Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4
http://www.journalofcloudcomputing.com/content/3/1/4

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

An adaptive framework for utility-based
optimization of scientific applications in the
cloud

Martin Koehler

Abstract

Cloud computing plays an increasingly important role in realizing scientific applications by offering virtualized
compute and storage infrastructures that can scale on demand. This paper presents a self-configuring adaptive
framework optimizing resource utilization for scientific applications on top of Cloud technologies. The proposed
approach relies on the concept of utility, i.e, measuring the usefulness, and leverages the well-established principle
from autonomic computing, namely the MAPE-K loop, in order to adaptively configure scientific applications. Therein,
the process of maximizing the utility of specific configurations takes into account the Cloud stack: the application layer,
the execution environment layer, and the resource layer, which is supported by the defined Cloud stack configuration
model. The proposed framework self-configures the layers by evaluating monitored resources, analyzing their state,
and generating an execution plan on a per job basis. Evaluating configurations is based on historical data and a utility
function that ranks them according to the costs incurred. The proposed adaptive framework has been integrated into
the Vienna Cloud Environment (VCE) and the evaluation by means of a data-intensive application is presented herein.

Keywords: Cloud; Cloud stack; Adaptive; Autonomic computing; Utility

Introduction

Executing scientific applications in a Cloud-based envi-
ronment requires dynamic allocation of computing
resources, provisioning of the underlying programming
environments and the applications themselves. In addi-
tion, these applications are often Cloud-enabled by follow-
ing the Software as a Service approach. Cloud computing
[1,2] offers researchers the illusion of virtually infinite
resources that can be allocated on demand and are acces-
sible via the Internet. Nevertheless, researchers usually
have to pay for the utilized resources when using a pub-
lic Cloud environment [3,4] or, in case of a private Cloud,
resources are not disposable for other experiments. Con-
sequently, a shared goal of service providers and clients
is the optimization of resource utilization while keeping
costs and runtime of potentially time-consuming applica-
tions low. In general, researchers want to obtain results
in a given period of time and they want to spend as
little money as possible on compute resources. Cloud

Correspondence: martin.koehler@ait.ac.at
Mobility Department, Austrian Institute of Technology (AIT), Giefinggasse 2,
1210 Vienna, Austria

@ Springer

providers aim at serving as many researchers as possible
in order to increase earnings and thus strive to optimize
the utilization of resources.

This work presents an adaptive framework optimizing
the utilization of Cloud computing resources as well as
the runtime of an application. Within this context, the two
main and at the same time contradicting objectives are
the allocation of as little computing resources as possible
and the minimization of runtime. The adaptive frame-
work tackling this challenge on a per-job-basis relies on
well-known concepts from autonomic computing [5,6],
particularly on the MAPE-K loop containing a monitor,
analyzer, planner, executor, and knowledge component.
By accessing knowledge about historical jobs, the adaptive
framework is able to effect the configuration of a specific
job.

This approach represents knowledge by means of the
concept of utility [7] known from economics, which mea-
sures the usefulness from the researchers’ and the service
providers’ perspective. Utility takes into account the uti-
lization of Cloud computing resources as well as the
runtime of an application. For maximizing the utility of a

© 2014 Koehler, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto:martin.koehler@ait.ac.at
http://creativecommons.org/licenses/by/2.0

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

specific job it is necessary to consider the configuration of
all three layers of the Cloud service model: (1) the applica-
tion layer where applications are provisioned based on the
Software-as-a-Service (SaaS) concept, (2) the program-
ming and execution environment layer, also referred to
as Platform-as-a-Service (PaaS) layer, and (3) the resource
layer, also known as Infrastructure-as-a-Service (IaaS)
layer. Therefore, a comprehensive and generic model
enabling the configuration of different implementations
of the Cloud service model layers is needed. This paper
presents a Cloud stack configuration model tackling this
challenge by supporting the specification of layer-specific
parameters to be taken into account during the utility
optimization process.

The runtime of an application depends on the hardware
characteristics and the amount of computing resources
available or allocated (e.g. number of processors used).
The programming environment layer (e.g. MapReduce
programming model [8]) provides multiple configura-
tion parameter sets which may effect the runtime. Addi-
tionally, the configuration of an application may impact
the runtime as well. Optimizing the configuration of
resources, the programming environment, or the applica-
tion itself, are non-trivial problems on their own and a lot
of research has been done in these areas.

A prototype of the proposed framework has been
implemented and integrated in the Vienna Cloud Envi-
ronment (VCE) [9], a versatile cloud environment for
scientific applications, data sources, and scientific work-
flows. The VCE follows the Software as a Service (SaaS)
model and relies on the concept of virtual appliances
to provide a common set of generic interfaces to the
user while hiding the details of the underlying soft-
ware and hardware infrastructure. The adaptive frame-
work is evaluated on top of a data-intensive application
[10] from the field of high-throughput molecular sys-
tems biology [11], which has been Cloud-enabled with the
VCE.

The remainder of this paper is organized as follows: The
next section discusses related work followed by a section
introducing the model for describing the different layers
of the Cloud stack and presenting challenges regarding the
configuration of these layers. Afterwards, the design of the
proposed adaptive framework based on utility functions
and autonomic computing concepts is delineated and
the MAPE-K loop components are presented in detail.
Subsequently, the adaptive utility-optimization process is
described on the basis of a cloudified data-intensive appli-
cation. Finally, a conclusion of the work including future
work completes this paper.

Related work
The paper investigates how utility functions and adaptive
technologies, namely the MAPE-K loop, can be utilized

Page 2 of 12

to configure the Cloud stack towards optimizing run-
time and resource utilization for specific jobs. To place
this in context, this section reviews work on utility-based
optimization and adaptive methods for scheduling and
resource allocation.

In adaptive systems relying on feedback loops, e.g. the
MAPE-K loop, various concepts for managing knowledge
are established and could be utilized (e.g., Concept of Util-
ity, Reinforcement Learning, Bayesian Techniques) [6].
The basic idea is the provisioning of knowledge about the
system and to use it in the process of decision-making.
In autonomic computing decision-making has been clas-
sified in action policies, goal policies and utility function
policies [12]. While action policies define specific actions
taken in response to sensed information, goal policies
identify actions potentially leading to the desired state of
the system. Utility function policies are based on the con-
cept of utility from economics and are used to measure
and quantify the relative satisfaction of customers with
goods.

The principle of utility functions has been applied to
diverse problem statements for resource allocation in
multiple domains. In [13], utility functions in autonomic
systems are used to continually optimize the utilization
of managed computational resources in a dynamic, het-
erogeneous environment. The authors describe a system
that is able to self-optimize the allocation of resources
to different application environments. In contrast to their
approach, we try to reduce the costs (resource usage,
runtime) for a single application by automatically config-
uring the environment. In [14], a utility-based resource
allocation and scheduling process for wireless broadband
networks is described. The approach uses utility-based
resource management and QoS architecture enabling
an optimization system where only the utility function
has to be changed for new applications. In this sense,
their approach is quite similar to the approach described
herein. In [15] the authors present an architecture for
the implementation of self-manageable Cloud services
which in case of failures or environmental changes man-
age themselves to fulfill the guaranteed quality of service.
Whereas they focus on the quality of service, our paper
uses a similar approach to optimize the resource uti-
lization and the runtime of applications in the Cloud.
Research on QoS-aware scheduling for heterogeneous
datacenters is presented in [16]. Their work is not based
on utility functions but likewise our work, their approach
leverages from information the system already has about
applications.

In [12], the authors apply autonomic computing con-
cepts and utility functions on adaptive resource allocation
for concurrent workflows. They define utility based on
response time and profit, realize dynamic and adaptive
workflow optimization on top of Pegasus and DAGMan

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

and present the feasibility of the approach on top of five
workflow-based scenarios. In contrast to our approach,
they focus on the assignment of specific workflow tasks
to execution sites. Additional related work on utility-
directed resource allocation has been published in [17].
They apply this approach in virtual desktop clouds with
the objective of improving the user experience. Their
approach deals with resource scheduling while the work
presented herein tries to optimize the utility for single jobs
by configuring the Cloud stack.

In [18], an adaptive resource control system is pre-
sented. It adjusts the resources to individual tiers in order
to meet application-level Quality of Service (QoS) goals.
That s, to increase the resource utilization in a data center
by taking into account the application level QoS. The pre-
mier objective of our framework is to reduce the amount
of utilized resources for individual jobs.

The Automat toolkit [19] is a community testbed archi-
tecture that targets research into mechanisms and poli-
cies for autonomic computing that are under closed-loop
control. The toolkit enables researchers to instantiate self-
managed virtual data centers and to define the controllers
that govern resource allocation, selection, and dynamic
migration.

Cloud stack configuration model

To achieve the goal of maximizing the utility for a spe-
cific job, the adaptive framework has to take into account
the resource utilization as well as the runtime of the
application. This approach assumes that both, utiliza-
tion and runtime, depend on the configuration of the
application, the execution environment (platform), as well

Page 3 0of 12

as the resources. This assumption raises the need for a
generic model enabling the specification of layer-specific
parameters to be taken into account during the utility-
optimization process. Thus, we defined a model of the
Cloud stack (see Figure 1) comprising three layers: the
application layer (SaaS), the execution environment layer
(PaaS), and the resource layer (IaaS). For each layer
a declarative descriptor captures a set of configuration
parameters that might impact the resource requirements
and the runtime of an application by assuming that a finite
parameter set is sufficient for optimizing the resource uti-
lization. The definition of the concrete set of parameters at
each layer, which should be configured adaptively, should
be hidden from the end user but has to be done by experts
on the specific layer (e.g. application or service provider).
Specifically, defining a concrete set of parameters span-
ning the whole Cloud stack requires deep knowledge
about resource allocation, resource and environment con-
figuration, and application behaviour. Thus, this approach
provides a flexible model enabling the definition of a
variety of parameters, but promotes the minimization of
the parameters defined with the objective to reduce the
overall complexity.

Representation of descriptors

The application descriptor, the environment descriptor, as
well as the resource descriptor are defined in a generic
manner by enabling the definition of element-specific
parameters. All descriptors are defined on the basis of
XSD schemes which include generic key/value pairs for
defining parameters. Additionally, the XSD schema sup-
ports the definition of the scope of each parameter to

o = p—
Application Application
: e Descriptor
eATh s elp e (XSD Schema)
MPI Application J: OpenMP Application Application J
H B
. B .
‘ - 2
L Execution Environment Environment =
3 s . Descriptor a
s rogramming cnvironmen (XSD Schema) g
Batch Submission System J (MPI, MapReduce) J - 2
laas U Storage Cluster HPC System
| Center g = Y
Parameter J
Name
Value
Range
Figure 1 Layered Cloud stack model. Each layer (application, execution environment, resources) can include multiple elements, each describable
by an XML descriptor. Each XML descriptor includes a list of parameters with a name, a value, and a range. A job descriptor consists of one or more
application, environment, and resource descriptors.

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

be considered during job configuration. By following this
approach, different applications, execution environments,
and resources can be easily supported.

Application descriptors

The purpose of the application descriptor is to explic-
itly describe a set of application-specific parameters that
should be tuned by the adaptive framework. Many appli-
cations provide a large set of configuration parameters
enabling the tuning of an application regarding specific
hardware resources. Moreover, experiments often rely on
the execution of parameter studies which can be config-
ured in different ways. Depending on the input param-
eters and the available resources, it may be appropriate
to change the configuration of an application. The appli-
cation descriptor has to be specified by the application
provider by defining a specific set of parameters.

Environment descriptors

The execution of an application may require different exe-
cution environments depending on the application char-
acteristics and underlying resources. On HPC systems
and clusters, usually batch submission systems are utilized
for allocating the computing resources. In case of a vir-
tual cluster in the Cloud, a batch submission system can
be configured on demand for scheduling the jobs depen-
dent on the virtual execution appliances available. Thus,
scheduling system-specific parameters that have to be set
at job submission time can be defined via the environment
descriptor.

For scientific applications usually a parallel execution
environment such as MPI, OpenMP, or MapReduce is uti-
lized. Most of these environments provide a huge set of
configuration parameters that may impact the runtime of
an application. For example, the Apache Hadoop frame-
work supports an enormous set of parameters enabling to
specify the number of map and reduce tasks, the configu-
ration of the Java Virtual Machines, or how many tasks can
be executed in parallel (on a single machine). The provi-
sioning of a “good” configuration for such a system can be
very complex. With our approach, those parameters that
should be taken into account by the adaptive framework
are defined in the environment descriptor and set upon
job submission time to improve the behavior of the system
for a specific job.

Resource descriptors

The purpose of the resource descriptor is to explicitly
describe a set of computing and storage resource-specific
parameters that should be taken into account by the
adaptive framework. Within Cloud environments, often
virtual clusters consisting of a variable set of comput-
ing resources with different CPUs and memory sizes
are utilized during job execution. HPC systems provide

Page 4 of 12

different hardware architectures to consumers (e.g. multi-
core CPUs, GPUs) suitable for the execution of differ-
ent applications. Resource descriptors enable an explicit
description of the compute resources to be considered for
the execution of a specific job.

Additionally, many applications require processing of
large data sets, especially in the area of data-intensive
computing. Storage environments, such as for example,
the Hadoop Distributed File System (HDES), provide a
huge set of configuration parameters effecting the sys-
tems behavior. For example, the HDFS file system enables
the definition of the block size of files (how a file is
split across multiple distributed storage nodes) and the
replication factor (how often the file is replicated). Adjust-
ing these parameters is often not feasible for single jobs
because their configuration is time-consuming. Neverthe-
less, these parameters effect the runtime of the application
and have to be considered during the job configuration
(e.g. changing the replication of a huge file in a dis-
tributed file system may require prohibitive data trans-
fers), but they may impact the job configuration process.
The resource descriptor supports the specification of
these parameters.

Often, Cloud-based applications necessitate the config-
uration of a specific network stack, for instance a private
virtual network provided by the Cloud offering. Cur-
rently, networking parameters are not in the scope of
this work, but, by the generic design, resource descrip-
tors are capable of representing different networking
requirement.

Job descriptors

The purpose of the adaptive framework is to adaptively
configure a job upon submission time on the basis of the
application, the environment, and the resource descrip-
tor(s). Therefore, a job descriptor comprises application,
environment, and resource descriptors which consist all
job-specific parameters to be configured. The current
implementation of the Cloud stack configuration model
is quite simple but very flexible due to the fact that
any parameter can be represented and different types of
descriptors are available to define diverse components of
the Cloud stack including the application, multiple plat-
forms, different resources (storage, compute, networking).
Currently, consistency between the different descriptors
is not assured by the system itself, but has to be taken
into account by carefully defining the parameter set for all
descriptors.

Design of the adaptive framework

On top of the Cloud stack model representing the con-
figuration of all three layers, an adaptive framework for
optimizing the utility of a specific job regarding these lay-
ers has been designed. The main objective of the adaptive

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

framework is the optimization of the utility for a specific
job which is achieved by adaptive configuration of these
layers.

The adaptive framework is utilized for configuring the
resource layers and for self-optimizing a specific job
regarding runtime and resource utilization. Therefore,
the design of the framework follows the MAPE-K loop
[6], which is a well-established concept in autonomic
computing. The MAPE-K loop comprises a monitoring,
an analyzing, a planning, an execution, and a knowl-
edge element and has the objective of designing systems
with self-* characteristics (self-configuration, self-healing,
self-protection, and self-optimization) [20]. The adaptive
framework itself acts as autonomic manager of the differ-
ent layers of the Cloud stack and the planning component
relies on the utility function. The generic nature of the
framework enables the adaption of the objective without
changing the framework itself, but by defining different
utility functions supporting varying target functions. The
design of the framework is shown in Figure 2.

Managed resources

The adaptive framework has been designed to manage
resources at all three Cloud stack layers involved. The
framework provides sensor and effector interfaces, follow-
ing the definition of the MAPE-K loop, for gaining actual
information about resources and their utilization and for
changing the state of the resources.

Page 5 0of 12

Multiple execution environments may be involved dur-
ing the job execution including the scheduling system and
the programming environment (e.g. MPI, MapReduce).
Currently, the Hadoop Framework can be configured by
changing the configuration files or by setting parameters
at job execution time.

The management of the resource layer provides an
interface to the computing and storage resources. Com-
puting resources may be HPC resources and clusters
managed by a batch scheduling system. In case of the
Oracle Grid Engine (OGE), information about the allo-
catable resources can be retrieved via the Distributed
Resource Management Application API (DRMAA) [21].
In case of private or public Cloud environments, the man-
agement can be done over the Cloud environment’s APL
Storage resources include distributed file systems, such as
for example, the HDFS, and Cloud storage solutions as
provided by Amazon (Amazon S3).

Knowledge

To realize a framework capable of adaptively configur-
ing the application, the execution environment, and the
resources, there is a need to integrate knowledge gained
from previous configurations of the system. Following the
concept of the MAPE-K loop, this knowledge is made
available to the framework via the knowledge component
and used in the process of decision-making. The knowl-
edge is automatically revised during the execution by the

-

Application Resource
. Analyzer . Analyzer
Resource/
Application/
Environment

Descriptors

)

Virtual Appliance
Application Service

Adaptive Framework

Job
Descriptors

Utility Performance
__ Calculator B Model

Job
Descriptar

l Sensor] L Effector J
Scientific Applications J Managed Resources
Exe‘.:Ution Pm.gramming I Batch Submission Systems]]

| Environment Environments |
Resources | HPC Systems | . Cloud Environments] 1 Storage System IJ

2

knowledge, and executes this plan on the resources.

Figure 2 Design of adaptive framework. The design follows the concept of the MAPE-K loop for managing the configuration of the Cloud stack
for a specific job. The framework monitors the managed resources, analyzes the state of the resources, generates an execution plan based on

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

adaptive framework by integrating new insights gained
from additional runs of the application.

In this approach, the concept of utility, describing the
usefulness of a specific configuration, is utilized for rep-
resenting knowledge. This enables the representation of
varying goals from different stakeholders by defining dif-
ferent utility functions. For example, a specific configura-
tion may have a different utility for the researcher or for
the service provider depending on their goals.

The utility U of a job [22] is defined as U (A, E, R), where
A= {a,...,ay}, E = {e1,...,em},and R = {ry,..., 1%}
represent the parameter set at the application layer,
the execution environment layer, and the resource layer,
respectively. Different configurations are ranked on the
basis of their utility. If U (A¢, E.,R:) > Uy (Ay,Ey, Ry),
then configuration C is ranked higher than configuration
C’. The configuration with the highest utility is chosen
for job execution. The utility of a configuration is normal-
ized in the range [0, 1]. The utility function itself is defined
as Sigmoid function depending on a function f(A4, E, R).
This function f is scenario-specific and has to be defined
by domain experts. The equation of the utility function is
depicted in the following:

U(f) = —e +1 (1)

A Sigmoid function has been chosen because it
highlights a small set of “good” configurations, slopes
promptly, and settles down on a low value. Hence, the
function (1) fits the problem of accentuating good job
configurations.

The knowledge itself is captured within a database
system which stores application-, environment-, and
resource-descriptors of previous application executions.
In our framework we utilize a HSQL database system for
the knowledge base following a generic database schema.
For each job, the runtime of the job, the utility of the
job, and estimated values for runtime and utility (dur-
ing planning phase) are stored and made available to the
framework. A parameter table is used to store param-
eters specific to the managed resources. After a job has
been finished, the utility of this job is calculated based on
the runtime of the job, and both values are added to the
knowledge base.

_Se—OAS*f

Monitor

The monitoring component is responsible for sensing the
involved managed resources and for providing this infor-
mation to the autonomic manager. Sensing the resources
results in the generation of actual application, environ-
ment, and resource descriptors. These descriptors refer
to the actual configuration of the managed resource (e.g.
OGE). The adaptive framework has to monitor multi-
ple resources at the different layers (IaaS, PaaS, SaaS).
Therefore, the monitor relies on a component-oriented

Page 6 of 12

architecture, which enables simple integration of new
monitor components for monitoring specific resources
(e.g., different set of resources).

The realization of the monitor relies on the DRMAA
API [21] for communicating with OGE. By utilizing the
Java API, the monitor retrieves information about free
computing resources and their configuration (e.g. number
of nodes). Additionally, information about free computing
resources in the private Cloud environment are provided
via the KVM API [23] on the Cloud nodes. Information
about the HDEFS storage resource, including the block
size, replication factor, and the size of the file, is retrieved
by utilizing the Hadoop API. The configuration of the
Hadoop framework is available via the Hadoop config-
uration files. Application and job specific information is
supplied by the user, including the number of input files
and the needed database.

Analyzer
The analyzer is responsible for evaluating the actual con-
figuration of all layers involved. The analyzer adopts a
component-based architecture, as depicted in Figure 3,
and can be composed of multiple specific analyzers,
for analyzing the configuration of specific resources.
The analyzer executes all specific analyzer components
sequentially. The basic execution chain of analyzer com-
ponents is bottom-up, starting from the resource layer,
next the execution environment, and finally the applica-
tion layer. The execution chain can be changed by the
service provider if required. The analysis phase of the
adaptive framework results in the provisioning of job
descriptors depicting the possible configurations on all
layers that should be taken into account by the planner.
Each analyzer component provides the same generic
interface retrieving a set of actual job descriptions and
the resource specific description and examines the layer-
specific parameters to generate a set of corresponding
job descriptors. For example, if the resource descriptor
includes a virtual cluster consisting of ten virtual appli-
ances, the resource analyzer component creates ten dif-
ferent job configurations describing the utilization of one
up to ten virtual appliances. In order to limit the num-
ber of different configurations, the range of the different
parameters has to be restricted by the service provider.
The analyzing phase results in a set of feasible job config-
urations, each specifying a different configuration of the
resources on each layer. One aspect with this approach is
to balance the amount of parameters with the accuracy
of the approach. On the one hand, we try to minimize
the amount of generated job configurations by utilizing
as less parameters as possible at each layer. On the other
hand, the utilized parameters have to be chosen carefully
to retrieve appropriate and accurate results. The parame-
ter set has high impact on the complexity and the accuracy

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4
http://www.journalofcloudcomputing.com/content/3/1/4

Page 7 of 12

Job
Descriptor

._’_

Application/

Environment/
Resource
Descriptor ~

Analyzer

Resource
L Parameters

)

Environment
Parameters

Application
Parameters

Analyzer

Component
{e-g Cloud and

Analyzer
Component
(e.g Hadoop and
OGE Environment

Analyzer)

)—‘ Execution of Analyzer
Components HPC system

lob | Resource
Descriptors Analyzer)
¥y

Analyzer
Component
(e.g Hadoop
Application
Analyzer)

Figure 3 MAPE-K analyzer. The analyzer is comprised of multiple analyzer components, each being aware of the configuration of one managed
resource. The execution of analyzer components is chained and has to be defined by the service provider. The default execution chain is depicted.

of the solution. Thus, we propose that parameters should
be defined by experts in the whole system (Cloud stack
model) and think about future extensions towards expert
recommendation systems enabling automatic decisions
on the parameters to use.

The complexity of the configuration scope can be
explained as follows: #, m, k define the number of param-
eters [A| = n, |[E| = m, |R| = kand a; : u;, ¢ : v;
r; : w; define the number of possible values per parameter.
Thus, the number of possible configurations L is defined
as [, wi]_[;11 vj]_[]]f:1 wy. If we claim that u;, v, w; >
2 (saying that we have at least two possible values for
each parameter), we can state that the number of con-
figurations is exponential and at least L > gnomaok
2"k Thus, reducing the problem scope is necessary for
assuring acceptable runtime of the approach.

The prototype implementation of the adaptive frame-
work includes an application-analyzer (application
specific parameters), an environment-analyzer (Hadoop
specific parameters), and a resource-analyzer (computing
resource parameters). The resource-analyzer generates
a set of job descriptors by utilizing information about
the available computing resources (cluster and Cloud
resources). Either cluster or Cloud resources are utilized
by the system. The environment-analyzer provides job
descriptors including different Hadoop configuration
parameters. The basic implementation takes into account
if compression should be utilized within Hadoop, and the
number of Map and Reduce tasks which can be executed
in parallel on one node. The application-analyzer con-
figures the execution of parameter studies by evaluating
the number of input files to be matched. The application-
analyzer evaluates the possibility of splitting the input
files to multiple jobs and generates a set of job descriptors
including different configurations.

Planner
Within the MAPE-K loop, the planning component is
responsible for acting on top of the information gained by

the analyzer component. Herein, the planner is in charge
of choosing the job configuration with the highest util-
ity. This is done by means of knowledge and a planning
strategy on the basis of the concept of utility.

According to the design, different planners could be
implemented following different approaches for ranking
the set of configurations. The approach utilized within
this work is based upon a utility function, which enables
ranking of different configurations based on the concept
of utility, which is used in economics to describe the mea-
surement of ‘useful-ness’ that a consumer obtains from
any good [24].

In this approach, the planner uses internally a utility
calculator component for estimating the utility of a spe-
cific job configuration. The utility calculator calculates
the utility for a specific job configuration on the basis
of the utility function. The utility function takes into
account a set of parameters included in the job description
and the runtime of the job. Thus, an application-specific
performance model is needed to estimate the utility. Addi-
tionally, the parameter set changes due to different types
of involved resources, execution environments, or appli-
cations. Therefore, the utility function has to be adapted
according to the specific application scenario.

Regarding to the estimated runtime and job-specific
parameters the utility for a job description is calculated
and the planner ranks all job descriptions on this basis.
The job configuration with the highest utility is chosen for
execution.

The basic design of the planner including a utility cal-
culator and an application-specific performance model is
depicted in Figure 4.

Utility calculator

The utility calculator computes the utility of a job descrip-
tor taking into account parameters within the applica-
tion, environment, and resource descriptors as well as
the estimated runtime as obtained with the performance
model. The utility function depends on parameters from

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

Page 8 of 12

Job
Descriptors

._;

Job
Descriptor
y

Utility Function

Planner

ICo!

Application-specific
implementation

means of the utility.

Figure 4 MAPE-K planner. The planner component consists of an application specific performance model and a utility calculator. The utility
calculation is done on the basis of a utility function. The planner calculates the utility of each provided job description and ranks them afterwards by

the application A, the environment E and the resource R
layer.

As specified, a scenario dependent function f consider-
ing the parameter sets available at the resource, execution
environment, and application layer, has to be defined to be
used in conjunction with the utility function. On the basis
of the utility function (1) and the function f the utility
of a job is estimated and different job configurations can
be ranked. The prototype implementation of the adaptive
framework focuses on a small sample set of parameters,
specifically the parameters #n € R, the number of nodes,
d € A, the number of input files, s € R the database size,
and r € A the estimated runtime of the job. Therefore, a
scenario function f(n, d, s, r), normalizing the parameters
for the calculation of the utility, is defined in (2).

(wyn) (wyr)

"F (wad) (wss) @

fn,d,s,r) =

The function f is defined on the basis of the utiliza-
tion of the resources (runtime and number of nodes)
and the data transfer (database size and number of input
files). Each value can be weighted with a factor w,(p €
f,n,d,s,r) for setting the importance of the parameter for
calculation of the utility. According to initial experiments,
these weighting factors have been set to w, = 0.3, w; =
0.4, ws = 0.6, and w, = 0.7. Additionally, the number
of input files is normalized before applying the function.
The size of the input files can have impact on the runtime
of an application. Currently, this fact is not considered in
the scenario dependent function due to the characteris-
tics of the sample application. A scaling factor of wy = 20
has been chosen to scale the function according to the
utility function. The weighting factors within the func-
tion f have been chosen according to initial experimental
results.

Performance model

Predicting the accurate runtime of an application usu-
ally is a complex, often not realistic task [25]. Simi-
larly, a complete multidimensional regression including
all parameters involved requires a large amount of
test cases to deliver appropriate results. For these

reasons, we propose the utilization of a history-based
performance model. Nevertheless, the generic design
of the adaptive framework supports the utilization
of different performance models dependent on the
application.

The history-based performance model is realized on
the basis of knowledge about previously run jobs with
a similar configuration and of parameter-specific regres-
sion functions. Therefore, the prototype implementation
defines regression functions for a subset of parameters
of R (resource) and A (application), which are consid-
ered in this approach. The prototype focuses on three
specific parameters including the number of nodes allo-
cated for a specific job n, the size of the database
s, and the number of input files to be compared d
and has been evaluated within a case study. Therein
we retrieved accurate results on different computing
resources [22]. Following this, the performance predic-
tion is based on historical execution time and regression
functions. While the approach could be easily extended
with support for additional parameters, it is shown that
considering only a subset of parameters can results in
appropriate estimations. Different types of computing
resources implicate changes in the runtime of the appli-
cation. Therefore, the regression functions are not com-
pletely independent of the utilized computing resources
(Cloud or cluster resources), but have to be adapted
with a weighting factor regarding the allocated computing
resources.

Executor

The task of the executor is to configure the three Cloud
stack layers according to the chosen parameter config-
uration and to execute the application job. First, the
executor reserves and configures the computing and
storage resources (or initializes them in case of a vir-
tual cluster within a Cloud environment) regarding the
resource parameters specified in the configuration. Then,
the executor configures the attached execution environ-
ment as well as the application. After all three layers have
been configured, the application is executed according to
the defined job description.

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

After job completion, the executor evaluates the execu-
tion (runtime of job and recalculated utility) and stores the
gained information in the knowledge base so that it can be
utilized for planning of forthcoming job submissions.

Case study: adaptive configuration of a
MapReduce application

A prototype of the adaptive framework including all intro-
duced components has been implemented within the
Vienna Cloud Environment (VCE) [9]. In the following
we report on experiments with a MapReduce application
from the domain of molecular systems biology [26,27].

At the application layer, support for the execution of
the MoSys application [28], matching tryptic peptide
fragmentation mass spectra data against the ProMEX
database [11], has been implemented. The application
supports the execution of parameter studies, in particular
the comparison of hundreds of files against the database.
The framework adaptively splits or combines these input
files into multiple jobs and schedules their execution on
different sets of computing resources. In the case study a
private cloud environment and a cluster system have been
utilized for executing the application. The cluster consists
of eight compute nodes, each equipped with two Nehalem
QuadCore processors, 24 GB of memory, and 6 TB of disk
space, and is interconnected via Infiniband and Gigabit
Ethernet. The private Cloud environment is connected via
Gigabit Ethernet to the frontend and includes four com-
putational nodes, each equipped with two 12-core AMD
Opteron processors and 48 GB of main memory, 12 TB of
storage and virtualized via KVM.

The job execution scenario is based on a test case exe-
cuting a parameter study with 1000 input files against a
500 GB database. Following this scenario, the adaptive job
configuration process within the adaptive framework is
explained.

The job life cycle starts with a user who uploads the
input files to the VCE application appliance via the Web
service interface. Afterwards, the user starts the execution
of the job via the application service’s start () method
and the service initiates the adaptive framework. Hence,
the MAPE-K loop for this job is started, and the mon-
itor queries the actual configuration of the application,
the Hadoop environment, and the available computing
resources. The monitor generates a ResourceDescriptor
describing the available compute nodes on the cluster and
the private Cloud. For this test case, it is assumed that
eight compute nodes are allocatable on the cluster and up
to twelve virtual machines, each containing eight virtual
CPUgs, can be started in the private Cloud. Additionally, an
ApplicationDescriptor is generated including actual infor-
mation about the job. Information stored in the Applica-
tionDescriptor includes the size of the database, and the
number of input files.

Page 9 of 12

Configuration of the job

The analyzer executes the chain of analyzer compo-
nents consisting of a ResourceAnalyzer, an Environment-
Analyzer, and an ApplicationAnalyzer. Each component
analyzes the parameters stored in one descriptor and
generates a set of possible job descriptors.

The resource analyzer takes care of the resource
descriptors provided by OGE and the private Cloud envi-
ronment. The analyzer component generates eight differ-
ent job configurations on the basis of the cluster resource
descriptor setting the amount of compute nodes for this
job between one and eight nodes. Additionally, the ana-
lyzer component creates twelve job configurations setting
the amount of Cloud nodes to be allocated from one to
twelve.

The EnvironmentAnalyzer sets Hadoop specific param-
eters according to the resource specific parameters. For
example, the number of parallel map tasks on one node is
set to eight, according to the number of cores per node.

Finally, the ApplicationAnalyzer evaluates the possibil-
ity to split the parameter study into multiple jobs. The test
case job compares 1000 files against the database. In this
case, the ApplicationAnalyzer generates job descriptors
with one job matching 1000 input files, two jobs matching
500 input files, 4 jobs matching 250 input files, and so on.
In order to simplify the procedure, the test case does not
further discuss the job descriptors created by the Applica-
tionAnalyzer and explains the adaptive job configuration
process on the basis of the generated resource descriptors.

The generated job descriptors are depicted in Table 1.
Each line includes the Job ID, the number of input files,
the database size (DB Size), the number of compute nodes
including the type and the number of CPUs (Nodes(Type -
CPU)), and the number of jobs generated (for the purpose
of simplification all possible values are shown within one
job descriptor).

Utility calculation

The planner ranks the job descriptors generated by the
analyzer on the basis of the utility function and the
underlying performance model. The planner estimates
the performance of each job description following an
application-specific performance model and information
about previously run jobs stored in the knowledge base.
Afterwards, the utility calculator is utilized for computing
the utility of each job descriptor on the basis of the esti-
mated performance. The planner ranks the job descrip-
tors on the basis of the calculated utility and selects the
descriptor with the highest utility for execution.

In the following the process of the utility calculation is
explained in detail on the basis of the assumption that the
knowledge base stores information about three historical
jobs as shown in Table 2. The first job in the knowledge
base has been a job matching 1000 input files against a 100

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

Table 1 Scope of job: this table depicts the job descriptors
generated by the analyzer components (resource,
environment, application) during the adaptive
configuration of the test case

JobID InputFiles DBSize Nodes (Type) Number of Jobs
1 1000 500 8 (cluster - 8) 1,2,4,58,.,1000
2 1000 500 7 (cluster - 8) 1,2,4,58,.,1000
3 1000 500 6 (cluster - 8) 1,2,4,58,.,1000
4 1000 500 5 (cluster - 8) 1,2,4,58,.,1000
5 1000 500 4 (cluster - 8) 1,2/4,58,.,1000
6 1000 500 3 (cluster - 8) 1,24,58,.1000
7 1000 500 2 (cluster - 8) 1,24,58,.,1000
8 1000 500 1 (cluster - 8) 1,2/4,58,.,1000
9 1000 500 12 (cloud - 8) 1,2,4,5,8,.,1000
10 1000 500 11 (cloud - 8) 1,2,4,58,.,1000
1 1000 500 10 (cloud - 8) 1,2,4,5,8,.,1000
12 1000 500 9 (cloud - 8) 1,2,4,58,.,1000
13 1000 500 8 (cloud - 8) 1,2/4,5,8,.,1000
14 1000 500 7 (cloud - 8) 1,2/4,5,8,.,1000
15 1000 500 6 (cloud - 8) 1,2/4,58,.,1000
16 1000 500 5 (cloud - 8) 1,2/4,58,.,1000
17 1000 500 4 (cloud - 8) 1,2,4,58,.,1000
18 1000 500 3 (cloud - 8) 1,2,4,58,.,1000
19 1000 500 2 (cloud - 8) 1,2,4,58,.,1000
20 1000 500 1 (cloud - 8) 1,2,4,58,.,1000

GB database and the second job compared one input file
against a 500 GB database. Both jobs have been executed
on cluster resources. The third job compared one input
file against a 500 GB database by utilizing eight Cloud
nodes.

The process is explained on the basis of the job config-
uration with Job ID 1 depicted in Table 1 (1000 input
files, 500 GB, 8 Cluster Nodes). Both job configurations
from the knowledge base, which have been executed on
the cluster, differ in one parameter from job configuration
one. Thus, the application-specific performance model is
utilized to calculate the runtime of the job descriptor by
using the runtime of both historical jobs. As a result an

Table 2 Knowledge base: this table depicts the job
descriptors, including the utility and the runtime, stored in
the knowledge base before the job execution starts

JobID (KB) #InputFiles DBSize Nodes(Type) Time Utility
1kb 1000 100 8 (cluster-8) 1722 0.5908
2kb 1 500 8 (cluster-8) 1123 0.6458
3kb 1 500 8 (cloud - 8) 2525 0.5266

Page 10 of 12

estimated runtime of 8030.75 seconds is computed and
used as basis for the calculation of the utility.

Afterwards, the utility function is applied to rank the
job configurations regarding runtime and resource utiliza-
tion. In Table 3 six assessed job configurations are shown.
The planner choses the job configuration with the highest
utility. In this case, the job configuration with eight clus-
ter nodes and the utility of 0.6111 is chosen for execution.
The job descriptors obtained during the planning phase,
including the estimated runtime and the estimated utility,
are shown in Table 3.

Job execution and results

Finally, the executor manages the execution of the job
configuration. Therefore, eight nodes are allocated on the
cluster and the Hadoop framework is initialized accord-
ing to the chosen configuration. After the job has been
finished, the information about the job in the knowledge
base is updated with the actually measured runtime. The
utility of this job configuration is recalculated on the basis
of the runtime and stored accordingly. Table 3 shows the
runtime and the utility of the executed job.

By comparing the estimated runtime with the real
runtime of the job it can be seen that the best job
configuration in terms of the runtime has been cho-
sen by the framework for execution. Additionally, the
behavior of the system can be changed by adapting the
utility function to favor less resources instead of less
runtime.

In this section, a prototype implementation of the adap-
tive framework has been presented. The realization has
been based on MapReduce which is known for its scal-
ability. Additionally, only three parameters have been
taken into account in the performance model. Due to
the characteristics of MapReduce, this approach delivers
appropriate results in terms of resource utilization and
job runtime. Nevertheless, utilizing this approach for dif-
ferent applications would require to specify application-
specific performance models, which may not be possible
for other applications, and a detailed analysis of how the
utility is defined.

Conclusion

In this work, an approach towards an adaptive configura-
tion of the Cloud stack regarding the optimization of the
utility for a specific job is described. The utility of a job
configuration is defined as its usefulness for a stakeholder
with respect to the optimizing resource utilization and
runtime. The delineated approach is based on the assump-
tion that optimizing the utility for scientific applications
in the Cloud relies on the configuration of all three Cloud
layers: the infrastructure layer (IaaS), the execution layer
(PaaS), and the application layer (SaaS). Therefore, the
configuration has to consider the allocation of computing

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

Page 11 of 12

Table 3 Planned job: this table depicts the job descriptors, including the utility and the runtime, created during the

planning phase

Job ID # Input Files DB Size Nodes (Type)
1 1000 500 8 (cluster)
2 1000 500 7 (cluster)
3 1000 500 6 (cluster)
9 1000 500 12 (cloud - 8)
13 1000 500 8 (cloud - 8)
16 1000 500 4 (cloud - 8)

Time Est. Time Est. Utility Utility
7855 8030.75 0.6111 0.6246
- 9178 0.608
- 10707.67 0.6038
- 10683.33 0.6052
- 16025 0.5905
- 32050 0.547

The job descriptor chosen for execution is highlighted and includes the runtime of the job inserted into the knowledge base after the job execution.

resources, the provisioning of the programming environ-
ment needed, and the configuration of the application
itself.

To describe the configuration parameters on all three
layers, a generic model representing the Cloud stack
via descriptors has been defined. Therefore, declarative
descriptors for the allocatable computing and storage
resources (IaaS), the utilized programming and execu-
tion environments (PaaS), and the applications themselves
(SaaS), have been defined.

On top of these descriptors, an adaptive framework,
capable of optimizing the utility has been designed. The
design of the adaptive framework has been done on
the basis of well-established concepts from the domain
of autonomic computing, especially the MAPE-K loop
(monitor, analyzer, planner, knowledge), and a utility
function. Thus, the adaptive framework manages the con-
figuration of resources at all three layers (resource, envi-
ronment, application) by utilizing the defined descriptors
and generic implementations of a monitor, an analyzer, a
planner, an executor, and a knowledge base component.
Firstly, the monitor is utilized for retrieving information
about the utilized resources, which includes the amount of
allocatable computing resources, the configuration of the
execution system, and the application. Secondly, the ana-
lyzer, following a component-based architecture, enables
the chained execution of resource-specific analyzer com-
ponents, and evaluates the possible configurations at all
layers. Thirdly, the planner ranks the possible configura-
tions on the basis of a utility function and an application
specific performance model and choses the best config-
uration for execution. Finally, the executor component
configures the application, the environment, as well as
the computing resources and executes the application
according to the chosen configuration.

Additionally, the adaptive framework has been eval-
uated within a case study on the basis of a MapRe-
duce application from the domain of molecular systems
biology. A prototype implementation of all application-
specific components has been provided and described.

Sample parameters at all layers, including the config-
uration of parameter studies and scaling on different
computing resources, have been chosen to evaluate the
design. Additionally, an application-specific performance
model has been implemented and is needed for the utility
calculation process.

Finally, the adaptive job configuration process within
the prototype framework has been explained on the basis
of a sample job. The utility calculation, the performance
estimation as well as the ranking of different job descrip-
tions within the adaptive framework have been described
in detail.

The developed Cloud stack configuration model enables
the definition of scenario- and layer-specific parameters
in a generic and flexible way for a not restricted set of
applications, programming environments, and resources
(compute, storage, network). The adaptive framework
provides a modular reference implementation for adap-
tively optimizing the utility with respect to differing
objectives (resource utilization, runtime). Nevertheless,
this approach necessitates the specification of scenario-
specific parameters and functions enabling the measure-
ment of the utility for submitted jobs. This raises the
need for future work towards automating and simplifi-
cation of domain-specific definitions of parameters and
functions.

Future work will include the evaluation of the frame-
work with additional applications, execution environ-
ments, and resource types regarding scale, heterogeneity,
and energy consumption which results in new research
objectives. For instance, the area of green Cloud comput-
ing [29], emerging from green-IT [30], tackles the impact
of the wide spread utilization of Clouds on the energy con-
sumption regarding network and computing resources.
Therefore, the optimization of energy consumption will
be a promising future direction. Moreover, self-managing
in Clouds has to consider the optimization of Quality of
Service criteria relating to trust, security and privacy [2]
which are increasingly important aspects, especially in
Cloud computing.

Koehler Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:4

http://www.journalofcloudcomputing.com/content/3/1/4

Competing interests
The author declares that he has no competing interests.

Acknowledgements

| thank Siegfried Benkner, University of Vienna, who provided contributions in
the conception of the work and in the acquisition of data. Additionally, | thank
Norbert Brandle, AT for proofreading.

Received: 1 December 2013 Accepted: 14 April 2014
Published: 12 May 2014

References

1.

2.

Buyya R, Broberg J, Goscinski AM (2011) Cloud computing principles and
paradigms. Wiley Publishing, New York

The Future Of Cloud Computing, Opportunities for European Cloud
Computing Beyond (2010). http://cordis.europa.eu/fp7/ict/ssai/docs/
cloud-report-final.pdf.

Waddington S, Zhang J, Knight G, Jensen J, Downing R, Ketley C (2013)
Cloud repositories for research data—addressing the needs of researchers.
J Cloud Comput: Adv Syst Appl 2(13):1

Petcu D, Martino B, Venticinque S, Rak M, Mahr T, Lopez G, Brito F, Cossu
R, Stopar M, Sperka S, Stankovski V (2013) Experiences in building a
mosaic of clouds. J Cloud Comput: Adv Syst Appl 2(12):1-22

Kephart JO, Chess DM (2003) The vision of autonomic computing.
Computer 36:41-50

Huebscher MC, McCann JA (2008) A survey of autonomic computing -
degrees, models, and applications. ACM Comput Surv 40:7-1728

Rappa MA (2004) The utility business model and the future of computing
services. IBM Syst J 43:32-42

Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on
large clusters. Commun ACM 51:107-113

Kohler M, Benkner S (2011) VCE - A versatile cloud environment for
scientific applications. In: Galis A, Dillenseger B (eds) The Seventh
International Conference on Autonomic and Autonomous Systems (ICAS
2011), 22-27 May 2011, IARIA, Venice/Mestre, Italy, pp 81-87

Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive
scientific discovery. Microsoft Research, Redmond

Hummel J, Niemann M, Wienkoop S, Schulze W, Steinhauser D, Selbig J,
Walther D, Weckwerth W (2007) Promex: a mass spectral reference
database for proteins and protein phosphorylation sites. BMC
Bioinformatics 8:216

Lee K, Paton NW, Sakellariou R, Fernandes AA (2011) Utility functions for
adaptively executing concurrent workflows. Concurrency Comput: Pract
Exp 23(6):646-666

Walsh WE, Tesauro G, Kephart JO, Das R (2004) Utility functions in
autonomic systems. In: Werner B (ed) Proceedings of International
Conference on Autonomic Computing. IEEE, New York, USA, pp 70-77
Song G, Li Y (2005) Utility-based resource allocation and scheduling in
ofdm-based wireless broadband networks. Commun Mag IEEE
43(12):127-134

Maurer M, Brandic |, Sakellariou R (2013) Adaptive resource configuration
for cloud infrastructure management. Future Generation Comput Syst
29(2):472-487. Special section: Recent advances in e-Science

Delimitrou C, Kozyrakis C (2013) Paragon: Qos-aware scheduling for
heterogeneous datacenters. In: Proceedings of the eighteenth
international conference on Architectural support for programming
languages and operating systems, 16-20 March 2013. ACM, Houston,
Texas, pp 77-88

Calyam P, Patali R, Berryman A, Lai AM, Ramnath R (2011) Utility-directed
resource allocation in virtual desktop clouds. Comput Netw
55(18):4112-4130

Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K
(2007) Adaptive control of virtualized resources in utility computing
environments. ACM SIGOPS Oper Syst Rev 41:289-302

Yumerefendi A, Shivam P, Irwin D, Gunda P, Grit L, Demberel A, Chase J,
Babu S (2007) Towards an autonomic computing testbed. In: Proceedings
of the Second Workshop on Hot Topics in Autonomic Computing.
ACM/IEEE, Jacksonville, FL, p 1

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 12 of 12

Kephart JO (2005) Research challenges of autonomic computing. In:
Roman G-C (ed) ICSE '05: Proceedings of the 27th International
Conference on Software Engineering, 15-21 May 2005. ACM, St. Louis,
USA, pp 15-22

DRMAA - Distributed Resource Management Application API (2014).
http://www.drmaa.org.

Kohler M, Kaniovskyi Y, Benkner S (2011) An adaptive framework for the
execution of data-intensive MapReduce applications in the Cloud. In:
Werner B (ed): The First International Workshop on Data Intensive
Computing in the Clouds (DataCloud 2011). IEEE, Anchorage, Alaska,
pp 1122-1131

Kernel Based Virtual Machine (2014). http://www.linux-kvm.org/page/
Main_Page.

Principles of Economics/Utility (2014). http://en.wikibooks.org/wiki/
Principles_of_Economics/Utility.

Bailey D, Snavely A (2005) Performance modeling: Understanding the
past and predicting the future. In: Cunha J, Medeiros P (eds): Euro-Par
2005 Parallel Processing vol 3648, 1st edn. Springer, Berlin/Heidelberg,
pp 620-620

Kéhler M, Benkner S (2012) Design of an adaptive framework for
utility-based optimization of scientific applications in the cloud. In: Bilof R
(ed): The 2nd International Workshop on Intelligent Techniques and
Architectures for Autonomic Clouds (ITAAC 2012), in Conjunction with
The 5th I[EEE/ACM International Conference on Utility and Cloud
Computing (UCC 2012). IEEE/ACM, USA, pp 303-308

Kohler M (2012) A service-oriented framework for scientific cloud
computing. PhD thesis, University of Vienna

Kohler M, Kaniovskyi Y, Benkner S, Egelhofer V, Weckwerth W (2011) A
cloud framework for high troughput biological data processing. In: PoS
(ed): International Symposium on Grids and Clouds, PoS(ISGC 2011 & OGF
31). Proceedings of Science, Taipei, Taiwan, p 69

Baliga J, Ayre RWA, Hinton K, Tucker RS (2011) Green cloud computing:
balancing energy in processing, storage, and transport. Proc IEEE
99(1):149-167

Murugesan S (2008) Harnessing green it: principles and practices.

IT Professional 10(1):24-33

doi:10.1186/2192-113X-3-4

Cite this article as: Koehler: An adaptive framework for utility-based
optimization of scientific applications in the cloud. Journal of Cloud
Computing: Advances, Systems and Applications 2014 3:4.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://www.drmaa.org
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://en.wikibooks.org/wiki/Principles_of_Economics/Utility
http://en.wikibooks.org/wiki/Principles_of_Economics/Utility

	Abstract
	Keywords

	Introduction
	Related work
	Cloud stack configuration model
	Representation of descriptors
	Application descriptors
	Environment descriptors
	Resource descriptors
	Job descriptors

	Design of the adaptive framework
	Managed resources
	Knowledge
	Monitor
	Analyzer
	Planner
	Utility calculator
	Performance model

	Executor

	Case study: adaptive configuration of a MapReduce application
	Configuration of the job
	Utility calculation
	Job execution and results

	Conclusion
	Competing interests
	Acknowledgements
	References

