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Abstract. A couple (σ, τ ) of lower and upper slopes for the resonant second order bound-
ary value problem

x
′′ = f(t, x, x′), x(0) = 0, x

′(1) =

∫
1

0

x
′(s) dg(s),

with g increasing on [0, 1] such that
∫
1

0
dg = 1, is a couple of functions σ, τ ∈ C1([0, 1]) such

that σ(t) 6 τ (t) for all t ∈ [0, 1],

σ
′(t) > f(t, x, σ(t)), σ(1) 6

∫
1

0

σ(s) dg(s),

τ
′(t) 6 f(t, x, τ (t)), τ (1) >

∫
1

0

τ (s) dg(s),

in the stripe
∫ t

0
σ(s) ds 6 x 6

∫ t

0
τ (s) ds and t ∈ [0, 1]. It is proved that the existence of

such a couple (σ, τ ) implies the existence and localization of a solution to the boundary
value problem. Multiplicity results are also obtained.
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1. Introduction

Let f : [0, 1]×R×R → R be continuous and g : [0, 1] → R increasing. We consider

the second order boundary value problem with nonlocal boundary conditions

(1.1) x′′ = f(t, x, x′), x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s).

It is easy to check that the corresponding linear homogeneous problem

x′′ = 0, x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s)

has a nontrivial solution if and only if

(1.2)

∫ 1

0

dg = 1.

If condition (1.2) holds, the problem (1.1) is called resonant, and non-resonant if
∫ 1

0
dg 6= 1.

Such problems have been considered in the non-resonant case by Gupta-Ntouyas-

Tsamatos [9], Gupta-Trofimchuk [10], in the case of multipoint boundary conditions.

When the problem is resonant, one can cite the contributions of Gupta [8] for mul-

tipoint boundary conditions, and of Karakostas-Tsamatos [11], [12], Xiaojie Lin [14]

and the second author [19] for integral boundary conditions. They all deal with sit-

uations, where f grows at most linearly in its arguments. The paper [14] considers

the slightly more general class of boundary conditions

x(0) = ax(b), x′(1) =

∫ 1

0

x′(s) dg(s).

In this paper, we assume that g satisfies the resonance condition (1.2). Notice

that, in this case, the second boundary condition in (1.1) means that x′(1) is equal

to the weighted average of x′(t) on [0, 1] for the measure dg.

In the case of two-point boundary conditions, there is a vast literature associated

to the obtention of existence and multiplicity results for the solutions in terms of

the concept of lower and upper solutions. We refer to the monographs [6] and [18]

for detailed descriptions of the results, history and bibliography. The approach

has been extended to some integral boundary conditions by Benchohra-Ouahab [4],

Benchohra-Hamani-Nieto [3], and Pang-Lu-Cai [15].
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In Section 3 of this paper, we introduce the concept of couple (σ, τ) of lower and

upper slopes for the problem (1.2), which are functions σ, τ ∈ C1([0, 1],R) such that

σ(t) 6 τ(t) for all t ∈ [0, 1], and

σ′(t) > f(t, x, σ(t)), σ(1) 6

∫ 1

0

σ(s) dg(s),

τ ′(t) 6 f(t, x, τ(t)), τ(1) >

∫ 1

0

τ(s) dg(s)

for all (t, x) in the stripe
∫ t

0
σ(s) ds 6 x 6

∫ t

0
τ(s) ds and t ∈ [0, 1]. The concept is

compared with the classical ones of lower and upper solutions for the problem (1.2),

and of lower and upper solutions for the associated family of first order differential

equations.

In Section 4, we prove that the existence of a couple of lower and upper slopes for

the problem (1.2) implies the existence of a solution to this problem, as well as some

information on its localization and the one of its first derivative (Theorem 4.1). Some

examples and special cases are given. Taking the differential inequalities strict for

a couple of strictly ordered functions in the definition of couple of lower and upper

slopes leads in Section 5 to the concept of couple of strict lower and upper slopes.

It is shown there that the existence of such a couple leads to a localization of the

solution and its derivative with strict inequalities (Corollary 5.1).

Like in the case of lower and upper solutions, the application of Theorem 4.1 and

Corollary 5.1 relies upon the construction of a couple of lower and upper slopes.

Some results in this direction are given in Section 6, as well as related examples.

Lemmas 6.3 and 6.4 are inspired by Propositions 3.1 and 3.2 of [5] for lower and

upper solutions. Theorem 6.1 is motivated by Theorem 1.1 of [7] for lower and

upper solutions with periodic boundary conditions.

Finally, a three solutions result in terms of couple of lower and upper slopes, in

the spirit of Amann’s pioneering result for abstract equations in ordered spaces [1],

and Dirichlet boundary problems for elliptic equations [2], and of Rach̊unková for

periodic solutions of ordinary differential equations [17], [16], is stated and proved in

Section 7 (Theorem 7.1). See also [13].

The proof of Theorem 4.1 relies upon some elementary results on linear problems

stated and proved in Section 2 for the reader’s convenience.
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2. A linear problem

The proof of the existence theorem based upon the existence of a couple of

lower and upper slopes requires the following elementary results on the linear non-

homogeneous problem

(2.1) x′′ = x′ + h(t), x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s),

where h ∈ C([0, 1]) and g : [0, 1] → R is increasing and satisfies (1.2). If we write

x(t) =
∫ t

0 y(s) ds, the problem (2.1) is reduced to

y′ = y + h(t), y(1) =

∫ 1

0

y(s) dg(s).

Its unique solution is easily computed and is given by

(2.2) y(t) =
et−1

1−
∫ 1

0 es−1 dg(s)

[
∫ 1

0

∫ s

0

es−τh(τ) dτ dg(s)−

∫ 1

0

e1−sh(s) ds

]

+

∫ t

0

et−sh(s) ds.

Notice that formula (2.2) makes sense, because the increasing character of g and

condition (1.2) imply, as es−1 < 1 for s ∈ [0, 1), that

∫ 1

0

es−1 dg(s) <

∫ 1

0

dg(s) = 1.

Formula (2.2) easily implies the existence of a linear operator S : C([0, 1]) → C1([0, 1])

such that the unique solution x of (2.1) can be written as x = Sh, and the existence

of M > 0 such that

(2.3) ‖x‖∞ 6 M‖h‖∞, ‖x′‖∞ 6 M‖h‖∞, ‖x′′‖∞ 6 M‖h‖∞,

which implies that S : C([0, 1]) → C1([0, 1]) is compact.
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3. Couples of lower and upper slopes

Our existence result is based upon the new concept of couple of lower and upper

slopes for the problem (1.1), which plays for this problem the role of the lower and

upper solutions for more classical two-point boundary value problems.

Definition 3.1. We say that (σ, τ) is a couple of lower and upper slopes to the

problem (1.1) if σ, τ ∈ C1([0, 1],R) are such that for all t ∈ [0, 1],

σ(t) 6 τ(t),

and

σ′(t) > f(t, x, σ(t)), σ(1) 6

∫ 1

0

σ(s) dg(s),(3.1)

τ ′(t) 6 f(t, x, τ(t)), τ(1) >

∫ 1

0

τ(s) dg(s)(3.2)

for all (t, x) ∈ SΣ,T , where

(3.3) Σ(t) :=

∫ t

0

σ(s) ds, T (t) :=

∫ t

0

τ(s) ds, ∀ t ∈ [0, 1]

and

(3.4) SΣ,T = {(t, x) ∈ [0, 1]× R : Σ(t) 6 x 6 T (t)}

=
⋃

t∈[0,1]

({t} × [Σ(t), T (t)]).

In the case of a couple of constant lower and upper slopes (σ, τ), the boundary

conditions are automatically satisfied because of (1.2), and the conditions of Defini-

tion 3.1 reduce to

σ 6 τ, f(t, x, σ) 6 0 6 f(t, x, τ), ∀ (t, x) ∈ [0, 1]× [σ, τ ].

In the special case where f does not depend upon x, in which case the problem (1.1)

reduces to the first order nonlocal problem for y = x′

(3.5) y′ = f(t, y), y(1) =

∫ 1

0

y(s) dg(s),

243



the definition of lower and upper slopes reduces to the classical definition of ordered

lower and upper solutions for the first order boundary value problem (3.5), i.e. of

functions σ and τ in C1([0, 1]) such that for all t ∈ [0, 1],

σ(t) 6 τ(t),

σ′(t) > f(t, σ(t)), σ(1) 6

∫ 1

0

σ(s) dg(s),

τ ′(t) 6 f(t, τ(t)), τ(1) >

∫ 1

0

τ(s) dg(s).

If (σ, τ) is a couple of lower and upper slopes to the problem (1.1), and if Σ and T

are defined by (3.3), then the conditions in Definition 3.1 expressed in terms of Σ

and T are

Σ′(t) 6 T ′(t), Σ′′(t) > f(t, x,Σ′(t)), T ′′(t) 6 f(t, x, T ′(t)), ∀ t ∈ [0, 1],

Σ(0) = 0 = T (0), Σ′(1) 6

∫ 1

0

Σ′(s) dg(s), T ′(1) >

∫ 1

0

T ′(s) dg(s).

The classical lower and upper solutions α, β ∈ C2([0, 1]) to the problem (1.1) are

defined by the conditions

α(t) 6 β(t), α′′(t) > f(t, α(t), α′(t)), β′′(t) 6 f(t, β(t), β′(t)), ∀ t ∈ [0, 1],

α(0) 6 0 6 β(0), α′(1) 6

∫ 1

0

α′(s) dg(s), β′(1) >

∫ 1

0

β′(s) dg(s).

Because conditions Σ′(t) 6 T ′(t) and Σ(0) = 0 = T (0) imply that Σ(t) 6 T (t) for

all t ∈ [0, 1], one sees immediately that if (σ, τ) is a couple of lower and upper slopes

to the problem (1.1), then (Σ, T ) is an ordered couple of lower and upper solutions

to the problem (1.1). In this sense, Theorem 4.1 below can be seen as a necessary

and sufficient condition for the existence of a solution to the problem (1.1).

On the other hand, we will see in Theorem 4.1 that the existence of a couple

of lower and upper slopes to (1.1) implies the existence of a solution to (1.1) with

its derivative located between them. On the other hand, without a supplementary

condition of Nagumo type upon f with respect to its last variable, the existence

of an ordered couple of lower and upper solutions to (1.1) does not guarantee the

existence of a solution located between them.

Finally, one should notice that a solution u to the problem (1.1) corresponds to

a couple (u′, u′) of (equal) lower and upper slopes to the problem (1.1).
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4. Existence result

We now prove that the existence of a couple (σ, τ) of lower and upper slopes for

the problem (1.1) implies the existence and localization of a solution.

Theorem 4.1. Let f : [0, 1] × R × R → R be continuous, and let g : [0, 1] → R

be increasing and satisfy condition (1.2). If the problem (1.1) has a couple (σ, τ) of

lower and upper slopes, then it has a solution x such that σ(t) 6 x′(t) 6 τ(t) and

Σ(t) 6 x(t) 6 T (t) for all t ∈ [0, 1].

P r o o f. Define continuous functions γ : [0, 1]×R → R and δ : [0, 1]×R → R by

γ(t, y) =











σ(t) if y < σ(t),

y if σ(t) 6 y 6 τ(t),

τ(t) if y > τ(t),

δ(t, x) =











Σ(t) if x < Σ(t),

x if Σ(t) 6 x 6 T (t),

T (t) if x > T (t).

Let us consider the auxiliary boundary value problem

x′′ = x′ − γ(t, x′) + f(t, δ(t, x), γ(t, x′)),(4.1)

x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s).

We first prove by contradiction that if x(t) is a solution of (4.1), then

(4.2) σ(t) 6 x′(t) 6 τ(t), ∀ t ∈ [0, 1].

If there is t0 ∈ [0, 1] such that x′(t0) < σ(t0), then x
′−σ reaches a negative minimum

on [0, 1] at some t1 ∈ [0, 1], namely

(4.3) x′(t1)− σ(t1) < 0.

If t1 ∈ (0, 1), then x′′(t1) = σ′(t1) and hence, using (4.3) and the definition of γ, and

the definition of a lower slope,

σ′(t1) = x′′(t1) = x′(t1)− σ(t1) + f
(

t1, δ(t1, x(t1)), σ(t1)
)

< σ′(t1),

a contradiction. If t1 = 0, then x′′(t1)− σ′(t1) > 0, and we obtain, in a similar way,

the contradiction

σ′(t1) 6 x′′(t1) < σ′(t1).
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If t1 = 1, because of the previous cases, we can assume without loss of generality

that x′ − σ does not attain its minimum on [0, 1), i.e. that

x′(1)− σ(1) < x′(s)− σ(s), ∀ s ∈ [0, 1).

Integrating this inequality over [0, 1] with respect to the measure dg and using the

increasing character of g and (1.2), we obtain

x′(1)− σ(1) <

∫ 1

0

x′(s) dg(s)−

∫ 1

0

σ(s) dg(s),

which gives
∫ 1

0

σ(s) dg(s) < σ(1),

a contradiction with the definition of lower slope. A completely similar reasoning

shows that x(t) 6 τ(t) for all t ∈ [0, 1]. Thus (4.2) is proved. It follows from (4.2)

and the first boundary condition that every solution x of (4.1) satisfies the inequality

Σ(t) 6 x(t) 6 T (t), ∀ t ∈ [0, 1],

so that, by the definition of γ and δ, x is a solution of (1.1).

Now, if we define

X =

{

x ∈ C1([0, 1]) : x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s)

}

,

with the norm ‖x‖ = ‖x′‖∞, and the operators L : D(L) ⊂ X → C([0, 1]), F :

X → C([0, 1]) by

D(L) = X ∩ C2([0, 1]), Lx = x′′ − x′,

and

Fx = −γ(·, x′(·)) + f(·, δ(·, x(·)), γ(·, x′(·))),

then it is easy to verify that F is continuous, that there exists K > 0 such that

‖Fx‖∞ 6 K for all x ∈ X , and that the problem (4.1) is equivalent to the equa-

tion Lx = F (x) in X . Consequently, as L−1 = S with S defined in Section 2, the

problem (4.1) is equivalent to the fixed point problem x = SFx, with SF a compact

mapping on X sending X to a closed ball of center 0 and radius MK in X with M

given in (2.3). Schauder’s fixed point theorem implies that SF has a fixed point

in X , i.e. that the problem (4.1) has a solution, which is also a solution of (1.1). �

The special case, where σ and τ are constant provides the following existence

condition.
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Corollary 4.1. Let f : [0, 1]× R × R → R be continuous, and let g : [0, 1] → R

be increasing and satisfy condition (1.2). If there exist real numbers σ 6 τ such that

f(t, x, σ) 6 0 6 f(t, x, τ), ∀ (t, x) ∈ [0, 1]× [σ, τ ],

then the problem (1.1) has at least one solution x such that σ 6 x′(t) 6 τ and

σt 6 x(t) 6 τt for all t ∈ [0, 1].

E x am p l e 4.1. Let us consider the problem

(4.4) x′′ = a(t, x)x′ − b(t, x), x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s),

where g : [0, 1] → R is increasing and satisfies (1.2), a, b : [0, 1]× R → R are contin-

uous and such that

a(t, x) > b(t, x) > 0 for (t, x) ∈ [0, 1]× [0, 1].

Set σ = 0, τ = 1 for t ∈ [0, 1] and observe that

f(t, x, 0) = −b(t, x) 6 0

and

f(t, x, 1) = a(t, x)− b(t, x) > 0,

for every (t, x) ∈ [0, 1]× [0, 1]. Corollary 4.1 implies that there is a solution x to the

problem (4.4) such that 0 6 x′(t) 6 1 and 0 6 x(t) 6 t for all t ∈ [0, 1].

The special case where f does not depend upon x immediately leads to the fol-

lowing result for the first order equation.

Corollary 4.2. Let f : [0, 1] × R → R be continuous and g : [0, 1] → R an in-

creasing function such that condition (1.2) holds. If there exist σ ∈ C1([0, 1]),

τ ∈ C1([0, 1]) such that σ(t) 6 τ(t) for all t ∈ [0, 1], and

σ′(t) > f(t, σ(t)), σ(1) 6

∫ 1

0

σ(s) dg(s),

τ ′(t) 6 f(t, τ(t)), τ(1) >

∫ 1

0

τ(s) dg(s)

for all t ∈ [0, 1], then the problem (3.5) has at least one solution y such that

σ(t) 6 y(t) 6 τ(t) for all t ∈ [0, 1].
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5. Couples of strict lower and upper slopes

We now introduce and study the stronger concept of a couple of strict lower and

upper slopes.

Definition 5.1. We say that (σ, τ) is a couple of strict lower and upper slopes

to (1.1) if σ, τ ∈ C1([0, 1],R) are such that σ(t) 6 τ(t) for all t ∈ [0, 1], and the first

inequalities in (3.1) and (3.2) are strict.

The following result will imply that, in case of a couple of strict lower and upper

slopes, the localization of the solution x in Theorem 4.1 will be given by strict

inequalities. We assume throughout that f : [0, 1] × R × R → R is continuous and

g : [0, 1] → R is increasing and verifies (1.2).

Lemma 5.1. Let (σ, τ) be a couple of strict lower and upper slopes for (1.1) and

let x be a solution of (1.1) such that σ(t) 6 x′(t) 6 τ(t) for all t ∈ [0, 1]. Then

σ(t) < x′(t) < τ(t) and Σ(t) < x(t) < T (t) for all t ∈ (0, 1].

P r o o f. By assumptions, Σ(t) 6 x(t) 6 T (t) for all t ∈ [0, 1]. Let us consider

the function σ − x′ and let σ(t) 6 x′(t) for all t ∈ [0, 1]. We shall show that

σ(t) − x′(t) < 0 for all t ∈ [0, 1]. Suppose on the contrary that for some t0 ∈ [0, 1]

we have σ(t0)− x′(t0) = 0. If t0 ∈ [0, 1), we obtain

0 > σ′(t0)− x′′(t0) = σ′(t0)− f(t0, x(t0), x
′(t0))

= σ′(t0)− f(t0, x(t0), σ(t0)) > 0,

a contradiction. If t0 = 1, we can assume, by what precedes, that σ(1)− x′(1) = 0;

then, for all t ∈ [0, 1), we get

σ(t)− x′(t) < σ(1)− x′(1) = 0, ∀ t ∈ [0, 1).

Consequently, integrating the above inequality with respect to dg, we reach a con-

tradiction with Definition 5.1, namely

σ(1) >

∫ 1

0

σ(s) dg(s).

In the same way one can prove that x′(t) < τ(t), t ∈ [0, 1]. The strict inequalities

for x(t) follow immediately. �

From Theorem 4.1 and Lemma 5.1 we get the following result.
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Corollary 5.1. If the problem (1.1) has a couple (σ, τ) of strict lower and upper

slopes, then it has a solution x such that σ(t) < x′(t) < τ(t) and Σ(t) < x(t) < T (t)

for all t ∈ [0, 1].

6. How to find a couple of lower and upper slopes

We assume throughout that f : [0, 1]×R×R→ R is continuous and g : [0, 1] → R

is increasing and verifies condition (1.2), and start with a necessary condition for the

existence of a couple of lower and upper slopes.

Lemma 6.1. If the function f has a constant sign on [0, 1]×R×R, then there is

no couple of lower and upper slopes to the problem (1.1).

P r o o f. Let the problem (1.1) have a couple (σ, τ) of lower and upper slopes.

Assume that f(t, x, y) > 0 for (t, x, y) ∈ [0, 1] × R × R. Then, by the definition of

the lower slope (3.1),

σ′(t) > 0, ∀ t ∈ [0, 1].

It means that σ is increasing and we have σ(t) < σ(1) for t ∈ [0, 1). Consequently,

σ(1) >

∫ 1

0

σ(s) dg(s),

a contradiction with the definition of the lower slope. If f is negative, then using (3.2)

we similarly reach a contradiction. �

The argument of the proof of Lemma 6.1 shows infact that the following result

holds.

Lemma 6.2. Let σ, τ ∈ C1([0, 1]) be such that σ(t) 6 τ(t) for all t ∈ [0, 1]. If

σ(t) < σM = σ(1) or τ(t) > τm = τ(1) for t ∈ [0, 1), then (σ, τ) cannot be a couple

of lower and upper slopes to the problem (1.1).

The following two results are standard and elementary. We give proofs for com-

pleteness.

Lemma 6.3. Let σ, τ ∈ C1([0, 1]) and L > 0 be such that

(6.1) σ′(t)− τ ′(t) > L[σ(t)− τ(t)], ∀ t ∈ [0, 1], and σ(1) 6 τ(1).

Then σ(t) 6 τ(t) for every t ∈ [0, 1]. If inequality in (6.1) is replaced by

(6.2) σ′(t)− τ ′(t) > L[σ(t)− τ(t)], ∀ t ∈ [0, 1], and σ(1) 6 τ(1),

then σ(t) < τ(t) for every t ∈ [0, 1].
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P r o o f. Letting γ(t) = σ(t) − τ(t) (t ∈ [0, 1]), we see, by multiplying both

members by e−Lt that inequalities (6.1) and (6.2) are, respectively, equivalent to

(e−Ltγ(t))′ > 0, ∀ t ∈ [0, 1], γ(1) 6 0,

(e−Ltγ(t))′ > 0, ∀ t ∈ [0, 1], γ(1) 6 0.

Integration from t to 1 gives

0 > e−Lγ(1) > e−Ltγ(t), ∀ t ∈ [0, 1],

0 > e−Lγ(1) > e−Ltγ(t), ∀ t ∈ [0, 1],

and the results follow. �

Lemma 6.4. Let hj : [0, 1]×R → R (j = 1, 2) be continuous and such that there

exists L > 0 for which

(6.3) hj(t, y)− hj(t, z) > L(y − z)

for all t ∈ [0, 1], y, z ∈ R and j = 1, 2. Let σ, τ be solutions to the first order problems

y′ = h1(t, y), y(1) =

∫ 1

0

y(s) dg(s)(6.4)

y′ = h2(t, y), y(1) =

∫ 1

0

y(s) dg(s)(6.5)

such that σ(1) 6 τ(1). Then σ(t) 6 τ(t) for all t ∈ [0, 1].

P r o o f. Let σ, τ be, respectively, solutions to problems (6.4) and (6.5). Then

we have

σ′(t)− τ ′(t) = h1(t, σ(t)) − h2(t, τ(t)) > L[σ(t)− τ(t)], (t ∈ [0, 1]).

The result follows from Lemma 6.3. �

The special case where the hj(t, y) are affine functions of y reads as follows.
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Corollary 6.1. Let L > 0, r1, r2 ∈ C([0, 1]) satisfy r1(t) > r2(t), t ∈ [0, 1], and

let σ, τ be solutions to the first order problems

(6.6) y′ − Ly = r1(t), y(1) =

∫ 1

0

y(s) dg(s)

and

(6.7) y′ − Ly = r2(t), y(1) =

∫ 1

0

y(s) dg(s)

such that σ(1) 6 τ(1). Then σ(t) 6 τ(t) for all t ∈ [0, 1].

P r o o f. Letting hj(t, y) := Ly + rj(t), (j = 1, 2), we have

h1(t, y)− h2(t, z) = L(y − z) + r1(t)− r2(t) > L(y − z)

and we can apply Lemma 6.4. �

Theorem 6.1. Let σ, τ be, respectively, solutions to the problems (6.4) and (6.5)

such that σ(1) 6 τ(1), where h1, h2 ∈ C([0, 1] × R) verify (6.3). Moreover, assume

that the following conditions hold:

f(t, x, σ(t)) 6 h1(t, σ(t)), f(t, x, τ(t)) > h2(t, τ(t))

for all (t, x) ∈ SΣ,T . Then the problem (1.1) has at least one solution x such that

σ(t) 6 x′(t) 6 τ(t) and Σ(t) 6 x(t) 6 T (t) for all t ∈ [0, 1].

P r o o f. Let σ, τ be solutions to the defined above problems. Then, by Lem-

ma 6.4, we have σ(t) 6 τ(t), and hence Σ(t) 6 T (t) for all t ∈ [0, 1]. Moreover, we

have

f(t, x, σ(t)) 6 σ′(t), f(t, x, τ(t)) > τ ′(t)

for all (t, x) ∈ SΣ,T . Hence, due to Definition 3.1, (σ, τ) is a couple of lower and upper

slopes for (1.1). Consequently, according to Theorem 4.1, there exists a solution x

to the problem (1.1) such that σ(t) 6 x′(t) 6 τ(t) and Σ(t) 6 x(t) 6 T (t) for all

t ∈ [0, 1]. �
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Corollary 6.2. Let σ, τ be, respectively, solutions to the problems (6.6) and (6.7)

such that σ(1) 6 τ(1), where L > 0, r1, r2 ∈ C([0, 1]) and r1(t) > r2(t), t ∈ [0, 1].

Moreover, assume that the following conditions hold:

f(t, x, σ(t)) 6 r1(t) + Lσ(t), f(t, x, τ(t)) > r2(t) + Lτ(t)

for all (t, x) ∈ SΣ,T . Then the problem (1.1) has at least one solution x such that

σ(t) 6 x′(t) 6 τ(t) and Σ(t) 6 x(t) 6 T (t) for all t ∈ [0, 1].

P r o o f. Take hj(t, y) = Ly + rj(t) (j = 1, 2) in Theorem 6.1. �

By Lemma 6.3 and Theorem 6.1 we have

Corollary 6.3. Let h1, h2 ∈ C([0, 1] × R), and σ, τ ∈ C1([0, 1]) be functions

defined in Theorem 6.1. Assume that

f(t, x, σ(t)) < h1(t, σ(t)), f(t, x, τ(t)) > h2(t, τ(t))

for all (t, x) ∈ SΣ,T , and

h1(t, σ(t)) − h2(t, τ(t)) > L(σ(t) − τ(t))

for all t ∈ [0, 1]. Then the problem (1.1) has at least one solution x such that

σ(t) < x′(t) < τ(t) for all t ∈ [0, 1] and Σ(t) < x(t) < T (t) for all t ∈ (0, 1].

P r o o f. We have

σ′(t)− τ ′(t) = h1(t, σ(t)) − h2(t, τ(t)) > L[σ(t)− τ(t)],

so that Lemma 6.3 implies that the solution given by Theorem 6.1 satisfies the

inequalities σ(t) < x′(t) < τ(t) for all t ∈ [0, 1]. �

A special case of Corollary 6.3 is

Corollary 6.4. Let r1, r2 ∈ C([0, 1]) and σ, τ ∈ C1([0, 1]) be functions defined in

Corollary 6.2. Assume that

σ(1) < τ(1) and r1(t) > r2(t), ∀ t ∈ [0, 1].

Moreover, assume that

f(t, x, σ(t)) < r1(t) + Lσ(t), and f(t, x, τ(t)) > r2(t) + Lτ(t)
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for all (t, x) ∈ SΣ,T . Then the problem (1.1) has at least one solution x such that

σ(t) < x′(t) < τ(t) for all t ∈ [0, 1] and Σ(t) < x(t) < T (t) for all t ∈ (0, 1].

E x am p l e 6.1. Set r1(t) = 0 and r2(t) = −1 and consider the problem (4.4)

from Example 4.1. Then σ(t) = 0, τ(t) = 1, t ∈ [0, 1] and σ(1) < τ(1). Moreover,

we have

f(t, x, σ(t)) = −b(t, x) < r1(t) + σ(t) = 0

and

f(t, x, τ(t)) > am − bM > r2(t) + τ(t) = 0.

Hence, from Corollary 6.4, the problem (4.4) has a solution x such that 0 < x′(t) < 1

for all t ∈ [0, 1].

E x am p l e 6.2. Let g(s) = s, so that
∫ 1

0 x′(s) ds = x(1)− x(0), and consider the

two-point boundary value problem

(6.8) x′′ = x′ − ta(x), x(0) = 0, x′(1) = x(1)− x(0),

where a : R → R is continuous and positive.

Set r1(t) = e2t and r2(t) = −t. Since σ and τ are solutions to first order problems,

we obtain

σ(t) =
(1

2
−

e2

2

)

et + e2t, τ(t) = t+ 1 +
et

2
.

Moreover, we have

2 +
e

2
= τ(1) > σ(1) =

e

2
−

e3

2
+ e2.

Now, since r1(t) > r2(t), Lemma 6.3 implies that σ(t) < τ(t) for every t ∈ [0, 1].

Let us notice that f satisfies the conditions of Corollary 6.2. Indeed, we have

f(t, x, σ(t)) =
(1

2
−

e2

2

)

et + e2t − ta(x)

<
(1

2
−

e2

2

)

et + 2e2t = hσ(t) + σ(t)

and

f(t, x, τ(t)) = t+ 1 +
et

2
− ta(x)

> t+ 1 +
et

2
− taM > hτ (t) + τ(t),

when Σ(t) 6 x 6 T (t) and t ∈ [0, 1], and aM 6 1. Hence, from Corollary 6.2, there

exists at least one solution x to the problem (6.8) such that

(1

2
−

e2

2

)

et + e2t 6 x′(t) 6 t+ 1 +
et

2

for all t ∈ [0, 1].
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7. A three solutions theorem

The existence of suitable couples of strict lower and upper slopes implies the

existence of at least three solutions. For two continuous functions x1 and x2 on [0, 1],

we defined the relation x1 6 x2 by x1(t) 6 x2(t) for all t ∈ [0, 1].

Theorem 7.1. Let σi ∈ C1([0, 1]) and τi ∈ C1([0, 1]) (i = 1, 2) be such that

(7.1) σ1(t) 6 σ2(t) 6 τ2(t), σ1(t) 6 τ1(t) 6 τ2(t), ∀ t ∈ [0, 1], σ2 66 τ1,

and such that (σ1, τ1), (σ2, τ2) and (σ1, τ2) are couples of strict lower and upper

slopes to the problem (1.1). Then the problem (1.1) has at least three solutions x1,

x2 and x3 such that

σ1(t) 6 x′

1(t) 6 τ1(t), σ2(t) 6 x′

2(t) 6 τ2(t), ∀ t ∈ [0, 1],

and

x′

3 66 τ1, x′

3 6> σ2

for t ∈ [0, 1].

P r o o f. Define Σi : [0, 1] → R and Ti : [0, 1] → R by

Σi(t) =

∫ t

0

σi(s) ds, Ti(t) =

∫ t

0

τi(s) ds (i = 1, 2),

and define continuous functions γi : [0, 1]×R → R and δi : [0, 1]×R → R (i = 1, 2, 3)

by

γ1(t, y) =











σ1(t) if y < σ1(t),

y if σ1(t) 6 y 6 τ2(t),

τ2(t) if y > τ2(t),

δ1(t, x) =











Σ1(t) if x < Σ1(t),

x if Σ1(t) 6 x 6 T2(t),

T2(t) if x > T2(t),

γ2(t, y) =











σ2(t) if y < σ2(t),

y if σ2(t) 6 y 6 τ2(t),

τ2(t) if y > τ2(t),

δ2(t, x) =











Σ2(t) if x < Σ2(t),

x if Σ2(t) 6 x 6 T2(t),

T2(t) if x > T2(t),
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γ3(t, y) =











σ1(t) if y < σ1(t),

y if σ1(t) 6 y 6 τ1(t),

τ1(t) if y > τ1(t),

and

δ3(t, x) =











Σ1(t) if x < Σ1(t),

x if Σ1(t) 6 x 6 T1(t),

T1(t) if x > T1(t).

Consider three auxiliary boundary value problems

x′′ = x′ − γ1(t, x
′) + f(t, δ1(t, x), γ1(t, x

′)),(7.2)

x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s),

x′′ = x′ − γ2(t, x
′) + f(t, δ2(t, x), γ2(t, x

′)),(7.3)

x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s)

and

x′′ = x′ − γ3(t, x
′) + f(t, δ3(t, x), γ3(t, x

′)),(7.4)

x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s).

Since (σ1, τ1) and (σ2, τ2) are two couples of strict lower slopes and upper slopes,

following the same way as in the proof of Theorem 4.1, one can show that all possible

solutions x to the problem (7.2) are such that σ1(t) < x′(t) < τ2(t) for all t ∈ [0, 1] and

Σ1(t) < x(t) < T2(t) for all t ∈ (0, 1]. Similarly, all solutions x to the problem (7.3)

are such that σ2(t) < x′(t) < τ2(t) for all t ∈ [0, 1], and Σ2(t) < x(t) < T2(t) for all

t ∈ (0, 1], and all solutions x to the problem (7.4) are such that σ1(t) < x′(t) < τ1(t)

for all t ∈ [0, 1], and Σ1(t) < x(t) < T1(t) for all t ∈ (0, 1]. Consequently, the

solutions to the problems (7.2), (7.3) and (7.4) are also solutions to (1.1).

On the other hand, the operators SF1, SF2 and SF3, where

F1x = −γ1(·, x
′(·)) + f

(

·, δ1(·, x(·)), γ1(·, x
′(·))

)

,

F2x = −γ2(·, x
′(·)) + f

(

·, δ2(·, x(·)), γ2(·, x
′(·))

)

and

F3x = −γ3(·, x
′(·)) + f

(

·, δ3(·, x(·)), γ3(·, x
′(·))

)

,
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map compactly the space X , respectively, into the closed ball of center 0 and radii

MK1, MK2 and MK3 of X , where M is given by (2.3). Set

L > max{MK1,MK2,MK3, ‖σ1‖, ‖τ2‖}

and

Ω = {x ∈ X : ‖x′‖∞ < L}.

Then, using homotopies I − λSFi, λ ∈ [0, 1], we get

(7.5) deg(I − SFi,Ω, 0) = deg(I,Ω, 0) = 1 (i = 1, 2, 3).

Let

Ωσ2
= {x ∈ Ω: x′(t) > σ2(t), t ∈ [0, 1]}

and

Ωτ1 = {x ∈ Ω: x′(t) < τ1(t), t ∈ [0, 1]}.

Observe that, by the definition of Ωσ2
, one has

deg(I − SF2,Ω \ Ωσ2
, 0) = 0.

Consequently,

deg(I − SF1,Ωσ2
, 0) = deg(I − SF2,Ωσ2

, 0)(7.6)

= deg(I − SF2,Ω, 0) + deg(I − SF2,Ω \Ωσ2
, 0) = 1.

Similarly, by the definition of Ωτ1 , one has

deg(I − SF3,Ω \ Ωτ1 , 0) = 0.

Hence, we obtain

deg(I − SF1,Ωτ1 , 0) = deg(I − SF3,Ωτ1 , 0)(7.7)

= deg(I − SF3,Ω, 0) + deg(I − SF3,Ω \Ωτ1 , 0) = 1.

Now, observe that the sets Ωσ2
, Ωτ1 and Ω \ Ωσ2

∪ Ωτ1 are nonempty, open and

disjoint. Moreover, since (σ1, τ1) and (σ2, τ2) are couples of strict lower slopes and

upper slopes,

x /∈ (I − SF1)∂Ωσ2
∪ (I − SF1)∂Ωτ1 ∪ (I − SF1)∂(Ω \ Ωσ2

∪ Ωτ1).
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Hence, by the additivity property of Leray-Schauder’s degree, we obtain

deg(I − SF1,Ω, 0) = deg(I − SF1,Ωσ2
, 0) + deg(I − SF1,Ωτ1 , 0)

+ deg(I − SF1,Ω \ Ωσ2
∪ Ωτ1 , 0).

Therefore, using (7.5) with i = 1, (7.6) and (7.7), we obtain

deg(I − SF1,Ω \ Ωσ2
∪ Ωτ1 , 0) = −1.

Hence, SF1 has at least three fixed points x1, x2 and x3 such that x1 ∈ Ωτ1 , x2 ∈ Ωσ2

and x3 ∈ Ω \ Ωσ2
∪ Ωτ1 , which completes the proof. �

R em a r k 7.1. In the case of classical lower and upper solutions, the fact that

(α1, β1) and (α2, β2) are ordered couples of lower and upper solutions to the prob-

lem (1.1) such that α1(t) 6 β2(t) for all t ∈ [0, 1], implies that (α1, β2) is an ordered

couple of lower and upper solutions to (1.1). On the other hand, when (σ1, τ1) and

(σ2, τ2) are couples of lower and upper slopes to (1.1) such that σ1(t) 6 τ2(t) for all

t ∈ [0, 1], (σ1, τ2) need not be a couple of lower and upper slopes to (1.1). This is why

the assumption is added in Theorem 7.1 in contrast to the similar three solutions

theorems in the frame of lower and upper solutions [6], [17], [16].

E x am p l e 7.1. Let us consider the problem (1.1) with the function f : [0, 1] ×

R×R → R of the form f(t, x, y) = a(t, x)b(y), where a : [0, 1]×R → R and b : R → R

are continuous, a(t, x) > 1 for all (t, x) ∈ [0, 1] × R and b has the following prop-

erties. There are at least three points y such that b(y) = 0 belonging, respectively,

to the intervals (−3,−2), (−1, 0) and (1, 2). Other possible zeros of b belong to

(∞,−4) ∪ (3,∞). Assume that in the interval [−4, 3], where b is positive, if it has

an extremum y0, then b(y0) > 1. Similarly, if somewhere on [−4, 3] b is negative and

has an extremum y0, then b(y0) < −1. Moreover, let

b(−4), b(−3), b(0), b(1) < −1, b(−2), b(−1), b(2), b(3) > 1.

Set

σ1(t) = −t− 3, σ2(t) = −t+ 1, τ1(t) = t− 2, τ2(t) = t+ 2.

Now, one can easily check that the assumptions of Theorem 7.1 are satisfied. Con-

sequently, there are at least three solutions to the problem (1.1).

For example, the problem

x′′ = a(t, x)
(

x′ +
5

2

)(

x′ +
1

2

)(

x′ −
3

2

)

, x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s)
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with a ∈ C([0, 1]× R), a(t, x) > 1 for all (t, x) ∈ [0, 1]× R, g : [0, 1] → R increasing

and
∫ 1

0 dg = 1 has at least three solutions.

On the other hand, if we consider the family of couples of lower and upper slopes

σ1,k(t) = −t− 4k + 1, τ1,k(t) = t− 4k + 2 (k ∈ Z),

and define the function b : R → R as

b(y) = −2 sin
[1

2
π

(

y −
1

2

)]

,

we observe that f(t, x, y) = a(t, x)b(y) with a like above satisfies the above assump-

tions for each k ∈ Z. Consequently, Theorem 7.1 implies that the problem

x′′ = −2a(t, x) sin
[1

2
π

(

x′ −
1

2

)]

, x(0) = 0, x′(1) =

∫ 1

0

x′(s) dg(s)

has infinitely many solutions.
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