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Using meta-models in simulation-based investment analysis – studying the financing 

mix of metal mining investments 

 

Abstract — this paper is the first documented research effort on how simple meta-models 

can be used in simulation-based investment analysis. Modern computers allow the 

construction and simulation of near real-world emulating models, often referred to as “digital 

twins”, that offer requisite variety to real world phenomena, such as an industrial investment. 

These models can be extremely complex and computationally demanding which reduces the 

scope of their practical applications. This is where meta-models can help. 

Meta-models are simple black-box models that are fitted with the input-output -

combinations from more complex models to be able to approximate complex model behavior. 

As the simple meta-models are very fast to solve they may be used to explore much larger 

solution spaces with considerably higher speed and lower resources needed than the original 

models. 

We demonstrate how the meta-modeling approach can be used in the context of metal 

mining investment analysis that is originally conducted with a dynamic system model 

constructed based on a real-world metal mining investment. We show how two simple meta-

models, a linear regression model and a regression-tree model, can be used in gaining insight 

about a suitable financing-mix for the said metal mining investment.  

Keywords— Meta Models; Simulation; Data Mining; Investment Analysis 

JEL-classification— C38; C55; D25; L72 
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I. INTRODUCTION 

 There is an on-going transformation towards computer-aided engineering design of processes 

and products, which means that more and more systems and their components are virtually 

modeled. These models are often referred to as “digital twins” referring to a digital replica of some 

physical entity over their lifetime (see discussion in, e.g., Negri, Fumagalli, & Macchi, 2017). When 

these models are subjected to simulation, the behavior of the underlying designs can be studied 

under various circumstances, before an actual physical counterpart is built. When the complexity 

of the digital twin models increases, understanding the key elements that drive analysis-results 

becomes ever more difficult (Grieves & Vickers, 2017). For this purpose, data mining methods, 

based on the approximation of computationally-heavy, complex models with simpler more robust 

models are gaining in popularity. This practice is often called meta-modeling. Meta-models are 

relatively simple “black-box”-models that are used to replace parts of or even whole complex models 

- meta-models do not include the full mechanics of the models they mimic and are used to replace. 

The parameters of the simpler meta-models are typically “fitted” (to the problem at hand) by using 

the simulation results obtained from the to-be-replaced complex model. The goal is to obtain the 

best possible correspondence between the (part of the) complex original model that is replaced by 

the meta-model. That is, the results produced with the high-fidelity modeling are used to tune the 

simpler, much faster, robust models in order to have them approximate unseen data points with a 

satisficing level of accuracy.  

 The benefits of meta-modeling include efficiency improvements in terms of reducing the 

computation-time needed to run complex models and by way of better result generalization 

(Burrows, Stein, Frochte, Wiesner, & Műller, 2011). Meta-models often offer additional insights 

about the influence different variables have on results (Kuhlmann, Vetter, Lübbing, & Thole, 2005) 

and may be helpful in discovering interesting patterns in data (Rupnik, Kukar, & Krisper, 2007). 

Importantly, meta-modeling can be used to understand why specific solutions (of interest) are 

reached, which may be as important as the solutions themselves (Geoffrion, 1976). 
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 In this paper we study the use of two different meta-models, a linear regression- and a 

regression-tree model, in the context of investment analysis and based on a complex techno-

economic system dynamic model, or a “digital twin” designed for the purpose of analyzing metal 

mining investments. The model used as the basis has been presented in detail in (Savolainen, 

Collan, & Luukka, 2017) and it integrates several aspects of economic analysis of metal mining in 

a single platform and comprises of four interlinked subsystems for production, cash-flow, the 

balance sheet, and for valuation. Figure 1 illustrates the use of meta-models on the general 

background of modeling and the approach adopted in this paper. 

 

Fig 1. Two modeling approaches to real world phenomena and three ways to analyze the results 

into actionable insights. The approach of this research highlighted with a dotted line.  

 System dynamic models are suitable for representing industrial systems with feedback-loops 

and time delays (Größler, Thun, & Milling, 2008) and they address some of the difficulties of 

economic (real options) modeling, such as intuitive understandability and the ability to include 
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multiple different types of uncertainties in a single model (Lander & Pinches, 1998). System dynamic 

modeling has been used in the economic evaluation of mining investment also previously 

(Sontamino & Drebenstedt, 2011, 2014;  Inthavongsa, Drebenstedt, Bongaerts, & Sontamino, 

2016), and research about the financing mix used in mining investments has also been previously 

conducted (Savolainen, Collan, Kyläheiko, & Luukka, 2017).  

 More specifically, with the help of meta-modeling, we are interested in increasing our 

understanding of two issues. First, how the financing mix of a metal mining investment affects the 

value (net present value) of the investments for equity-holders and, second, the probability of default 

of the debt taken, in situations, where the mine-management cannot optimize the value of the mine 

by temporarily shutting it down, due to obligatory debt repayments (and interest payments on the 

debt). The real option of the debtors to “force the mine to stay open” is in conflict with the real option 

to “temporarily shut-down the mine” that the mine management (equity holder) has.  

 The debtor´s real option, in the used model, to force the mine to stay open is triggered by the 

low cash-balance of the mining investment, which means that the mine will remain open and 

generate cash-flow to service the debt even, when it would not be the optimal policy from the equity-

holder (value) point-of-view. Our goal is to study, whether a debt-level (financing mix) can be found 

that simultaneously maximizes the value (net present value) of the investment for the equity-holder, 

while minimizing the debt default-risk, calculated as the number of defaults over simulated 

scenarios, and would thus indicate an “optimal” capital structure for the project. In the valuation with 

the complex full model we adopt the approach used in Savolainen, Collan, Kyläheiko, & Luukka 

(2017), where the discount rate used in calculating the net present value changes as a function of 

leverage. In vein with what is discussed in Smith (2002) and as a benchmark, a valuation with 100% 

financing is performed before going into the leverage optimization. 

 This paper introduces, to the best of our knowledge, for the first time the use of meta-modeling 

in the context of investment analysis. Using meta-modeling to study complex systems with real 

options is also a first. The results presented open new avenues for academic research and provide 

new insight also for the practitioner. The rest of the this paper is structured as follows: section two 
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provides a literature review on metamodeling; in section three we provide a short introduction to the 

underlying case, the method and the specific meta-models used, and present meta-model fitting 

and simulation results. The paper closes with section four, where findings are summarized and 

discussed.    

II. LITERATURE REVIEW ON META-MODELING AND SIMULATION DATA-MINING 

In the broad context of scientific enquiry, numerical simulation of complex phenomena has 

become the “third mode of science” to complement theory and experiments (Hu, Yin, Peng, & Li, 

2006; Mei & Thole, 2008). According to Rupnik et al. (2007) data mining can be shortly defined  as 

“the process of analyzing data in order to discover implicit, but potentially useful information and 

uncover patterns and relationships hidden in the data”, or “as a collection of analytics-driven 

techniques and technologies” supporting knowledge discovery (Painter, Erraguntla, Hogg Jr., & 

Beachkofski, 2006). Although some recently published work tends to emphasize a combination of 

simulation and data mining as a novel invention, the idea of is in no way new in the context of 

operations research (OR). As early as 1970s Kleijnen (1979) paid attention to the fact that 

simulations are often of an ad-hoc character, and there is a broader need to generalize the results. 

Other early efforts of meta-modeling in OR include the work of Lawless and others (1971) who 

generalized the insights of a complex disaster-planning simulation with alternative patient-treatment 

policies by using linear regression. 

A meritorious and widely cited review of meta-modeling and metamodel-based design 

optimization is provided by Wang and Shan (2006). They list the roles of meta-modeling as: model 

approximation, design space approximation, problem formulation, and optimization support. 

Geoffrion (1976) describes a general methodological approach to auxiliary model building and 

Kleijnen (1979) provides an analytical introduction to regression meta-models and their 

implementation. The use of meta-models in simulation optimization is covered in a review of Xu and 

others (2015).  

A lot of the published research under simulation data mining concentrates on engineering 

applications of the automotive industry and in particular on car-crash simulation data analysis. Car-
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crashes are a non-repeatable phenomenon (indeterministic system), where the quantification of 

“crashworthiness” cannot be meaningfully based on a single simulation (Mei & Thole, 2008). 

Kuhlmann and others (2005) discuss the process of data re-use from crash simulations and Mei 

and Thole (2008) identify critical points in car design that cause bifurcation of simulation results in 

indeterministic systems from good to bad scenarios at certain points of time in the dynamic 

simulation. They show that weak points of the car model may be re-designed with subtle changes 

in parameters to reduce the scattering of results. Zhao and others (2010) use the decision tree 

algorithm to detect feasible occupant restraint-system configurations (including parameters of 

seatbelts, airbags, etc.) from simulation data, while Bohn and others (2013) use a three-step 

process (clustering, dimensionality reduction, and analysis) to draw quick insights from crash 

simulation data. They underline that the traditionally used principal component analysis (PCA) does 

not work on models with higher order parameter interactions. 

In economic analysis metamodeling techniques have already been applied to solve complex 

manufacturing system design problems (see, e.g., Negahban & Smith, 2014) and in the optimization 

of flexible manufacturing systems (see, e.g. Dengiz, İç, & Belgin, (2016); Kuo, Yang, Peters, & 

Chang, (2007). These topics, similar to investment analysis, deal with multidimensional models with 

a high degree of freedom. In a recent paper of Liu and others (2019), discussed the need to integrate 

design optimization (static) and operational optimization (dynamic) aspects into a single “digital twin” 

-model, which highlight the increasing role of meta-modeling in their interpretation. Weinberger & 

Moshfegh (2018) present an investment case, where a polynomial regression meta-model is 

applied to the profitability analysis of a combined heat and power production investment. In this 

work we concentrate on the system design of an investment and exclude the dynamic optimization 

aspects.  

This research is a new addition to the literature of using meta-models and takes their use to a 

new direction – namely to the economic analysis of investments with multiple stakeholders and to 

the context of mining industry feasibility modeling. 
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III. CASE DESCRIPTION, METHOD, AND META-MODEL FITTING AND SIMULATION RESULTS 

A. Case  

The metal mining industry and the underlying dynamic techno-economic mining investment 

model provide an excellent context for a meta-model testing. The life of mining investments usually 

spans tens or even hundreds of years and the profitability of these investments depends on metal 

prices and on how technical uncertainties play out. The models used can be highly complex and 

therefore there is a place for using meta-models in making analyses faster, especially when 

multiple different metal-mine investments are studied simultaneously, e.g., in a portfolio of mines 

analysis. 

The case used is that of a nickel mine, presented previously by Savolainen and others (2017). 

Here we assume that the mining operation is ongoing (already started), because this reduces the 

simulation rounds needed to arrive at meaningful results. The goal of using the model is to maximize 

value for the equity holders, while ensuring the servicing of debt with interest. The model includes 

three real options with interactions: i) flexibility to temporarily shut-down mining, if metal prices go 

below a set limit (mine management, equity holders); ii) option to forbid dividend pay-out (debt-

holders); iii) option to force the mine to keep operating, when the cash-balance reaches a minimum 

limit (debt-holders). The real options ii and iii held by the debt-holders are in reality loan covenants 

and in the simulation they are removed when the loan is fully paid back. Three key variable values, 

Ni-price reversion level, the interest rate on the debt, and the leverage (debt-level) are varied and 

the used input (and the resulting output) values are stored for each simulation run. The loan 

payment schedule is assumed to be fixed and to start from month thirteen (beginning of the second 

year), where the debt is paid back in installments of 10 MEUR, while the final debt re-payment is 

the remaining debt-balance. The used values for the key variables in the model are listed in 

Appendix 1. For full details on the model and model-mechanics we refer to Savolainen and others 

(2017).  
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B. Meta-models used and fitting the meta-models 

As discussed above, the underlying model used in this research is the dynamic system-model 

of a metal mining investment presented in Savolainen, Collan, & Luukka (2017). The model is used 

to run a 100-round Monte Carlo simulation for each design-parameter combination, this means in 

the case of running 792 parameter combinations, as is done here, a total of 79 200 simulation 

rounds is run. We use one hundred randomly selected price-scenarios in the simulations that is, the 

same one hundred scenarios for all tested parameter-combinations in order to reach true 

comparability of results. The number of simulations has not been optimized and it is a normatively 

set value – finding the optimal number of simulations is left outside the scope of this research. The 

dynamic system-model is a non-linear “digital twin”-model and the contents of the model are 

presented and visible as a function-block diagram. The model is able to consider complex real 

option interactions. 

In this work, the selected meta-models are a linear regression model and a regression-tree 

model that are fitted using the input parameters of the original model and its respective reached 

simulation outcomes. Our focal points of interest are the value for equity-holders in terms of net 

present value (NPV) and the probability of default on the debt as a percentage of simulated 

outcomes. The two selected meta-models are fitted separately based on the same six inputs out of 

which three are critical investment variables (reversion level of the Ni-price on the long term, debt 

interest rate, and initial debt level) and the three aforementioned real options (in use or not). 

This means that four separate meta-models in total are built and analyzed as both the value for 

equity-holders and the probability of default on the debt both have a separate model and they are 

tested with two sampling-methods each (two by two). Typically, both meta-models are run with the 

same input variable values at the same time to be able to find value-combinations that give good 

outputs simultaneously. 

Goodness of the meta-model fitting can be tested either by comparing generated observations 

from the original simulations, with the meta-model generated “forecasts”, or by testing with mean 

residual sum of squares (Kleijnen, 1979) - in this research we apply both these techniques. The two 
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types of meta-models used in this study are linear regression and the regression-tree models. 

Linear regression is a simple statistical approach to modeling the relationship between a dependent 

variable and a set of explanatory variables. The regression-tree is a supervised machine learning 

method capable of predicting the outcome of a dependent variable, based on a number of 

independent variables. The regression-tree implementation used here is an “off the shelf” package 

available in the Matlab software, for details we refer to the documentation available on their website 

(Mathworks, 2019). For a complete technical description of the regression-tree method we refer the 

interested reader to Loh (2011). There are a number of other possible methods, such as, e.g., 

Radial Basis Functions (Bagheri, Konen, Emmerich, & Bäck, 2017) that can also serve as meta-

models, but they are left outside the scope of this research. 

The meta-model fitting is “slave” to the decisions made about the design of the underlying more 

complex model, because the fitting is done based on a selected sample from the original model 

results. In this case, the simulated results from the underlying complex model acts as the universe 

from which a sample of outcomes is drawn and used in tuning the meta-models. The way the 

sampling is done affects the end result and puts limits on the design space and is a part of the 

design of meta-model analyses (Kleijnen, 1979; Simpson, Lin, & Chen, 2001). In general, one can 

say that the number of samples used should depend on the complexity of the approximated system 

(function) (Wang & Shan, 2006). 
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Table 1. Variable-combinations simulated: (I) scenario-sampling 792 combinations, (II) Latin 

hypercube-sampling 704 combinations (20% * 3520), and (III) test-points with 150 combinations. 

PARAMETER             

Sampling-method  I: Scenarios  II: Hypercube III: Test 

Parameter Unit Range N Range n Range 

Real Option(s)       

  Mothballing - 0/1 2 0/1 2 0/1 

Covenant(s)       

  Dividends - 0/1 2 0/1 2 0/1 

  Force open - 0/1 2 0/1 2 0/1 

  Dividends + Production - 0/1 2 0/1 2 0/1 

Financial       

  Initial Leverage % 0:10:100 10 0:10:100 10 0, 15:10:95 

  Nickel price reversion level k$/tn 11, 15, 18 3 11:1:18 3 13, 16.5 

  Loan interest rate % 4, 8, 12 3 4:1:12 3 5 

TOTAL COMBINATIONS   792  3520 150 

Sampled, % of TOTAL COMB.   100%  20%  

TOTAL to be simulated      

792 
(100%*792

)   

704 
(20%*3520

)   

 

 Here we use two sampling methods, “scenario-sampling” and “Latin hypercube-sampling”. 

Scenario-sampling is a commonly applied method in investment analysis, where the sampling 

concentrates on the limits of the given design space based on typically three scenarios (min, max, 

middle). The Latin hypercube-sampling method is a semi-random sampling method that strives to 

ensure that the drawn samples are a good representation of the original population, for details we 

refer to the original publication of McKay, Beckman, & Conover (1979).  

 As a result of fitting the meta-models with the sampled data from the original model, the meta-

model is able to yield approximately “same” solutions as the original model with the chosen inputs, 

but within the limits of the sampling used. Properly fitted and well-functioning meta-models enclose 
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the key insights of a complex system, while they typically require only a fraction of the computation 

time. Naturally, any changes in the original model typically require the meta-models to be re-fitted. 

 The simulations were run on a modern laptop computer and each set of one hundred simulation 

rounds took approximately one and a half minutes. This means, in the case of the Latin hypercube-

sampling, a total simulation time of seventeen and a half hours that comes from 704 variable-

configurations times 1.5 minutes each. Specifically, the sampling of design space was performed 

with Matlab by using in built functions (“combvec” and “lhsdesign”). The “lhsdesign” function returns 

a continuous variable value from an interval 0 to 1 and the outputs were rounded either to 0, or to 

1. There is a possibility that the same simulation-point is simulated more than once, but in our case 

(with 20% sampling) no duplicates were produced. Table 1 presents the simulated variable-

combinations. 

C. Simulation results with a linear regression meta-model  
 

 Linear regression can be thought of as a starting point for using meta-models, because it has 

been widely applied and well-documented in the earlier literature related to the use of meta-models 

(Kleijnen, 1979; Lawless et al., 1971; Painter et al., 2006). We fitted a linear regression model to 

the simulated data with the data sampled with both sampling methods, to our surprise the R2 was 

at a very high level for the value for equity-holders meta-model with both scenario-sampling (.954) 

and with Latin hypercube-sampling (.951). In the case of the probability of default on the debt meta-

model, the R2 was significantly lower in both scenario-sampling (.757) and with Latin hypercube-

sampling (.814), suggesting a comparatively higher level of non-linearity in the original model. 

Statistics for the fitting of the meta-models are available in Table 2.   
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TABLE 2 Resulting meta-models from linear regression fitting using scenarios and hypercube-

sampling approaches both for the equity holder and the creditor. Legend: tStat = Statistical 

significance of the variable; RMSE = Root Mean Squared Error.  

EQUITY HOLDER tStat    Estimate   

  Scen HC Diff Scen HC Diff 

RMSE     16.7 11.6 -5.1 

R-squared     0.954 0.961 0.007 

Variables (continuous)         

  Ni-price (reversion) 125.900 128.010 2.110 0.026 0.028 0.002 

  Loan Interest Rate -4.851 -3.889 0.962 -0.882 -0.725 0.157 

  Initial Debt 0.095 0.958 0.863 0.113 0.836 0.723 

Real Options (binomial)         

  Mothballing 0.722 0.192 -0.530 0.857 0.167 -0.690 

  No equity dividends -0.612 -2.047 -1.435 -0.727 -1.791 -1.064 

  Force open -17.789 -25.307 -7.518 -0.334 -0.384 -0.050 
 

CREDITOR tStat    Estimate   

  Scen HC Diff Scen HC Diff 

RMSE     13.1 8.7 -4.4 

R-squared     0.757 0.814 0.057 

Variables (continuous)         

  Ni-price (reversion) 39.564 40.707 1.143 0.006 0.007 0.000 

  Loan Interest Rate -3.797 -5.126 -1.329 -0.540 -0.715 -0.175 

  Initial Debt 0.900 0.292 -0.608 0.836 0.191 -0.645 

Real Options (binomial)         

  Mothballing 1.178 2.246 1.069 1.093 1.468 0.375 

  No equity dividends -0.781 0.909 1.689 -0.725 0.595 1.320 

  Force open -29.481 -35.251 -5.770 -0.433 -0.400 0.033 

 

 The linear regression meta-models were further studied and we found that the nickel-price is a 

dominating variable in both the value for equity-holders and the probability of default on the debt 
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meta-model cases, but the effect nickel-price has is little less pronounced in the probability of default 

on the debt model case. As expected, a higher interest rate and a higher initial leverage-level have 

a negative effect on the equity-holder value and on the ability of the investment to service the debt. 

The option to force the mine to be kept open (loan covenant) does not increase the value for the 

equity-holders, nor does it enhance the debt servicing ability, which rules it out from the possible 

future simulation efforts. The covenant that allows the debt-holders to veto dividend-payments has 

different implications depending on the sampling method used: in the case of hypercube-sampling 

a small positive effect on the debt-servicing ability is observed.  

 

Fig 2. Original (in sample) simulated and meta-model forecasted results from the linear regression 

meta-model, with scenario-sampling. Left: Value for equity-holders; Right: Probability of default on 

the debt.  

 Goodness of fit testing for the linear regression meta-model with scenario-sampling by using the 

original data also used for teaching (fitting) the meta-model is visualized in Figure 2 – from the figure 

one can see that the linear regression model based on scenario-sampling does not generalize the 

original model behavior very accurately. The results from the Latin hypercube-sampling are better, 

but the difference is not remarkable. When new input variable combinations are tested 
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(combinations not used in the fitting of the meta-model) the Latin hypercube-sampling based linear 

regression meta-model gives better results than the scenario-sampling based meta-model.  

D. Simulation results with a regression-tree meta-model  
 

 As a side-product of meta-model fitting, regression-tree models provide a graphical presentation 

of the tree-structure that is useful for interpreting results. Figure 3 shows a tree-structure that 

resulted from the value for equity-holders model fitting. For illustration, the tree-structure has been 

forced to ten splits and is at a rough level, when compared with the original model tree with more 

than a hundred splits. The simplified presentation can be used to make some rough conclusions 

about the mean reversion price-level and the leverage level - the tree implies (first split) that equity-

holder value deteriorates at prices below ~15 000$/ton.  

 

Fig 3. Ten-split tree-structure from the value to equity-holders model fitting.  

 There is a significant difference between the results received with the scenario-sampling and 

with Latin hypercube-sampling – scenario-sampling produces clearly inferior and poor results for 

predicting outcomes from in-sample variable combinations, while the results obtained with the Latin 

hypercube-sampling for both models are fairly accurate.  
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Fig 4. Out of sample (new) simulated and meta-model forecasted results from the regression-tree 

meta-model, with Latin hypercube-sampling. Left: Value for equity-holders; Right: Probability of 

default on the debt.  

 With Latin hypercube-sampling the predictions for out of sample (new) variable combinations 

are quite accurate (see Figure 4), while the predicting performance of both meta-models with 

scenario-sampling remains of low quality. All in all, the regression-tree meta-model with Latin 

hypercube-sampling seems to be the most accurate of the four tested meta-models. 

 

E. Meta-model use for obtaining further results  

 

 Now, that we have tested two meta-models, both with two different sampling-methods, and 

found the best meta-model, we can use it to derive further insights, because the time constraints 

that are present with running the original dynamic system model are no longer binding us. What we 

are interested in is finding out what is the input variable combination-space that returns situations 

where the value to the equity-holders is positive (NPV > 0) and the probability that there is a default 

on the debt is very low (p < 0.01). To do this we input the whole design space into the meta-model 



16 
 

to cover the whole space and to find any “sweet spots” and then limit the results according to the 

positive NPV and very low debt default requirement.  

 

 

Fig. 5 A 3D-illustration of the solutions fulfilling the positive value for equity-holders and very low 

debt-default requirements created with the regression-tree meta-model with Latin hypercube-

sampling. Overlapping points are due to the effect of other variables not included in the two variable 

axes.  

 The solution space set is graphically illustrated in Figure 5, where one can clearly see that 

leverage between zero and approximately twenty-five percent returns a very low probability for 

default with a positive value for equity-holders. The value for equity-holders depends heavily on the 

long-term reversion level of the metal-price (Ni). This kind of information is very important from the 

point of view of setting up a metal mine with the characteristics like the one modeled here. As the 

financing mix is most often ex-ante negotiable, making the right decisions with adequate balance 

of risk and return makes a lot of sense for all involved stakeholders.  
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F. Discussion 

 

Based on the case-example, we make the following implications. First, it is shown that the 

existing knowledge on meta-models can be applied to enhance the application of investment 

analysis models that may currently be regarded as too complex to be applied. Second, the ability 

to effectively use complex investment models in economics, via the meta-modeling, enables the 

use of otherwise too-heavy-to-run, multi-disciplinary, integrated, and generic investment models 

that can accommodate the points-of-view of several stakeholders at simultaneously (here equity 

holders and lenders). From the practitioner and policy-maker point of view, the improved ability to 

model reality in a better way can reduce the problems associated with the typical parallel use of 

owner-specific, simplified, and stand-alone models in the analysis of complex investments.  

 

IV. SUMMARY AND CONCLUSIONS  

 

 In this paper, we have presented the use of meta-models in the context of investment analysis. 

To the best of our knowledge, this is a novel contribution. We have used two simple meta-models, 

a linear regression meta-model and a regression-tree meta-model to mimic the input-output 

relationship produced by a complex dynamic techno-economic system model designed for the 

analysis of metal mining investments. We have shown that the simple meta-models used are able 

to produce a usable level of accuracy in mimicking the results from the more complex model, even 

with the limited number of simulation rounds used in generating results for the fitting phase. The 

limitations in the approach make all results preliminary, however, one can state that the results 

seem to demonstrate that meta-modeling is a viable approach for complementing the use of 

complex investment analysis models with several interacting design parameters. Despite the 

promising results of this study, we observe the previous conclusion by Wang and Shan (2006) and 

Zang and others (2013) that for now there are no mathematically rigorous methods to actually 



18 
 

quantify the uncertainty in meta-modeling, and we suggest the reader not to draw any definitive 

conclusions based on these results. 

 We highlight that the use of meta-models is a generalized technical shortcut to speed up and 

simplify simulations, once a reliable mass of results has been generated with a complex white-box 

model that is not limited to specific scientific discipline. In the context of investment analysis, 

interesting future research directions include creation of several meta-models that mimic a portfolio 

of (multiple) investments with underlying complex investment models and running them 

simultaneously with the goal of being able to understand super-system dynamics and outcomes 

through observing the aggregate results from the meta-models. Also, complex market models 

exhibiting regular patterns could be modeled. These types of endeavors might prove to be extremely 

slow with the complex original models due to high computing power demand and computing time 

restrictions. Another already emerging area of meta-modeling in the context of product/process 

development using digital twin simulation is the teaching of metamodels for control system 

applications instead of real data. On a conceptual level, the control logic of these systems could be 

enhanced with the metamodels of economic value presented in this paper to improve their 

productivity and autonomous operation in non-stationary environments/conditions.  
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APPENDIX 1  

Table A1. Key variable values used in the original (underlying) dynamic system model (modified 

from (Savolainen, Collan, Kyläheiko, et al., 2017)). 

VARIABLE Pessimistic Best guess Optimistic Vol., % Unit 

Technical      

  Reserve size - 140 000 - - Tons 

  Metal yield 1 000 1 200 1 400 10 Tons/month 

Operating costs      

  Unit cost 4 000 3 500 3 000 - EUR/ton (of Ni) 

  Fixed cost (production)  2 500 000   EUR/month 

Mothballing costs      

  Shutdown cost - 1 200 000 -  EUR (per shutdown) 

  Fixed cost (mothballed) - 500 000 -  EUR/month 

  Re-start production cost - 500 000 -  EUR (per shutdown) 

Investment costs      

  Initial Investment - 60 000 000 - - EUR 

  Initial cash - 20 000 000 -  EUR 

Financials      

  Payment ratio of metal - 60 -  % 

  Exchange rate - 1.1 - - USD/EUR 

  Cost discount rate - 5.0 -  % 

  Abandon cost - 5 000 000 -  % 
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