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a b s t r a c t

We analyze the effect of phase transformations at the inner core boundary on the period of Slichter
modes. We show that the presence of phase transformations can lead to qualitatively new phenomena.
In particular, the frequency is inversely proportional to the density contrast at the inner core boundary.
We offer a thought experiment that demonstrates this effect. The complete analysis combines an instan-
dited by: M. Jellinek.

eywords:
lichter
nner core

taneous kinetics model for phase transformations with a simple planetary model: a rigid inner core, an
inviscid, incompressible, constant density outer core, a stationary mantle. The reciprocal dependence
on the density contrast leads to periods that are an order of magnitude shorter than those predicted by
models that disallow phase transformations.

© 2009 Elsevier B.V. All rights reserved.

hase transformations
nstantaneous kinetics

. Introduction

The translational modes of the Earth’s inner core, known as the
lichter modes, were first studied in Slichter (1961). The first ana-
ytical treatment of the problem was given by Busse (1974). In
he past 15 years, this field saw an explosion of activity primar-
ly due to the emergence of superconducting gravimeters capable
f detecting the relative motion of the inner core by measur-
ng the variations in the Earth’s gravitational field (Hinderer and
rossley, 2004). Some prominent authors believe that evidence
f Slichter modes can be found in the existing gravimeter data
Smylie, 1992). However, a definitive detection has proven to be
ontroversial (Jensen et al., 1995; Hinderer et al., 1995) and the
earch for Slichter modes continues (Courtier et al., 2000; Rosat
t al., 2003; Rogister, 2003). Models that do not account for phase
ransformations predict Slichter periods for the Earth on the order
f hours. We show that the presence of phase transformations
hortens the Slichter periods. The limiting case of instantaneous
inetics, which assumes that the phase equilibrium is continuously
aintained, predicts periods on the order of minutes. If our basic
Please cite this article in press as: Grinfeld, P., Wisdom, J., The effect of pha
Phys. Earth Planet. In. (2009), doi:10.1016/j.pepi.2009.10.006

remise of phase dynamics is correct then the true period falls
omewhere between the estimates provided here and the existing
stimates, the two being the limits of instantaneous and infinitely
low kinetics. Our analysis may therefore provide an explana-
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031-9201/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.pepi.2009.10.006
tion of why the Earth’s Slichter modes have not been conclusively
detected.

Our intention is to study the dramatic effect that phase trans-
formations can have on the dynamics of self-gravitating fluids
in general and oscillation frequencies in particular. We therefore
purposefully select a simplistic model that brings forward this
effect at the expense of other more established phenomena. The
main result displays an inversion of the density contrast—it now
appears in the denominator of the frequency estimate. This con-
clusion constitutes a qualitative change from the existing models:
it states that the more closely the two densities match the faster
the oscillations. Undoubtedly, in order to obtain accurate quan-
titative estimates for the Slichter periods, one needs to consider
finite kinetics phase transformations and to employ a much more
refined contemporary model of the planet. From the point of view
of phase transformations, the most critical parameter that those
models must accurately establish is the density contrast at the inner
core boundary.

We adopt Busse’s model of a simple three-layer non-rotating
spherical Earth (Grinfeld and Wisdom, 2005). The Earth’s rotation
leads to a splitting in the Slichter frequencies (the Slichter triplet)
and a plethora of other dynamic effects (Bush, 1993), but it is
beyond the scope of this paper. Numerous other general effects,
se transformations at the inner core boundary on the Slichter modes.

including compressibility, stratification, elasticity (Mound et al.,
2003), viscosity (Mound and Buffett, 2007), mushiness at the inner
core boundary (Peng, 1997) and magnetism can play a role in the
dynamics of the inner core. All of these effects are ignored here.
Critically, our model permits mass transfer between the inner core

dx.doi.org/10.1016/j.pepi.2009.10.006
http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
mailto:pg@freeboundaries.com
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Fig. 1. A thought experiment illustrating the effect of phase transformations. (a)
No phase transformations. The body and the ambient fluid move together as a rigid
body of mass m+M. (b) Phase transformations are present. The body oscillates,
solidifying in front and melting the back. The ambient fluid is at rest. The effective
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Fig. 2. Mass conservation. When the material particles that initially comprise the
phase interface move by D, the actual interface moves by D+ x. The amount x is
mplitude is increased but the mass involved in the motion is m. (c) The gravitational
spring”. The restoring gravity force is proportional to effective displacement, rather
han material displacement. The effective “stiffness” is k�1(�2 − �1)−1.

nd the outer core. We consider a phase transformation of the first
ind. We focus on the limiting case of instantaneous kinetics. That
s, we assume the pressure at the inner core boundary instanta-
eously adjusts to the value P0 that permits coexistence of the two
hases and depends on temperature and material properties of the
ubstances. A static model that postulates the same pressure con-
ition can be found in Ramsey (1950). This idealization certainly

eads to further shortening of the period since, in actuality, phase
quilibrium is attained over a finite amount of time. A finite kinet-
cs analysis would lead to estimates that lie between the values
resented here and those given by sans-phase models.

All phase transformations are accompanied by absorption or
elease of energy. Energy can be transferred in two ways. First is
y supplying or drawing energy in the form of heat. This form of
nergy is known as latent heat. An example of a phase transfor-
ation due to latent heat is the boiling of water over a flame. The

ther way to transfer energy is by performing mechanical work.
n example of this mechanism is the melting of ice under a skate.
ollowing Ramsey (1950), we choose this mechanism to be respon-
ible for the phase transformations at the inner core boundary in
ur model.

. A thought experiment that illustrates the effect of phase
ransformations

We offer a thought experiment that demonstrates the qualita-
ive effect that phase transformations can have on the period of
scillations. Consider a rectangular container (Fig. 1) that slides
orizontally without friction. A rigid object of mass m and density
1 divides the container in two. The sections on either side of the
bject are filled with incompressible fluid of density �2 and total
ass M. The rigid body is attached to a spring of stiffness k. We

ssume that � > � . This, of course, is the case for the inner core
Please cite this article in press as: Grinfeld, P., Wisdom, J., The effect of pha
Phys. Earth Planet. In. (2009), doi:10.1016/j.pepi.2009.10.006

1 2
ut not all substances. For example, ice is less dense than water.

We designed this thought experiment to gain insight into the
ounterintuitive placement of the density contrast in the denom-
nator in Eq. (47). The kinematics of this experiment does not
found by expressing the mass to the right of the initial interface in two ways:�2LH =
�1xH + �2(L − D− x)H. This equation yields x = D�2(�1 − �2)−1 and therefore the
total advance by the phase interface is D+ x = D�1(�1 − �2)−1.

capture the more complicated spherical geometry relevant for the
dynamics of the inner core, where the ambient fluid can flow
around the rigid object. The focus of this experiment is on the
boundary and on the qualitative differences between the behaviors
of the fluid with and without phase transformations.

In part (a) of Fig. 1, we illustrate the problem without phase
transformations. Since the ambient fluid is incompressible, the rigid
weight is not able to move within the container and the entire sys-
tem must move as one on the frictionless substrate. The dashed
outline indicates the displacement. It is apparent that when the
rigid body is displaced by an amount D, the entire system is dis-
placed by that amount. Therefore, a total mass ofm+M participates
in the dynamics leading to oscillations whose frequency ω is given
by

ω2 = k

m+M . (1)

M is called added mass and in this case the addition is literal. In
other geometries, where a body oscillates in an ambient fluid, the
net effect of the additional mass involved in the dynamics can often
be captured by an effective added mass expression. For example, if
a sphere of radius R and mass m oscillates on a spring of stiffness
k in infinite space filled with an ideal fluid of density �, then the
frequency of oscillation is given by ω2 = k/(m+ 2��R3/3)—so the
effective added mass equals half the mass of a fluid sphere of radius
R. Both of these examples demonstrate that added mass naturally
leads to longer periods.

Phase transformations in the framework of our model mitigate
the added mass effect. In our simple sliding container example, the
mitigation is complete. According to our model based on instan-
taneous kinetics, we suppose that the rigid mass and the fluid are
two phases of the same substance and that phase equilibrium is
continuously maintained. In other words, the phase interface is at
pressure P0 throughout the oscillation. As a result, the ambient fluid
remains at rest since the rigid body is unable to apply pressure
greater than P0. Therefore, rather than move when the rigid body
is displaced, the fluid instead solidifies at one end (front) and melts
at the other (back). When the point of spring attachment shifts by
an amount D, indicated by the thin dashed line in part (b) of Fig. 1,
the container stays in its original location. However, the rigid body
will appear to have moved an even greater amount, indicated by
se transformations at the inner core boundary on the Slichter modes.

the bold dashed line. Due to the phase transformation, the result-
ing effective displacement is D�1(�1 − �2)−1 as explained in Fig. 2.
Meanwhile, the spring responds to the material displacement D.
Since the surrounding fluid is no longer engaged, the oscillation

dx.doi.org/10.1016/j.pepi.2009.10.006
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requency expression no longer involves an added mass

2 = k

m
. (2)

When it comes to the oscillation of the inner core, there is
n additional effect. The role of the spring is played by gravity.
he restoring force is proportional to the effective displacement
f the center of mass. In our thought experiment, when the point
f spring attachment is displaced by D, the interface moves by
�1(�1 − �2)−1. The effective center of mass moves by the same
mount, as indicated in part (c) of Fig. 1: note that the spring is
tretched by a greater amount. If we continue to think of gravity as
spring we must set its stiffness to k�1(�1 − �2)−1. Here, we see

he inversion of the density contrast. The resulting frequency is

2 = k�1

m(�1 − �2)
. (3)

Eq. (3) captures the main point of this paper.
A more formal example illustrates the same effect. Consider a

at interface between two heavy fluids of densities �1 and �2 and
wave of frequency ω and wavelength K−1 traveling along the

nterface. In the absence of phase transformations,

2 = gK(�1 − �2)
�1 + �2

, (4)

here g is the acceleration of gravity (Lamb, 1993). In the presence
f phase transformations (Grinfeld, 1988), the frequency changes
o

2 = gK(�1 + �2)
�1 − �2

. (5)

. Model and analysis

We consider a three layer non-rotating planet (as in Grinfeld
nd Wisdom, 2005) with a rigid inner core of radius R1 and density
1, an inviscid incompressible fluid outer core of outer radius R2
nd density �2, and a mantle of outer radius R3 and density �3.
e assume that the bulk of the mantle does not participate in the

ynamics (Grinfeld and Wisdom (2005) shows the validity of this
ssumption) nor does it contribute to the forces of gravity within
ts interior. Therefore, the parameters R3 and �3 will not appear
n the final estimates for frequency. We nevertheless incorporate
hem in our analysis in case a future question requires considering
he motion of the mantle.

Our approach is perturbative and is based on a linearization
rocedure. Every configuration of the system is treated as a small
eviation from the spherically symmetric stable configuration. All
elocities are assumed small. The “unperturbed” spherically sym-
etric gravitational potential is  0. Its rate of change ∂ /∂t is

nduced by the dynamics of the core. We solve for the fluid velocity
eld vR, v� and pressure p consistent with translational motion of
he inner core and the stationary mantle.

The motion of the phase interface is specified by its normal
elocity C1 expressed as a harmonic series

1
(
�,�

)
= R1C

lm
1 Ylm

(
�,�

)
ωeiωt, (6)

here a summation over l and m is implied. The angle� is longitude
nd � is colatitude. The functions Ylm

(
�,�

)
are spherical harmon-

cs. For reasons of convenience, we do not normalize them to unity
s would be customary. We found that it is most convenient to take(

�,�
)

= cos � (7)
Please cite this article in press as: Grinfeld, P., Wisdom, J., The effect of pha
Phys. Earth Planet. In. (2009), doi:10.1016/j.pepi.2009.10.006

1,0

whose norm is given by

|z|=R
Y2

1,0

(
�,�

)
dS = 4

3
�R2 (8)
 PRESS
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Note that mass conservation forbids the constant harmonic Y0,0,
therefore C0,0

1 = 0.
The frequencyω is specific to each mode but, for the sake of con-

ciseness, we do not writeωlm which would have been more precise.
The multiplicity ofω is 2l + 1. We concentrate on the modes corre-
sponding to l = 1 since these are the only modes that result in net
translation of mass and are therefore most likely to be detectable
at the surface of the Earth. In the context of the non-rotating Earth,
these modes have multiplicity three. We consider a vertical oscil-
lation described by the harmonic l = 1,m = 0. This mode is axially
symmetric. This allows us to assume that the azimuthal component
of the fluid velocity field vanishes.

We non-dimensionalize our expressions by a length scaleR∗ and
a density �∗. The particular choice of R∗ and �∗ can be made later.
Introduce the dimensionless densities ın and the dimensionless
radii Qn:

ın = �n
�∗

(9a)

Qn = Rn
R∗

(9b)

Introduce a convenient quantity	∗ whose dimensions are those
of gravitational potential:

	∗ = 4�
3
G�∗R2

∗ , (10)

where G is the gravitational constant.

4. Gravitational potential

This section outlines the computation of the gravitational poten-
tial and its time derivative ∂ /∂t induced by the deformation of
the inner core boundary C1. The analytical framework was con-
structed in Grinfeld and Wisdom (2005). In this paper, we use
slightly different notation and correct a typo in an intermediate
Eq. (32) of Grinfeld and Wisdom (2005). A detailed description of
the method of moving surfaces and its applications to potential
problems can be found in Grinfeld and Wisdom (2006).

The gravitational potential  
(
r, �,�

)
satisfies Poisson’s equa-

tion

∇2 = 4�G�, (11)

where � is taken to be �1, �2, �3, or 0 depending on the region.
The potential  is finite at the origin, vanishes at infinity, and is
continuous along with its first derivatives across all interfaces. Let
[X]n denote the jump in the enclosed quantity across the interface
n (e.g. [�]1 = �1 − �2). The continuity conditions read

[
 

]
1
,
[
 

]
2
,
[
 

]
3

= 0 (12a)

N ·
[∇ ]

1
,N ·

[∇ ]
2
,N ·

[∇ ]
3

= 0, (12b)

where N is the outward unit normal.
The equilibrium potential  0(r) is given by

⎧⎪⎪⎪⎪
ı1

2
r2

R2∗
+ A1, inner <CE:HSP SP="0.25"/>core

2 −1
se transformations at the inner core boundary on the Slichter modes.

 0(r) = 	∗

⎪⎨
⎪⎪⎪⎪⎪⎩

ı2

2
r

R2∗
+ A2 + B2

r

R−1
∗
, outer <CE:HSP SP="0.25"/>core

ı3

2
r2

R2∗
+ A3 + B3

r−1

R−1
∗
, mantle

B4
r−1

R−1
∗
, outside

(13)

dx.doi.org/10.1016/j.pepi.2009.10.006
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where

A1
A2
A3
B2
B3
B4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2

[
ı
]

1
Q2

1 − 3
2

[
ı
]

2
Q2

2 − 3
2

[
ı
]

3
Q2

3

−3
2

[
ı
]

2
Q2

2 − 3
2

[
ı
]

3
Q2

3

−3
2

[
ı
]

3
Q2

3

−
[
ı
]

1
Q3

1
−
[
ı
]

1
Q3

1 −
[
ı
]

2
Q3

2
−
[
ı
]

1
Q3

1 −
[
ı
]

2
Q3

2 −
[
ı
]

3
Q3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The normal derivative  ′
0 of the potential  0 at the inner core

oundary r = R1 is given by

′
0(R1) = 	∗

R∗
ı1Q1 (15)

The system of equations for the potential perturbation  t is
btained by differentiating the gravitational system (11)–(12b)
ith respect to time. The derivative of the bulk Eq. (11) shows that
t is harmonic at points away from the boundary:

2 t = 0. (16)

The boundary conditions (12a) and (12b) are differentiated in
he invariant sense discussed in Grinfeld and Wisdom (2006) and
rinfeld (2009). We obtain that ∂ /∂t is continuous across all inter-

aces, while the normal derivative of ∂ /∂t jumps by an amount
roportional to the velocity of the interface C1 and the jump in the
econd normal derivative of the unperturbed potential  0:

 t
]

1,2,3
= 0 (17a)

i
[∇ i t]1

= −C1N
iNj

[∇ i∇ j 0
]

1
(17b)

i
[∇ i t]2,3

= 0. (17c)

The remaining boundary conditions state that t is finite at the
rigin and vanishes at infinity.

The resulting system can be solved by separation of variables.
e look for a solution of the form

t = 	∗ωslm(r)Ylme
iωt (18)

Within the inner core  t is given by

t = −
3	∗ω

[
ı
]

1
eiωtClm1 Ylm

2l + 1
Q−l+2

1
rl

Rl∗
, (19)

hile within the outer core, the mantle and beyond, we have

t = −
3	∗

[
ı
]

1
ωeiωtClm1 Ylm

2l + 1
Ql+3

1
r−l−1

R−l−1∗
(20)

In particular, at the inner core boundary r = R1 the two expres-
ions have the same value

t |r=R1 = −
3	∗Q2

1

[
ı
]

1
ωeiωt

2l + 1
Clm1 Ylm (21)

. Motion of the fluid

The velocity and pressure fields v and p are governed by the
uler equations

∂v
∂t

+ v · ∇v = − 1
�2

∇p− ∇ (22a)

· v = 0, (22b)
Please cite this article in press as: Grinfeld, P., Wisdom, J., The effect of pha
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ubject to three, rather than the usual two, boundary conditions. An
dditional boundary condition is needed at the inner core bound-
ry since the normal velocity of the interface C1 is an additional
nknown.
 PRESS
Planetary Interiors xxx (2009) xxx–xxx

The first condition is conservation of mass across the phase
interface

C1[�]1 − N · [�v]1 = 0 (23)

Intuitively, this identity states that the amount of matter
enveloped by an advancing interface is balanced by the flux of mat-
ter across the interface. The velocity field v1 inside the inner core
is a uniform vector field since we assume that the oscillation mode
is translational. Let it be given by the form

v1 = ẑAωeiωt, (24)

where ẑ is the unit vector in the direction of the oscillation and A
is the amplitude of the oscillation. We align the polar coordinates
with ẑ. The normal component of v1 is therefore given by

v1 · N = A cos �ωeiωt. (25)

Given our choice of Y1,0 (7), this identity can be written as

v1 · N = AY1,0
(
�,�

)
ωeiωt. (26)

The second condition is instantaneous kinetics. It states that the
pressure at the phase interface equals the special value of P0:

p|S1 = P0 (27)

As the third boundary condition, we impose slippage at the man-
tle boundary S2—the normal component of the velocity vanishes:

v · N|r=R2 = 0 (28)

Eqs. (22a) and (27) are linearized by differentiation with respect
to time and keeping first order terms. This implies that the
linearized equations are solved on the equilibrium geometry. Rep-
resent the pressure p as a sum of the unperturbed hydrostatically
equilibrium pressure p0 and a small time-dependent correction p̄:

p(t) = p0 + p̄(t). (29)

Then the linearized Euler equations are

∂2v
∂t2

= − 1
�2

∇ ∂p̄
∂t

− ∇ t (30a)

∇ · v = 0 (30b)

and the linearized condition of instantaneous kinetics reads

∂p̄

∂t

∣∣∣∣
S1

= −C1N · ∇p0 (31)

The normal derivative N · ∇p0 of p0 is determined from the
hydrostatic equilibrium equation

∇p0 + �2∇ 0 = 0 (32)

The normal derivative N · ∇p0 at the inner core boundary coin-
cides with the ordinary derivative p′

0 (R1) which is easily obtained
from Eq. (15):

p′
0 (R1) = −	∗

R∗
ı1�2Q1 (33)

The system of partial differential Eqs. (30a) and (30b) is solved by
separation of variables. We separate time from the spatial variables
and r from the angles. The first identity (34a) is a repeat of Eq. (6).
The next two give expressions for the pressure perturbation p̄, the
radial component vR and the angular component v� of the velocity
field with properly chosen phases.
se transformations at the inner core boundary on the Slichter modes.

The linearized system (30a) and (30b) is satisfied by

C1
(
t, �,�

)
= R1ωC

lm
1 Ylm

(
�,�

)
eiωt (34a)

p̄
(
t, r, �,�

)
= −i�2R

2
∗ω

2plm(r)Ylm
(
�,�

)
eiωt (34b)

dx.doi.org/10.1016/j.pepi.2009.10.006
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R
(
t, r, �,�

)
= R∗ωqlm (r)Ylm

(
�,�

)
eiωt (34c)

�
(
t, r, �,�

)
= R2∗ω
r2
ulm(r)

∂Ylm
∂�

eiωt (34d)

where

lm(r) = Plm+
rl

Rl∗
+ Plm−

r−l−1

R−l−1∗
(35a)

lm(r) = R∗

(
dplm(r)
dr

+ 	∗
R2∗ω2

dslm(r)
dr

)
(35b)

lm(r) = plm(r) + 	∗
R2∗ω2

slm(r) (35c)

nd slm(r) are defined in (18) and determined in the outer by (20).
We have reduced the system of partial differential equations to

n algebraic system with unknowns Plm+ , Plm− , Clm1 , and A. We have
hree sets of boundary conditions: mass conservation (23), slip-
age at the mantle boundary (28), and the linearized condition of

nstantaneous kinetics (31). The condition that completes our sys-
em comes from Newton’s second law for the inner core. This is the
opic to which we now turn.

.1. Newton’s second law for the inner core

The inner core experiences two forces: the gravitational force
xerted at every point inside the inner core and the hydrodynamic
ressure applied at the boundary. The gravitational force is pro-
ortional to the density of the inner core and the vector gradient of
he gravitational potential  . The hydrostatic force is proportional
o the pressure p at the boundary and points along the normal.
herefore, Newton’s second law reads

4�
3
�1R

3
1a = −�1

∫
˝1

∇ d˝−
∫
S1

pNdS, (36)

here a is the acceleration of the inner core’s center of mass and N
s the outward normal.

The condition of instantaneous kinetics states that pressure has
constant value P0 at the phase interface boundary S1. Since P0

s assumed constant, the pressure term in Newton’s second law
anishes:

4�
3
�1R

3
1a = −�1

∫
˝1

∇ d˝ (37)

We linearize this equation by applying a time derivative. The
ey to differentiating the volume integral is the general formula

d

dt

∫
˝

Fd˝ =
∫
˝

∂F

∂t
d˝+

∫
S

CFdS, (38)

here F is an arbitrary scalar or vector field, S is the boundary of
and C is the velocity of the interface with respect to the outward

ormal. An application of this formula to Eq. (37) yields

4�
3
�1R

3
1
da
dt

= −�1

∫
˝1

∇ ∂ 
∂t
d˝− �1

∫
S1

C∇ dS. (39)

The volume integral term in (39) can be converted to a surface
ntegral by the divergence theorem, yielding∫ ( )
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4�
3
�1R

3
1
da
dt

= −�1
S1

N
∂ 

∂t
+ C∇ dS. (40)

By linearization, the leading order contribution to the termC∇ 
omes from the unperturbed potential  0 whose radial derivative
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is given in Eq. (15). Therefore, linearized Newton’s second law reads

4�
3
�1R

3
1
da
dt

= −�1

∫
S1

(
N
∂ 

∂t
+ C∇ 0

)
dS. (41)

As a final step, we project this equation onto the direction of
oscillation ẑ. Since

N · ẑ = cos � (42a)

∇ 0 · ẑ = ∂ 0

∂z
= d 0

dr

∂r

∂z
=  ′

0 cos� (42b)

the final form on Newton’s second law reads

4�
3
�1R

3
1
da

dt
= −�1

∫
S1

(
∂ 

∂t
+C1 

′
0

)
cos �dS. (43)

We have all the necessary ingredients to convert this equation
to algebraic form. From the velocity Eq. (24) we find that

da

dt
= −Aω3eiωt (44a)

From Eq. (21) for the value of the gravitational potential per-
turbation we conclude that only the Y1,0 harmonic survives the
integration. Recalling the normalization (8), we obtain:∫
S1

∂ 

∂t
cos �dS = −4�

3
	∗R2

1Q
2
1

[
ı
]

1
ωeiωtC1,0

1 (44b)

In the remaining integral ofC1 ′
0 cos �, theY1,0 harmonic is once

again the only term to survive. From equations for C1 (34a), 0 (15),
and normalization (8), we obtain∫
S1

C1 
′
0 cos �dS = 4�

3
	∗R2

1Q
2
1 ı1ωe

iωtC1,0
1 (44c)

Combining the terms (44a)–(44c), we arrive at the algebraic
form of Newton’s second law

A

R∗
= 	∗
R2∗ω2

ı2Q1C
1,0
1 (45)

6. Expression for the frequency

The boundary conditions (23), (28), and (31) are easily converted
to algebraic form by evaluating these expressions at the appropriate
boundary. We present the linear system for the harmonic propor-
tional to Y1,0

(
�,�

)
since the Y1m

(
�,�

)
are the only modes that

result in net translation of mass and is therefore the most easily
detectable mode. The best strategy for analyzing the system is to
use Eq. (45) to eliminate A from the equation that arises from (23).
The result is a system with three equations and three unknowns:⎡
⎢⎢⎢⎢⎢⎣

1 Q−3
1 −	∗ı1

R2∗ω2

−1 2Q−3
1

	∗
(

2ı2 − ı1
)

R2∗ω2
− ı1 − ı2

ı2

1 −2Q−3
2 2

	∗
(
ı1 − ı2

)
R2∗ω2

Q3
1Q

−3
2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣ P

1,0
+
P1,0

−
Q1C

1,0
1

⎤
⎦ = 0 (46)

The frequency ω is determined by the condition that the deter-
minant of this matrix vanishes. We thus arrive at the central result
se transformations at the inner core boundary on the Slichter modes.

of this paper that gives the frequency of the translational mode of
oscillation

ω2 = 4�G�2

3

3�2R
3
2 + (�1 − �2)

(
2R3

1 + R3
2

)
(�1 − �2)

(
2R3

1 + R3
2

) (47)
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For comparison, Busse’s estimate for the case with no phase
ransformations is

2
Busse = 4�G�2

3

2
(
R3

2 − R3
1

)
(�1 − �2)

3�2R
3
2 + 2

(
R3

2 − R3
1

)
(�1 − �2)

(48)

The distinguishing characteristic of Eq. (47) is the density con-
rast �1 − �2 in the denominator. This is analogous to Eq. (3) from
he thought experiment discussed above. Consequently, when the
ensity contrast is low, the resulting frequencies can be quite high.

. Potential applications to the Earth

The model that we proposed is deliberately oversimplified with
espect to the structure of the planet and the complexity of geo-
hysical processes that take place inside it. As a result, our model
ermits analytical study and brings forth the effects of phase trans-
ormations. It is designed to be able to predict qualitatively novel
ffects and describe their orders of magnitude. To obtain accurate
stimates, one needs a far more refined model of the planet. Never-
heless, we would like to give a few ballpark estimates for the Earth
hat may be of value in analyzing the qualitative effects introduced
y phase transformations.

Assume the following values for the radii and densities of the
arth (Anderson, 1989):

G = 6.672 × 10−11 m3 /kg s2

R1 = 1.221 × 106 m
R2 = 3.480 × 106 m
�1 = 12.8 × 103 kg/m3

�2 = 12.2 × 103 kg/m3

These values yield the following estimates for the oscillation
eriods

2�
ω

= 7.5 min
2�
ωBusse

= 5.42 h.

There are a number of questions that need to be answered before
he applicability of our model to the Earth can be justified. Our esti-

ates are most sensitive to the density contrast�1 − �2 which must
herefore be accurately estimated. Furthermore, the condition of
nstantaneous kinetics is a clear simplification and offers a lower
ound on the oscillation period. Analysis of finite kinetics will nec-
ssarily lengthen the period but the precise amount will depend on
new parameter governing the rate of phase transformations. That
arameter will also require careful determination. The validity of
he model in which phase transformations are driven by mechani-
al work must also be established for the Earth. Finally, an accurate
odel of the Earth that accounts for radial variations in density and

emperature must be incorporated into analysis.

. Conclusions
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Phys. Earth Planet. In. (2009), doi:10.1016/j.pepi.2009.10.006

The crucial aspect of our model is the introduction of phase
ransformations of the first kind into the modeling of the dynam-
cs of the inner core. We adopted a model by Busse because
t is the simplest model that illustrates the influence of phase
 PRESS
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transformations. As a further idealization, we assumed that phase
transformations satisfy the assumption of instantaneous kinet-
ics. As a result, we derived expressions for frequency estimates
that display the density contrast in the denominator. This is qual-
itatively different from the estimates given by existing models.
Our estimates show that phase transformations are capable of
placing the Earth’s Slichter modes in a frequency range that is
quite different from what is currently believed. Our estimates give
about 9 min while Busse’s model predicts nearly 6 h. More refined
sans-phase models of the Earth yield varying estimates for the oscil-
lation periods, but typically between 2.5 and 6 h (Rogister, 2003).
Therefore, the presence of phase transformations and the resulting
shortening of the eigenperiod may hold the key to experimen-
tal detection of the modes. Modern superconducting gravimeters
(Hinderer and Crossley, 2004) are perfectly capable of resolv-
ing oscillations on the order of minutes and the findings of this
paper indicate that the shorter frequency range needs to be inves-
tigated. We stress, however, that the estimates presented here
are based on a simplistic model of the planet and that more
refined models are needed in order to provide more accurate
estimates.
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