biolo									
	anchoring at	gicalProce									PICD1
CO:0072202	microtubula	ss-EBI-	0.00	0.04	0.00	0.00	[5 9]	Group22	21.42	3.00	BICD1,
00.0072393	organizing	UniProt-	0.00	0.04	0.00	0.00	[3, 8]	Gloupss	21.43	3.00	BICD2,
	organizing	GOA-									ΠΟΟΚΟ
	center	ACAP-									

		ARAP_13 .05.2021_									
		CO Piele									
GO:0005229	intracellular calcium activated chloride channel activity	GO_BIOIO gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.05	0.01	0.01	[8, 9, 10, 11, 12]	Group34	15.79	3.00	ANO2, ANO4, ANO7
GO:0098661	inorganic anion transmembr ane transport	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.01	0.01	[5, 7]	Group34	8.70	8.00	ANO2, ANO4, ANO7, CFTR, GABRR2, SLC12A7, SLC12A8, SLC12A8,

		GO_Biolo									ANO2, ANO4,
	inorgania	gicalProce									ANO7,
	morganic	ss-EBI-									CCT8L2,
	anion transmombr	UniProt-					[5 6				CFTR,
GO:0015103	transmemor	GOA-	0.01	0.04	0.01	0.01	[5, 0,	Group34	5.88	10.00	FXYD3,
	ane	ACAP-					7, 8]				GABRR2,
		ARAP_13									SLC12A7,
	activity	.05.2021_									SLC12A8,
		00h00									SLC4A8
		GO_Biolo									
		gicalProce									ANO2, ANO4,
		ss-EBI-									ANO7, CFTR,
	chloride	UniProt-									FXYD3,
GO:0006821	transport	GOA-	0.00	0.03	0.01	0.01	[7]	Group34	8.11	9.00	GABRR2,
	transport	ACAP-									SLC12A7,
		ARAP_13									SLC12A8,
		.05.2021_									SLC4A8
		00h00									
	chloride	GO_Biolo									ANO2, ANO4,
GO·1902476	transmembr	gicalProce	0.00	0.03	0.01	0.01	[6 8]	Group34	12 12	8.00	ANO7, CFTR,
50.1702470	ane	ss-EBI-	0.00	0.05	0.01	0.01	[0, 0]	Groups+	1 2, 1 2	0.00	GABRR2,
	transport	UniProt-									SLC12A7,

		GOA-									SLC12A8,
		ACAP-									SLC4A8
		ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
	intropollular	ss-EBI-									
	ablarida	UniProt-					10 0				
GO:0061778	channel	GOA-	0.01	0.05	0.01	0.01	[0, 9,	Group34	15.79	3.00	ANO2, ANO4,
		ACAP-					10, 11]				ANO
	activity	ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
	a o star monti o	gicalProce									
	postsynaptic	ss-EBI-									ILIKAP,
GO:0099084	specializatio	UniProt-	0.01	0.05	0.01	0.01	[5, 7]	Group35	11.11	4.00	MPP2,
	n	GOA-									PIPKD,
	organization	ACAP-									PIPKS
		ARAP_13									

		.05.2021_ 00h00									
GO:0097106	postsynaptic density organization	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.01	0.01	[6, 8]	Group35	11.76	4.00	ILIRAP, MPP2, PTPRD, PTPRS
GO:0099150	regulation of postsynaptic specializatio n assembly	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.04	0.01	0.01	[5, 6, 7, 8, 9]	Group35	21.43	3.00	IL1RAP, PTPRD, PTPRS

GO:1904889	regulation of excitatory synapse assembly	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.01	0.01	[6, 7, 8]	Group35	18.75	3.00	IL1RAP, PTPRD, PTPRS
GO:1905874	regulation of postsynaptic density organization	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.01	0.01	[5, 6, 7, 8, 9]	Group35	17.65	3.00	IL1RAP, PTPRD, PTPRS
GO:0097107	postsynaptic density assembly	GO_Biolo gicalProce ss-EBI- UniProt-	0.01	0.04	0.01	0.01	[7, 8, 9]	Group35	16.67	3.00	IL1RAP, PTPRD, PTPRS

		GOA- ACAP- ARAP_13 .05.2021_ 00h00									
GO:0099151	regulation of postsynaptic density assembly	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.01	0.01	[6, 7, 8, 9, 10]	Group35	23.08	3.00	IL1RAP, PTPRD, PTPRS
GO:0015144	carbohydrat e transmembr ane transporter activity	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13	0.00	0.02	0.00	0.00	[4, 6, 7]	Group36	15.38	6.00	AQP7, SLC2A14, SLC2A3, SLC2A9, SLC45A2, SLC5A11

		.05.2021_ 00h00									
GO:0051119	sugar transmembr ane transporter activity	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[5, 7, 8]	Group36	16.00	4.00	SLC2A14, SLC2A3, SLC2A9, SLC5A11
GO:0015145	monosaccha ride transmembr ane transporter activity	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[5, 6, 7, 8, 9]	Group36	16.67	4.00	SLC2A14, SLC2A3, SLC2A9, SLC5A11

GO:0015294	solute:catio n symporter activity	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[6, 7, 8, 9]	Group36	8.16	8.00	<i>SLC12A7,</i> <i>SLC12A8,</i> <i>SLC2A9,</i> <i>SLC38A2,</i> <i>SLC45A2,</i> <i>SLC45A2,</i> <i>SLC4A8,</i> <i>SLC5A11,</i> <i>SLC6A5</i>
GO:0005402	carbohydrat e:cation symporter activity	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.00	0.00	[5, 7, 8, 9, 10]	Group36	18.75	3.00	SLC2A9, SLC45A2, SLC5A11
GO:0015149	hexose transmembr ane	GO_Biolo gicalProce ss-EBI- UniProt-	0.00	0.03	0.00	0.00	[6, 7, 8, 9, 10]	Group36	18.18	4.00	SLC2A14, SLC2A3, SLC2A9, SLC5A11

	transporter	GOA-									
	activity	ACAP-									
		ARAP_13									
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
	glucose	ss-EBI-									SLC2A1A
	transmembr	UniProt-					[7, 8,				SLC2A14,
GO:0005355	ane	GOA-	0.00	0.03	0.00	0.00	9, 10,	Group36	18.18	4.00	SLC2A3,
	transporter	ACAP-					11]				SLC2A9,
	activity	ARAP_13									SLCJAII
		.05.2021_									
		00h00									
		GO_Cellu									
		larCompo									
	phagophore	nent-EBI-					[0, 2				ATG14,
GO:0000407	assembly	UniProt-	0.01	0.04	0.00	0.00	[2, 3,	Group37	12.12	4.00	PIK3C3,
	site	GOA-					4]				WIPI1, WIPI2
		ACAP-									
		ARAP_13									

		.05.2021_									
		00h00									
											ATG14,
											CFTR,
											DYNC1LI2,
											EIF2AK4,
											FBXO7,
		CO Biolo									FEZ2,
		do_biolo									FNBP1L,
											HGF, KLHL3,
		UniDrot									MAP1LC3C,
GO:0006014	autophagy	GOA	0.01	0.04	0.00	0.00	[3 4]	Group37	1 24	25.00	MAPK3,
00.0000914	autophagy		0.01	0.04	0.00	0.00	[3,4]	Groups7	4.24	25.00	MTMR9,
		ARAP 13									<i>РІКЗСЗ</i> ,
		05 2021									PIKFYVE,
		00100									SCFD1,
		001100									SEC22B,
											SMG1,
											TEX264,
											TRIM5,
											TRIM6,
											TRIM6-

											TRIM34,
											VIPAS39,
											VPS13C,
											WIPI1, WIPI2
GO:0034045	phagophore assembly site membrane	GO_Cellu larCompo nent-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_	0.00	0.04	0.00	0.00	[3, 4, 5]	Group37	20.00	3.00	ATG14, WIPI1, WIPI2
GO:0042594	response to starvation	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.05	0.00	0.00	[3, 5]	Group37	5.22	13.00	ACATI, ASNS, ATG14, EIF2A, EIF2AK4, MAP1LC3C, MAPK3, MIOS, PIK3C3, SIK1,

	WIPI1, WIPI2
	ATG14,
	CFTR,
	DYNC1LI2,
	FEZ2, KLHL3,
	MAP1LC3C,
	MAPK3,
SS-EDI-	MTMR9,
$\begin{array}{c c} & & & & \\ macroautop & & \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline $ \\ \hline \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\	PIK3C3,
GO.0010230 GOA- 0.00 0.05 0.00 0.00 [4, 5] Gloup57 5.16 18.00	PIKFYVE,
ACAP-	SCFD1,
ARAP_13	SEC22B,
	SMG1,
	TEX264,
	VIPAS39,
	VPS13C,
	WIPI1, WIPI2
GO_Cellu GO_Cellu	ATG14,
autophagos larCompo 0.00 0.02 0.00 [4, 5, Crowr27 8.16 8.00	MAP1LC3C,
OU:0003770 Ome nent-EBI- 0.00 0.00 0.00 0.00 0.00 8.16 8.00	MCOLN3,
UniProt-	PEG3,

		GOA-									РІКЗСЗ,
		ACAP-									TEX264,
		ARAP_13									WIPI1, WIPI2
		.05.2021_									
		00h00									
		GO_Biolo									ATG14, FEZ2,
		gicalProce									HOOK3,
		ss-EBI-									MAP1LC3C,
	1-	UniProt-									PIK3C3,
GO:0007033	organization	GOA-	0.01	0.04	0.00	0.00	[5]	Group37	5.85	11.00	PIKFYVE,
		ACAP-									RAB20,
		ARAP_13									SCFD1,
		.05.2021_									SEC22B,
		00h00									WIPI1, WIPI2
		CO Biolo									ASNS, ATG14,
		do_bloid									EIF2AK4,
	0.011.010 <i>m</i>										MAP1LC3C,
CO:0000267		SS-EDI-	0.01	0.04	0.00	0.00	[4, 5,	Croup27	5 61	11.00	MAPK3,
GO:0009267	stamustion	COA	0.01	0.04	0.00	0.00	6]	Gloups/	5.04	11.00	MIOS,
	starvation	ACAD									PIK3C3, SIK1,
		ACAR-									SLC38A2,
		AKAP_13									WIPI1, WIPI2
		1	1	1			1	1		1	1

		.05.2021_ 00h00									
GO:0061912	selective autophagy	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.02	0.00	0.00	[5, 6]	Group37	9.89	9.00	ATG14, CFTR, DYNC1L12, KLHL3, MAP1LC3C, MAPK3, TEX264, VPS13C, WIP12
GO:1905037	autophagos ome organization	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[5, 6]	Group37	8.57	9.00	ATG14, FEZ2, MAP1LC3C, PIK3C3, PIKFYVE, SCFD1, SEC22B, WIP11, WIP12

GO:0000421	autophagos ome membrane	GO_Cellu larCompo nent-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[5, 6, 7]	Group37	13.16	5.00	ATG14, MAP1LC3C, MCOLN3, TEX264, WIP11
GO:0032266	phosphatidy linositol-3- phosphate binding	GO_Mole cularFunct ion-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.00	0.03	0.00	0.00	[6]	Group37	11.63	5.00	SNX13, WIP11, WIP12, ZFYVE19, ZFYVE26
GO:0000045	autophagos ome assembly	GO_Biolo gicalProce ss-EBI- UniProt-	0.00	0.03	0.00	0.00	[6, 7]	Group37	9.00	9.00	ATG14, FEZ2, MAP1LC3C, PIK3C3, PIKFYVE,

		GOA-									SCFD1,
		ACAP-									SEC22B,
		ARAP_13									WIPI1, WIPI2
		.05.2021_									
		00h00									
		GO_Biolo									
		gicalProce									
	negative	ss-EBI-									
	regulation	UniProt-		0.05	0.00	0.00	[5.6				FEZ2, SCFD1,
GO:0016242	of	GOA-	0.01				[5, 0,	Group37	11.43	4.00	SEC22B,
	macroautop	ACAP-					7, 0]				SMG1
	hagy	ARAP_13									
		.05.2021_									
		00h00									
	nnotain	GO_Biolo									
		gicalProce									
	localization	ss-EBI-					[5 7				
GO:0034497	l0 mhaaamhama	UniProt-	0.00	0.03	0.00	0.00	[5, 7,	Group37	30.00	3.00	
	phagophore	GOA-					8]				WIPII, WIPI2
	assembly	ACAP-									
	site	ARAP_13									

		.05.2021_ 00h00									
GO:1902902	negative regulation of autophagos ome assembly	GO_Biolo gicalProce ss-EBI- UniProt- GOA- ACAP- ARAP_13 .05.2021_ 00h00	0.01	0.04	0.00	0.00	[6, 7, 8, 9]	Group37	18.75	3.00	FEZ2, SCFD1, SEC22B