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Abstract. In view of the inherent non-linearity, complexity, susceptibility 
to external wind, wave, and current interference of under-driven ships, and 
the difficulty of adjusting and adjusting control parameters, to improve the 
performance of ship's autopilot, a kind of RBF neural network sliding 
mode variable structure PID controller is designed. Traditional PID control 
is sensitive to parameter changes, online tuning is difficult, and easy to 
overshoot. In order to solve this problem, combining the variable structure 
characteristics of PID, a differential compensation term is added to the 
integral term to convert the PID control parameters into three parameters 
with more obvious physical meanings, and then combined with the RBF 
neural network learning and identification function to realize online tuning 
and adaptive control of ship control parameters. Using MATLAB software 
to simulate the container ship "MV KOTA SEGAR" MMG model shows 
that the designed RBF neural network sliding mode PID controller can 
effectively eliminate the ship's lateral deviation caused by external 
interference such as wind, waves, currents, etc., with high control 
accuracy,robustness and strong adaptability. 

Keywords: Underactuated ship, Heading control, Sliding mode PID 
differential compensation, RBF neural network. 

1 Introduction 
Since substantive progress was made in the development of gyro compasses in the early 

1920s, ship heading control has always been an important research topic in the field of ship 
motion control [1]. The original course controller was only simple proportional control, and 
could only be used for course keeping control with low precision requirements, but it gave 
people the hope of realizing automatic control in the field of ship maneuvering. At present, 
there are a variety of methods used in the field of ship control systems, such as PID control, 
neural network adaptive control, fuzzy control, etc. The use of the above methods is to 
design a PID autopilot or adaptive autopilot and other products. In terms of PID autopilots 
used by more than 90% of ships, PID autopilot parameters are simple to adjust and do not 
depend on the prior knowledge of the controlled object, and its structure is simple and 
robust. Although PID autopilots have made great progress compared with the previous ones, 
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conventional PID autopilots still have shortcomings. This is because the design of PID 
autopilots of ships is based on a definite mathematical model. However, when the ship is 
sailing at sea, the speed of the ship is , Loading conditions, draught conditions will change 
the ship's motion state, changes in the external wind, waves, currents and other sea 
conditions will also cause changes in external interference, resulting in ship control cannot 
reach the ideal state, while the conventional PID autopilot does not have self-adjusting 
parameters The ability of the ship cannot adapt to the various changing sea conditions when 
the ship is sailing. At the same time, it is difficult for the pilot to accurately adjust the PID 
parameters according to the ship’s sailing conditions. Therefore, the performance of the 
ship’s PID autopilot will be greatly affected. In actual navigation, conventional PID 
autopilots can only adopt the "dead zone" method in the face of real-time changing sea 
conditions. This method reduces the accuracy of ship control while also increasing energy 
consumption. Therefore, how to design ship control systems Ship controller, and accurately 
optimize and adjust its PID parameters, so that the ship achieves the ideal control state will 
be particularly important. The basic problem of PID control is the contradiction between 
integral overshoot and steady-state error, and the ship motion state has the characteristics of 
large time delay, large inertia, and nonlinearity, which makes it more difficult to select the 
parameters of the ship's PID controller. In recent decades, many PID optimization methods 
have been proposed, which are mainly divided into two types: one is traditional methods, 
such as Ziegler-Nichols rule, critical ratio rule, and simplex rule; the other is intelligent 
algorithm, Such as genetic algorithm, particle swarm algorithm, ant colony algorithm, 
artificial neural network, fuzzy theory, etc. Traditional methods are usually empirical, and it 
is difficult to meet the requirements in the face of complex control situations, while 
intelligent algorithms can better meet the parameter optimization of PID complex control 
situations. In recent years, intelligent algorithms have been widely used in PID parameter 
optimization, and certain research results have been obtained. Mao Min [2] and others have 
used genetic algorithms to optimize PID parameters without the need to differentiate the 
objective function, but it is complex in optimization. The problem has shortcomings that 
cannot be ignored, and the basic genetic algorithm has a slow convergence speed and is 
prone to premature maturity, which leads to a greatly reduced optimization ability. Tan 
Guanzheng [3], etc., in view of the PID parameter optimization problem, combined with the 
ant colony algorithm to design an optimal PID controller with incomplete differentiation. 
Simulation shows that compared with the traditional PID controller design, this method has 
better control performance and Robust performance can be used to control many different 
objects and processes. Wang Jingzhi [4] and others used the BP neural network to have the 
characteristics of arbitrary non-linear expression ability, and proposed a PID control 
algorithm based on the BP neural network to achieve the best PID control effect through the 
learning of the system performance. Obviously the PID controller is the core of the entire 
control system, and its PID parameters play a vital role in its control quality. At present, 
there are many optimization methods for PID parameter tuning. Both traditional methods 
and intelligent algorithms are not omnipotent. Each has its own strengths and weaknesses, 
and further research is needed. 

Aiming at the problem of integral overshoot caused by conventional PID control, this 
paper adds differential compensation to its integral term, and combines the theoretical 
characteristics of sliding mode variable structure to design a sliding mode PID controller. 
Aiming at the problem of ship navigation in time-varying sea conditions, the RBF neural 
network learning algorithm is introduced into the design of the sliding mode PID controller, 
which eliminates the need to estimate external disturbances such as wind, waves, and 
currents to achieve adaptive control of under-driven ships. And use MATLAB simulation 
environment to verify. 
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2 Basic description 

2.1 Ship steering motion equation 

When When describing the maneuvering movement of a ship, two different coordinate 
systems are usually used: One is the inertial (fixed) coordinate system E E E EO x y z→ , used 
to describe the position of the ship relative to the ground; the other is the attached (on board) 
coordinate system o xyz→ ,the origin of the coordinates is generally at the center of gravity 
or midship of the ship, the positive x-axis points to the bow, the positive y-axis points to 
starboard, the positive z-axis points to the bottom keel. 
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Fig. 1. Schematic diagram of ship plane coordinates. 

Choose the center of the ship as the origin of the appendage coordinate system, and the 
ship's operational motion equation is [5]: 
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where: x  and y  are the abscissa and ordinate of the ship in a fixed coordinate system; u  
and v  are the longitudinal speed and lateral speed of the ship in the appendage coordinate 
system, respectively; ϕ and r  are respectively the heading angle turning speed; cϕ  and cu  
are the flow direction and velocity of the uniform flow received by the ship; rδ  and δ  are 
the command rudder angle and the actual rudder angle respectively; 

ET  is the time constant 
of the steering gear, generally take 2.5～3s; EK is the steering gear control gain, generally 
take 1 in experimental research; m , xm and ym  are the ship’s mass, longitudinal additional 
mass and horizontal additional mass, respectively; ZZI  and ZZJ  are the ship’s moment of 
inertia and additional moment of inertia, respectively; X  and Y  are the longitudinal and 
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transverse forces acting on the hull, respectively; N  is the moment about the vertical axis; 
the subscripts S , P , R  and E  represent fluid viscosity, propeller, rudder blade and external 
interference, respectively. 

2.2 Control the target 

Contral the rudder angle δ  by adjusting the parameters 1k , 2k , 3k , make the ship sail on the 
desired course, that is, the course deviation 0eϕ → . 

3 Controller design 

3.1 Sliding mode variable structure integral compensation PID control design 

The basic form of PID control law is 

1 1 1d p iu k x k x k x dt= − − − ∫                                      (2) 

In traditional PID control, the integral coefficient ik  is constant, In the actual control 
process, we hope that when the system deviation is too large, the control effect of the 
integral should be relatively weakened or even zero. When the system deviation is reduced, 
the integral control function should be appropriately strengthened at this time, so adjust the 
integral control reasonably speed according to the system deviation is the key to improving 
control quality [6]. In order to solve the problem of integral overshoot, a differential term is 
added to the integral term of PID control for compensation design: 

( )d
d p i

p

k
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k
= − − − +∫ 

                                  (3) 

The  controller parameters in formula (3) are still three, and while the system tends to be 
stable, it can effectively offset the integral of the PID integral term system output deviation, 
and when the system output deviates from the target, it can accelerate the stability of the 
system. 

Using the idea of sliding mode variable structure [7][8][9] to analyze the formula (3), 
we can get: 
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In formula (4), let: 1
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It can be seen from formula (5) that the physical meaning of converting the parameter 
control of the PID controller to the control of 1k , 2k , 3k  is more obvious, and it is more 
convenient to optimize its tuning. 

3.2 RBF neural network sliding mode PID control design 

RBF neural network can approximate arbitrary non-linear functions, can handle difficult-to-
analyze regularities in the system, has good generalization ability, and has a fast learning 
convergence rate [10]. In the RBF network, ( )T

ix x=  is the input of the network, the hidden 
layer output of the network is ( )T

jh h= , jh  is the output of the j th neuron in the hidden 
layer: 

2
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                                                 (6) 

where jC  is the coordinate vector of the center point of the Gaussian function of the j th 

neuron in the hidden layer, jb  is the width of the Gaussian function of the j th neuron in 
the hidden layer. The network weight of RBF is w , the RBF network output is 

( ) T
my k w h= . The performance index function of the identifier is: 

21 [ ( ) ( )]
2 mJ y k y k= −

                                        (7) 

In the formula, ( )y k  is the output value of the system identified at time k , and ( )my k  is 
the output value of the identification network. 

In the RBF neural network, in order to realize the tuning of the control system 
parameters, the internal parameters that can be adjusted are: the center vector value of the 
Gaussian function, the base width parameter and the output weight value. In this paper, the 
gradient descent method is used to learn and train the internal parameters of the network. 
The iterative algorithm of network weights, node center values and base width parameters 
is as follows [11]: 
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In the formula, η  is learning efficiency, α  and β  are momentum factors, η ,α , β

( )0,1∈ . 
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The Jacobian array reflects the sensitivity of the output of the controlled object to the 
change of the control quantity. Its value is identified by the RBF network. Its formula is as 
follows: 

1
2

1

( )( )
( ) ( )

m
jim

j j
j j

c xy ky k w h
u k u k b=

−∂∂
≈ =

∂∆ ∂∆ ∑
                                 (9) 

Whether it is pk , ik , dk  in traditional PID control or 1k , 2k , 3k  in sliding mode PID control 
in formula (5), its parameters are relatively difficult to tune in the control system, and 
traditional empirical methods and trial-and-error methods are far from satisfying the current 
control needs. In this paper, the RBF neural network identification system is applied to 
sliding mode PID control to realize online self-tuning of parameters 1k , 2k , 3k  in sliding 
mode PID control. 

RBF neural network tuning sliding mode PID parameter control block diagram is shown 
in Figure 2: 

ObjectVSC-PID
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Fig. 2. RBF neural network tuning sliding mode PID control block diagram. 

It can be seen from Figure 2 that the input quantity of the system control error signal is: 

( ) ( ) ( )me k y k y k= −                                                     (10) 

The input items of the sliding mode PID controller are: 

(1) ( ) ( 1)
(2) ( )
(3)= ( 2 ( 1) ( 2)

x e k e k
x e k
x e k e k e k

= − −
 =
 − ⋅ − + − ）                                                  (11) 

According to the idea of incremental PID discretization, the sliding mode PID control 
algorithm is known from formula (5): 

1 2 3 2 1 3

( ) ( 1) ( )
( ) ( )( ( ) ( 1) ( ) ( ( ) 2 ( 1) ( 2))

u k u k u k
u k k k k e k e k k e k k k e k e k e k
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The parameters 1k , 2k , and 3k  in the sliding mode PID controller are adjusted by the 
gradient descent method [12] in the neural network, and the tuning performance indicators 
are: 

21( ) ( )
2

E k e k=
                                                              (13) 
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Therefore, the calculation formula for parameter adjustment is: 

1 1 1 2 3
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In formula (14), 1η , 2η , 3η  are the learning rates of the three parameters of sliding mode 

PID, ( )y k
u

∂
∆

 is the Jacobian identification result of the neural network, the calculation process 

is as formula (9). 

3.3 Schematic diagram of controller working principle 

The working principle of RBF neural network sliding mode PID controller is shown in 
Figure 3. 
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Fig. 3. Schematic diagram of controller working principle. 

4 Simulation verification and analysis 
In order to verify the effectiveness and feasibility of the designed controller, it is in line 
with the actual marine navigation conditions of the ship. The container ship "MV KOTA 
SEGAR" is used as the simulation object. The main parameters of the ship are 217m in 
length between two columns, 37.3m in width, and 12.5 in full load. m, the displacement is 
14635t, and the square coefficient is 0.681 [13]. 

4.1 Simulation analysis of ship heading control under ideal sea conditions 

Under ideal sea conditions without interference from the external environment such as wind, 
waves, currents, etc., set the ship's initial speed of 19.4 kn, rotation speed of 78.4 rpm, the 
ship's initial heading to 0º, and the ship's heading setting value of 60º, respectively, using 
the designed sliding mode PID controller and RBF neural network sliding mode PID 
controller are simulated, set sliding mode PID controller parameter 1 0.025,k = 2 25,k = 3 3k = ，

set the RBF neural network sliding mode PID controller parameter 0.8,η = 0.5,α = 0.02,β =
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1 0.025,k = 2 25,k = 3 3k = ， 1 0.03,η = 2 0.09,η = 3 0.05η =  weight value 0 [30,40,10]ω = , the number of 
hidden layer nodes 6n = . The simulation results of the ship are as follows: 

4.1.1 Simulation of ship heading control under sliding mode PID controller: 

 

 
Fig. 4. Simulation diagram of ship heading under ideal sea conditions (sliding mode PID controller). 

4.1.2 Ship heading control simulation under RBF neural network sliding mode 
controller ( 1k  value magnification 100 times): 

 
Fig. 5. Simulation diagram of ship heading under ideal sea conditions (RBF neural network sliding 
mode PID controller). 

It can be seen from Figure 4 and Figure 5 that the sliding mode PID controller and RBF 
neural network sliding mode PID controller designed in this paper can achieve good control 
under ideal sea conditions without interference from external factors such as wind, waves, 
currents, etc. The effect is that the rise time is short, and the system basically has no 
overshoot. When the ship’s heading changes from 0° to 60°, the adjustment time is about 
150s under the action of the sliding mode PID controller, and about 110s under the action 
of the RBF neural network sliding mode PID controller. Compared with the two, RBF 
neural network sliding mode PID has better control effect, and the ship rudder angle 
changes smoothly under its control, which can effectively reduce the loss of ship steering 
gear and improve the economy of navigation. 

4.2 Simulation analysis of ship heading control in interfering sea state 

In order to verify the control performance of the designed ship controller when the ship is 
disturbed, on the basis of simulation under ideal sea conditions, interference conditions 
such as steady wind and random wind and waves are added to the simulation model. The 
ship parameters are set as: initial speed 19.4kn, main engine the rotation speed is 78.4rpm, 
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the wind speed is 10m/s, the wind direction is 30º, and the interference of sea waves and 
random wind current is expressed by the second-order oscillation link driven by white noise 
[14][15]: 

2

0.4198( )
0.3638 0.3675

sH s
s s

=
+ +                                             (15) 

The simulation interference is shown in Figure 6: 

 
Fig. 6. Wave and random wind current interference diagram. 

4.2.1 Simulation of heading control of sliding mode PID controller under disturbing 
sea conditions: 

 

 
Fig.7. Simulation diagram of ship heading under interference sea conditions (sliding mode PID 
controller). 

4.2.2 RBF neural network sliding mode PID controller heading control simulation 
under disturbing sea conditions: 

 
Fig. 8. Simulation diagram of ship heading under interference sea conditions (RBF neural network 
sliding mode PID controller). 

It can be seen from Figure 7 and Figure 8 that the sliding mode PID controller and the 
RBF neural network PID controller can still achieve better control effects under the 
interference of steady wind and random wind, waves and currents, which also verifies the 
designed sliding mode PID control. The device is not sensitive to interference and has 

0 50 100 150 200 250 300

T(s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0

20

40

60

φ(
°

）

0 50 100 150 200 250 300

T(s)

0

10

20

30

δ(
°)

0

20

40

60

φ(
°

）

0 50 100 150 200 250 300

T(s)

-10

0

10

20

30

δ(
°

）

MATEC Web of Conferences 355, 03064 (2022) 

ICPCM2021
https://doi.org/10.1051/matecconf/202235503064

9



strong robustness. The initial parameters of the two controllers are the same, the ship has a 
slight overshoot under the action of the sliding mode PID controller, and the adjustment 
time is about 200s, while the RBF neural network sliding mode PID controller adjusts the 
initial parameters by self-tuning, and the system adjusts the time It is about 160s and there 
is no overshoot, so the sliding mode PID controller designed based on RBF neural network 
has better anti-interference ability, robustness and strong adaptive ability. Finally, in order 
to suppress the interference of steady wind and current, the output rudder angles of the two 
controllers are maintained at about 3º to maintain the ship's heading control. 

5 Conclusions 
In this paper, differential compensation is added to the integral term of traditional PID 
control, and combined with the variable structure characteristics of PID control, a sliding 
mode variable structure PID control algorithm is designed. The physical meaning of the 
control parameters is more obvious, which is convenient for parameter tuning. In the face 
of the problem of ship control parameter changes in time-varying sea conditions, the RBF 
neural network learning algorithm is added to the sliding mode variable structure PID 
control to realize online tuning and adjustment of the control parameters of the ship when 
sailing under time-varying sea conditions. The MATLAB simulation environment is used 
to verify the effectiveness of the controller designed in this paper. 
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