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Abstract
The spatio-temporal prediction of air pollutant concentrations is vital for assess-
ing regulatory compliance and for producing exposure estimates in epidemiologi-
cal studies. Numerous approaches have been utilised for making such predictions, 
including land use regression models, additive models, spatio-temporal smoothing 
models and machine learning prediction algorithms. However, relatively few stud-
ies have compared the predictive performance of these models thoroughly, which is 
one of the novel contributions of this paper. For the specific challenge of predicting 
monthly average concentrations of NO

2
 , PM

10
 and PM

2.5
 in Scotland, we find that 

random forests typically outperform (or are as good as) more traditional statistical 
prediction approaches. Additionally, we utilise the best performing model to provide 
a new data resource, namely, predictions of monthly average concentrations (with 
uncertainty quantification) of the above pollutants on a regular 1 km2 grid for all of 
Scotland between 2016 and 2020.
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1 Introduction

Air pollution is a complex mixture of different components including nitrogen diox-
ide (NO2 ), ozone (O3 ), and particulate matter (PM), the latter being measured by 
particles ≤ 10 � m (PM10 ), and ≤ 2.5 � m ( PM2.5 ) in aerodynamic diameter. Long-
term exposure to these pollutants has been associated with a range of adverse health 
outcomes, including respiratory diseases (Bălă et al., 2021), cardiovascular diseases 
(Rajagopalan et al., 2018) and mental ill health (Gu et al., 2020). A recent summary 
of the evidence is given by Chief Medical Officer (2022). Globally, it is estimated 
that 99% of the population are exposed to concentrations that exceed the World 
Health Organisation’s guideline limits (World Health Organization, 2021), with the 
burden disproportionately affecting low- and middle-income countries (https:// www. 
who. int/ health- topics/ air- pollu tion). In Scotland, the focus of this study, air pollution 
management is supported by a robust legislative framework, including the UK Air 
Quality Strategy in 2007, the Air Quality Standards (Scotland) Regulations in 2010 
that enacted the European Union 2008 Ambient Air Quality Directive (2008/50/
EC), and the UK Environment Act in 2021. These regulations establish a set of air 
quality standards, objectives and targets, with a summary being available at https:// 
www. scott ishai rqual ity. scot/ air- quali ty/ stand ards.

Comprehensive monitoring of air pollutant concentrations is thus essential for a 
number of reasons, including the assessment of whether the above targets are being 
met, as well for producing exposure estimates for epidemiological studies (e.g., 
Dibben and Clemens, 2015). Ideally, high-resolution air pollution maps should 
be produced based on data from a dense network of air pollution monitors, but as 
these monitors are expensive to install and run they are spatially sparse, with only 
about 100 currently active in Scotland (https:// www. scott ishai rqual ity. scot/ latest/ 
summa ry). They are predominantly located in the major urban centres of Aberdeen, 
Dundee, Edinburgh and Glasgow, which leaves vast swathes of the south and north 
of Scotland with no monitors at all. To overcome this, numerical air quality mod-
els such as the Pollution Climate Mapping (PCM) model (https:// uk- air. defra. gov. 
uk/ data/ pcm- data) have been developed, which provides annual average estimated 
concentrations on 1 km2 grid squares with complete spatial coverage of the coun-
try. However, these estimates lack the accuracy of the monitoring data, and are only 
available at a coarse yearly resolution. This prevents, for instance, assessing impacts 
of seasonal patterns in pollution exposure on human health, or impacts of interac-
tions between air pollution and other risk factors that vary on a seasonal-scale.

The goal of this study is to predict monthly average concentrations of NO2 , 
PM10 and PM2.5 between 2016 and 2020 on a 1 km2 resolution for the whole of 
Scotland, which will be used to produce exposure estimates for future epidemio-
logical studies. However, as neither the spatially sparse and irregular measured 
data nor the annual PCM estimates are sufficient for estimating monthly average 
pollution concentrations across the entire country, this study will utilise a fusion 
approach for spatial prediction that incorporates both data sources. In essence, 
this approach “downscales” the PCM output to a higher temporal resolution and 
calibrates it against the monitoring data.

https://www.who.int/health-topics/air-pollution
https://www.who.int/health-topics/air-pollution
https://www.scottishairquality.scot/air-quality/standards
https://www.scottishairquality.scot/air-quality/standards
https://www.scottishairquality.scot/latest/summary
https://www.scottishairquality.scot/latest/summary
https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
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1.1  Existing methods for predicting air pollution

A range of methodological approaches have been proposed for predicting air pol-
lution concentrations at unmeasured locations, including chemical transport mod-
els such as the Community Multiscale Air Quality model (CMAQ, https:// www. 
epa. gov/ cmaq) and EMEP4UK (http:// www. emep4 uk. ceh. ac. uk/), as well as fully 
data-driven approaches based on statistical or machine learning methods. The lat-
ter are the focus here, and one of the simplest is land use regression (LUR). LUR 
is typically set within a linear modelling framework, and describes the relationship 
between air pollution levels and related predictors, including satellite data, mete-
orological factors, land cover, land use, geography, traffic features and population 
density (Larkin et  al., 2023). For example, Novotny et  al. (2011) utilised LUR to 
estimate NO2 concentrations across the United States in 2006, while Brauer et  al. 
(2016) used it to calibrate satellite-driven and chemical transport models against 
ground measurements. On a larger scale, Larkin et al. (2017) utilised global LUR 
models to predict NO2 concentrations across 58 countries using data from 5,200 
monitoring sites.

While LUR models offer advantages such as simplicity, efficiency, stability, and 
interpretability, they have limitations in their ability to capture non-linear covariate-
response relationships, residual spatial autocorrelation, and spatial heterogeneity. To 
address these limitations, various more complex modelling approaches have been 
proposed. For example, generalised additive models (GAMs) can capture unknown 
shaped non-linear relationships between air pollutant concentrations and predictors 
via smooth functions (Li et al., 2012; Zou et al., 2016; Hou and Xu, 2022; Gao et al., 
2023), while hierarchical spatio-temporal models can accommodate the complex 
spatial and temporal correlations inherent in air pollution data (Banerjee et al., 2014; 
Cressie and Wikle, 2015; Saez and Barceló, 2022). More recently, flexible machine 
learning (ML) algorithms have been utilised for air pollution prediction, including 
random forests (Hu et al., 2017; Zhan et al., 2018; Guo et al., 2021), support vec-
tor regression (Hu et al., 2017; Castelli et al., 2020), and deep learning approaches 
(Eren et al., 2023; Niu et al., 2023). These approaches have exhibited improved pre-
dictive accuracy and computational efficiency compared to simpler linear models, 
due to their ability to uncover complex non-linear patterns in the data. However, 
these models typically ignore the spatio-temporal correlation in air pollution data, 
and also require careful hyperparameter tuning and validation schemes to prevent 
overfitting and achieve robust results (Meyer et al., 2018).

Therefore despite the advantages of the above modelling approaches, there is no 
clear consensus as to which produces the most accurate predictions. Comparative 
air pollution prediction studies have been carried out by Chen et al. (2019), Berro-
cal et al. (2020) and Ren et al. (2020), but their studies focused on different study 
regions (USA or Europe), temporal resolutions (daily or annual), pollutants ( NO2 , 
O 3 , or PM2.5 ), and prediction techniques. Their results have thus been heteroge-
neous, with Chen et  al. (2019) and Ren et  al. (2020) finding that machine learn-
ing methods generally performed best, while Berrocal et al. (2020) suggested that 
spatio-temporal smoothing models are preferable. Therefore this study builds on 
these previous works, by providing a comprehensive comparison of statistical and 

https://www.epa.gov/cmaq
https://www.epa.gov/cmaq
http://www.emep4uk.ceh.ac.uk/
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machine learning prediction paradigms for multiple air pollutants in a new geo-
graphical context. Specifically, we focus on predicting monthly average concentra-
tions of NO2 , PM2.5 and PM10 in Scotland between 2016 and 2020, and our pre-
dictive comparison study includes linear models, additive models, additive models 
of location, scale, and shape (Rigby and Stasinopoulos, 2005), hierarchical spatio-
temporal models, and random forests. Additionally, we provide a new data resource 
for others to use, namely predictions (with uncertainty quantification) of monthly 
average concentrations of the above pollutants from the best performing models 
between 2016 and 2020 at a 1 km2 resolution for the entire country. Finally, we use 
the models to provide new insight into: (i) the overall temporal trends and seasonal 
spatial patterns in air pollution concentrations; (ii) locations where concentrations 
have reduced the most during the study period; and (iii) the level of uncertainty in 
the predictions. The data and study region are summarised in the next section, while 
the set of models compared are outlined in Sect. 3. The predictive model compari-
son study is described in Sect. 4, while predictions from the best performing model 
for each pollutant are presented in Sect. 5. Finally, Sect. 6 presents key conclusions 
and areas for future work.

2  Description of the data and the study

The study region is Scotland, United Kingdom, and we focus on predicting monthly 
average concentrations (in �g/m3 ) of NO2 , PM10 and PM2.5 at a 1 km2 spatial resolu-
tion for the 5-year period spanning January 2016–December 2020. The choice of a 
1 km2 spatial resolution at a monthly temporal scale is driven by a number of fac-
tors. The first is the goal of the study, which is to produce monthly spatially resolved 
pollution estimates for use in a subsequent small-area population-level epidemio-
logical study quantifying the long-term effects of air pollution. As the spatial resolu-
tion of these small areas is typically greater than 1 km2 , a smaller spatial resolution 
for the pollution modelling is not necessary. Similarly, as the study will examine 
the long-term effects of pollution, a finer temporal frequency is not necessary. The 
second reason for this resolution is the availability and resolution of the predictor 
variables, which are mostly at the 1 km2 level at an annual scale. Finally, moving to 
a finer spatio-temporal scale would be computationally challenging given the result-
ing number of prediction points.

2.1  Measured pollution concentrations

Daily mean concentrations of the three pollutants were obtained from 106 moni-
toring sites across Scotland between 1st January 2016 and 31st December 2020 
from the Scottish Air Quality website (https:// www. scott ishai rqual ity. scot/). These 
monitoring site locations are displayed in Fig. 1, and are colour-coded by the type 
of local environment in which they reside which comprises kerbside (7 monitors, 
6.6% of sites), roadside (78, 73.6%), rural (5, 4.7%), suburban (3, 2.8%), urban back-
ground (10, 9.4%) and urban industrial (3, 2.8%). Definitions of these site types can 

https://www.scottishairquality.scot/
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be found in Section 1.1 of the supplementary material. The majority of the sites are 
next to main roads (Kerbside and Roadside), which will naturally have higher 
concentrations than nearby background (Rural, Suburban, and Urban) loca-
tions. Moreover, the sites are very unevenly spread across the country, with the vast 
majority in the central belt containing Glasgow in the west and Edinburgh in the 
east, while Northern and Southern Scotland contain hardly any monitoring sites.

These monitors capture different numbers of daily measurements for each month, 
pollutant and site, which results from equipment malfunction, the fact that not all 
monitors measured all pollutants, and that not all monitors were in place during the 
entire 5-year study duration. Details of these data irregularities are given in Sec-
tion 1.1 of the supplementary material. These daily averages were then aggregated 
to a monthly temporal resolution by averaging (mean), as long as there was one or 
more observations recorded within the month. Additionally, we recorded the num-
bers of days that measurements were available in each month, which will be used to 
allow for heteroscedasticity in the additive models for location, scale, and shape (see 
Sect. 3.2).

Fig. 1  Map showing the air pollution monitoring sites in Scotland, which are colour-coded according to 
the type of local environment in which they reside
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Figure 2 shows box plots of the temporal trends in these monthly mean concentra-
tions for all three pollutants, with dark blue lines denoting the median values across 
the set of available monitoring sites. NO2 concentrations exhibit clear seasonality, 
which peaks in winter due to increased vehicular use and heating needs, and declines 
in the summer when increased sunlight converts it to ozone (O3 ) (Air Quality Expert 
Group, 2004). Conversely, temporal trend and seasonality are less clear for PM10 
and PM2.5 , although notable spikes are apparent in February and April 2019 that 
align with two high particulate pollution events in continental Europe (Department 
for Environment, Food and Rural Affairs, 2020).

2.2  Modelled pollution concentrations

As the monitoring sites are spatially sparse, we also utilise annual average mod-
elled concentrations on a 1 km2 grid from the Pollution Climate Mapping (PCM, 
https:// uk- air. defra. gov. uk/ data/ pcm- data) model. These PCM concentrations will 
be used as annual predictors in the regression models for the monthly monitoring 
site concentrations, i.e., all 12 months of the same calendar year will have the same 
value. Thus, the statistical/machine learning models presented in this paper essen-
tially downscale these PCM data to a monthly resolution. These modelled concen-
trations are generated by integrating various data sources, such as road traffic data, 

Fig. 2  Monthly temporal trends in the monitored concentrations of NO2 , PM10 and PM2.5 via box plots 
and medians (across sites, dark blue lines)

https://uk-air.defra.gov.uk/data/pcm-data


1091Environmental and Ecological Statistics (2024) 31:1085–1108 

meteorological data and air dispersion model outputs, and the average modelled 
concentrations over the 5-year study period are presented in Fig. 3.

For NO2 a discernible urban-rural difference is visible, with clearly elevated 
concentrations in the four largest cities of Aberdeen, Dundee, Edinburgh and Glas-
gow. This pattern is primarily due to vehicular emissions and heating combustion, 
which are more prevalent in urban areas due to their increased population density. 
In contrast, the spatial distribution of PM10 concentrations reveals elevated levels in 
both urban areas and eastern regions, with the former again being driven by dense 
populations while the latter is partially driven by the influence of long-range trans-
boundary pollution from continental Europe (Department for Environment Food & 
Rural Affairs, 2023). Finally, PM2.5 concentrations exhibit a similar pattern to PM10 , 
which is unsurprising given that the former is a subset of the latter. Further explora-
tory analysis of the modelled and monitoring data is presented in Section 1.2 of the 
supplementary material.

2.3  Predictors of air pollution

We also collected data on a range of other predictors that are likely to be helpful 
in predicting air pollution concentrations. Firstly, Liu et al. (2022) have illustrated 
the influence of meteorological factors on pollutant concentrations, and we therefore 
obtained data on: (i) average temperature ( ◦C); (ii) average relative humidity (%); 
(iii) total sunshine hours; (iv) total rainfall (mm); (v) average wind speed at 10 ms 
(m/s); and (vi) average sea level pressure (hPa). These data were obtained from 
HadUK-Grid (https:// www. metoffi ce. gov. uk) at a monthly 1 km2 gridded resolution. 
Secondly, we collected data on the Normalised Difference Vegetation Index (NDVI) 
at a 1  km2 resolution to measure land cover, which was obtained from the Terra 
Moderate Resolution Spectroradiometer (MODIS) Vegetation Indices (MOD13A3) 
Version 6 data (https:// lpdaac. usgs. gov/ produ cts/ mod13 a3v006/).

Thirdly, we collected data on population density and road networks, as both 
are known to influence local pollution concentrations. For the former we obtained 
mid-year population estimates from the National Records of Scotland (https:// 
www. nrsco tland. gov. uk/ stati stics- and- data/ stati stics/ stati stics- by- theme/ popul ation/ 

Fig. 3  Spatial distributions of the temporal mean (between 2006 and 2020) of the 1 km2 estimates of 
NO2 , PM10 and PM2.5 from the Pollution Climate Mapping model

https://www.metoffice.gov.uk
https://lpdaac.usgs.gov/products/mod13a3v006/
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates
https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates
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popul ation- estim ates), which are available at a small areal spatial resolution called 
Data Zones (there are 6,976 in Scotland). These population density data were spa-
tially re-aligned to our 1  km2 grid square resolution by area weighted averaging. 
We also calculated the distance to the nearest major road for each monitoring site 
and 1 km2 grid square centroid using OpenStreetMap data (https:// downl oad. geofa 
brik. de/ europe/ united- kingd om/ scotl and. html). Finally, we considered a measure of 
the urban-rural nature of each small-area in Scotland, which was obtained from the 
6-fold urban rural classification produced by Rural and Environment Science and 
Analytical Services Division (2022). Here we simplified this into the following three 
categories for each monitoring site and 1 km2 grid square: Rural – areas with pop-
ulations under 9,999; Urban – areas with populations between 10,000 and 124,999; 
and Large urban – areas with populations over 125,000.

3  Methods for spatio‑temporal pollution prediction

The set of prediction models compared in this study are summarised below, and in 
each case are fitted to data at locations {s1,… , sn} for t ∈ {1,… , 60} months, before 
being used to predict concentrations for those months at unmeasured spatial loca-
tions. In what follows, Y(si, t) denotes the monthly average concentration of a single 
air pollutant (one of NO2 , PM10 or PM2.5 ), at location si in month t, while x(si, t) 
denotes a row of the design matrix of p predictor variables described in Sect.  2 
(including the modelled concentrations).

3.1  Linear models

Normal linear models (LM) are often used to predict air pollution concentrations 
within an LUR context, and the general model form is given by

Here, � is the intercept term, � = (𝛽1,… , 𝛽p)
⊤ is the coefficient vector for the predic-

tor variables, and �2 is the error variance. This model assumes that the elements of 
x(si, t) are linearly related to the response, and that the model errors are independent 
and identically normally distributed. Details of parameter estimation and prediction, 
including uncertainty intervals, are given by Montgomery et al. (2021), and follow 
maximum likelihood methods and standard normal distribution theory.

3.2  Additive models

Additive models (AMs, Hastie and Tibshirani, 1986) extend linear models to allow 
non-linear predictor effects on the response, where the shape of the effect is deter-
mined by the data. The general model form is given by

(1)Y(si, t) ∼ Normal
(
𝛼 + x(si, t)

⊤�, 𝜎2
)
.

https://www.nrscotland.gov.uk/statistics-and-data/statistics/statistics-by-theme/population/population-estimates
https://download.geofabrik.de/europe/united-kingdom/scotland.html
https://download.geofabrik.de/europe/united-kingdom/scotland.html
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where x(1)(si, t) = (x1(si, t),… , xp1 (si, t))
⊤ is a subset of p1 predictors from x(si, t) 

that are assumed to have linear relationships with the response, while {xj(si, t)} for 
j = p1 + 1,… , p are allowed to have non-linear predictor-response relationships. 
The shapes of these latter relationships {fj(⋅)} are estimated from the data, using 
penalised regression splines or related techniques. Parameter estimation is achieved 
using restricted maximum likelihood estimation (REML), and further details of this 
and predictions (with uncertainty intervals) using standard normal distribution the-
ory are given by Wood (2017).

A limitation of AMs in this study is that they assume the model errors have a 
constant variance, where as heteroscedasticity could be likely because the monthly 
average concentrations are aggregated from different numbers of data points due to 
the incompleteness of the data (see Sect. 2). Therefore, we also compare additive 
models of location, scale and shape (AMLSS, Rigby and Stasinopoulos, 2005) here, 
which extend (2) by allowing the error variance �2 to vary over space and time, i.e., 
become �2(si, t) , as a function of predictors. Specifically, the variance structure is 
given by

Here, the natural log of the error variance log(�(si, t) − b) can depend linearly and/
or non-linearly on predictors {x�k (si, t)} , which thus models it in an analogous way to 
the mean function in Equation (2). In this specification �(⋅) is an independent white-
noise process, while b pre-specifies a minimum value for �(si, t) to avoid singulari-
ties in the model likelihood (Wood et al., 2016). Details of parameter estimation and 
prediction can again be found in Wood (2017).

3.3  Hierarchical spatio‑temporal models

Spatio-temporal data typically exhibit short-range autocorrelations that the above 
models do not account for, which is why hierarchical spatio-temporal smoothing 
models are often used for air pollution prediction (e.g., Sahu et al., 2006). One gen-
eral class of such models (Bakar and Sahu, 2015) assumes that the data {Y(si, t)} 
are an error-prone estimate of the true underlying spatio-temporal pollution surface 
{O(si, t)} , yielding a first-level model of the form:

One option within this general framework is the Gaussian process (GP) model given 
by:

(2)Y(si, t) ∼ Normal

(
𝛼 + x

(1)(si, t)
⊤� +

p∑

j=p1+1

fj{xj(si, t)}, 𝜎
2

)
,

(3)log(𝜎(si, t) − b) = 𝛼𝜎 + x𝜎(si, t)
⊤�𝜎 +

q∑

k=q1+1

fk(x𝜎k (si, t)) + 𝜈(si, t).

(4)Y(si, t) ∣ O(si, t) ∼ Normal
(
O(si, t), �

2
)
.

(5)O(si, t) = 𝛼 + x(si, t)
⊤� + w(si, t).
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Here, the true unobserved value O(si, t) is modelled by predictors and a latent spatio-
temporal process w(si, t) . The latter is denoted by w(t) = (w(s1, t),… ,w(sn, t))

⊤ for 
all sites at time t, and is assumed to be temporally independent but spatially autocor-
related. Specifically, this model assumes that w(t) ∼ N (0, �2

w
Sw) , where �2

w
 controls 

the amount of spatially smooth variation and Sw is the spatial autocorrelation matrix 
defined by an exponential autocorrelation function. These GP models thus allow for 
spatial autocorrelation but assume temporal independence in {O(si, t)} . An exten-
sion is the autoregressive (AR) model, which accounts for temporal dependence by 
replacing the linear predictor in Equation (5) with:

Here � is the temporal autocorrelation parameter assumed to be within the inter-
val (−1, 1) , such that when � = 0 the AR model reduces to the GP model. These 
two spatio-temporal smoothing models are chosen for our study from the myriad of 
other spatio-temporal models that have been developed because of the availability 
of software for implementation and their previous use in an air pollution context 
(Mukhopadhyay and Sahu, 2017). Both models are set within a Bayesian framework 
with inference using Markov chain Monte Carlo (MCMC) simulation, and they can 
be implemented in R using spTimer (Bakar and Sahu, 2015), where further details 
about prediction and uncertainty intervals are available. Specifically, predictions 
are based on the posterior median from the MCMC samples, while 95% prediction 
intervals are obtained as the (2.5%, 97.5%) percentiles of these samples.

3.4  Random forests

Random forests (RF, Breiman 2001) are one of the most popular general-purpose 
prediction algorithms, and have been used in an air pollution context by Guo et al. 
(2021). They are based on a bootstrap resampling strategy, where ntree copies of the 
data (of the same size) are created by randomly resampling the data with replace-
ment. A decision tree model is then fitted to each bootstrapped sample through 
recursive binary partitioning of the predictor space, resulting in a tree-like structure 
with a root at the top and a set of branches and nodes that split the data into subsets. 
The nodes at the bottom of the tree are known as leaves, with each containing a sub-
set of the data with similar values. The number of leaves determines the complex-
ity of the tree, and the tree stops growing when making a further split would either 
reduce the minimal node size below a threshold min.size, or increase the number of 
levels in the tree above max.depth. The set of trees constructed in this manner tend 
to be correlated, so to reduce between tree correlation Breiman (2001) proposed 
only considering a subset of mtry predictors for use in each split of each decision 
tree.

The final random forest consists of the ntree decision tree models applied to the 
bootstrapped data sets, and predictions are obtained by averaging the predictions 
from the ntree fitted decision tree models. However unlike classical statistical mod-
els, random forests generally only provide point predictions, and do not quantify 
uncertainty in these predictions. To overcome this, quantile regression forests (QRF) 

(6)O(si, t) = 𝜌O(si, t − 1) + x(si, t)
⊤� + w(si, t).
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proposed by Meinshausen and Ridgeway (2006) can be used within the RF frame-
work to provide 95% prediction intervals, which are based on the lower and upper 
quantiles of the empirical conditional distribution based on the value of all observa-
tions in the leaves. Further details of their implementation using the ranger pack-
age in R are given by Wright and Ziegler (2017).

4  Study 1 – Comparison of the different models’ predictive 
performance

This section presents our predictive comparison study, including a description of the 
specific models compared, the study design and finally the results.

4.1  Specific models compared

Prior to modelling both the monitoring and modelled pollution concentrations are 
log transformed, because they are non-negative quantities with right-skew distribu-
tions. However, in what follows all predictions, uncertainty intervals, and model 
evaluation metrics are computed on the original scale for interpretability. The 
Gaussian assumption made by most of the above models means that all point pre-
dictions are backtransformed by exp(�(si, t) +

1

2
�2) , because it corresponds to the 

expectation of a log-normal distribution.
All of the general classes of models outlined in Sect.  3 are compared in this 

study, and all of the predictors outlined in Sect. 2 are included in each model. Two 
specific linear models (see Sect.  3.1) are considered in this study, which exhibit 
different temporal trends. The first, LMcs , assumes the same monthly seasonal pat-
tern occurs for each of the five years, by including factor variables for Year and 
Month to the model. The second, LMvs , allows the monthly seasonality to vary by 
year, by including a factor variable with one level for each of the 60 months of the 
study. The effect of including spatial coordinates (longitude and latitude) as linear 
trends was assessed, but it did not improve the predictive performance. Two addi-
tive models (see Sect. 3.2) are also compared in this study, with the model denoted 
by AM allowing: (i) all continuous predictors to have non-linear relationships with 
the response via univariate P-splines if appropriate; and (ii) a Gaussian process (GP) 
smooth spline for the overall temporal trend and a cyclic P-spline for seasonality. 
These latter elements allow for different seasonal patterns for each year, and hence 
directly extend LMvs . The second model denoted AMsp additionally includes longi-
tude and latitude as a bivariate smooth term to allow for a non-linear spatial trend. 
These two additive models are also extended to allow for heteroscedasticity, by 
allowing the error variance to depend non-linearly (via a P-spline) on the number of 
days with missing records for each month. These two AMLSS variants are denoted 
by AMLSS and AMLSSsp respectively.

The two hierarchical Bayesian spatio-temporal models outlined in Sect. 3.3 are 
also assessed here, which are the Gaussian process model denoted by SPgp and 
the autoregressive model denoted by SPar . In both cases inference is based on four 
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parallel Markov chains that are burnt-in for 2,000 iterations before being used to 
generate a further 8,000 samples each. For each model convergence is assessed 
using the Gelman-Rubin diagnostic (Gelman and Rubin, 1992). Finally, random for-
ests (Sect. 3.4) are applied to the data on both the original (denoted RFoc ) and log 
scales (denoted RFlc ). The former is included because random forests do not make 
distributional assumptions and hence can have non-Gaussian residuals, and the lat-
ter to ensure a fair comparison with the other models included in this study that are 
applied on the log pollutant scale. Additionally, we re-fit both random forest models 
including longitude and latitude as additional features (denoted here by RFoc_sp and 
RFlc_sp ), because this allows non-linear spatial trends and heterogeneity to be cap-
tured by the model.

4.2  Study design

The out-of-sample predictive performance of each model for each pollutant is 
assessed using a spatial validation experiment. For each air pollutant we split the 
monitoring sites measuring that pollutant into an 80% training set and a 20% test set. 
This process is repeated 10 times to prevent a single training-test split from adversely 
affecting the outcomes. All models are fitted to each training set, before being used 
to make out-of-sample predictions for the corresponding test set. The predictive 
performance metrics outlined below are then computed, and are averaged over the 
10 training and test splits in the results that follow. As the random forests contain 
a number of tuning parameters, we choose the optimal combination by applying 
a 10-fold cross validation procedure to each training set. Specifically, the training 
set is further split at random into 10 folds, and the model is fitted to nine of these 
folds and used to predict the tenth for each tuning parameter combination. This pro-
cess is repeated 10 times, and the optimal tuning parameter combination is the one 
that minimises the root mean square prediction error (see below). In all, 480 com-
binations of tuning parameters are considered, which includes all combinations of 
(ntree = {100, 200, 500, 1000},mtry = {4, 6, 8, 10},min.size = {1, 3, 5, 10, 15},max.depth = {1, 5, 10, 15, 20, 30}) . 
The optimal values of these tuning parameters chosen by the above approach are 
presented in Section 2 of the supplementary material. Once the tuning parameters 
have been selected the random forest is re-fitted to the entire training set with these 
values, and is used to make predictions in the test set. Thus, for all models only the 
training set is used to optimise any tuning parameters and fit the models, meaning 
that all of the predictions made for the test set are completely out of sample.

The predictive accuracy and precision of each model are compared using the fol-
lowing metrics, and in what follows (Y(si, t), Ŷ(si, t)) respectively denote the obser-
vation and prediction at location si and month t, while all averages are taken over all 
T observations in the test set.

Bias = 1
T

∑
(Ŷ(si, t) − Y(si, t)) , which is the mean value of the prediction errors 

and should be close to zero.
RMSE = 

�
1

T

∑
(Y(si, t) − Ŷ(si, t))

2 , which measures the overall size of the pre-
diction error and should be as small as possible.
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MAE = Median {|Y(si, t) − Ŷ(si, t)|} , which again measures the overall size of 
the prediction error and should be as small as possible.
CVG: Coverage of the 95% prediction intervals, i.e., the proportion of the 95% 
prediction intervals for Y(si, t) that contain the true value.
AIW: The mean width of the 95% prediction intervals for Y(si, t).

The RMSE and MAE metrics both quantify the accuracy of the point-predictions, 
with the RMSE being more sensitive to larger errors than the MAE, while bias quan-
tifies any systematic over or under-prediction. Predictive uncertainty is characterised 
by CVG and AIW, with the former being close to 0.95 for appropriate uncertainty 
quantification. If CVG is much more than 0.95 then the intervals are too wide (the 
model is under-confident), while a value much less than 0.95 means the intervals are 
too narrow (the model is overly-confident). For two models with similar CVG, the 
one with the lower AIW produces the most precise predictions. This situation can 
occur when a model is both more accurate in terms of its point estimate and has an 
appropriate coverage level.

4.3  Results of the study

The results of this predictive model comparison study are displayed in Table  1, 
which presents the model comparison metrics for each pollutant and model. For 
NO2 , the random forest model applied on the original scale (RFoc ) appears to be 
the best performing model, having the lowest RMSE (7.70), second lowest bias in 
absolute terms (0.32), and a coverage probability close to the nominal 95% (94.97%) 
level. In contrast, the models with spatial smoothing components (AMsp , AMLSSsp , 
SPgp and SPar ) typically perform worst in terms of RMSE and MAE, suggesting that 
such smoothness is not appropriate for this pollutant. For PM10 , LMvs is the best per-
forming model because it exhibits the lowest RMSE and MAE values and has close 
to the nominal coverage level (93.81%), although in common with the results for 
NO2 the differences between the best performing models are not large. Finally, for 
PM2.5 the set of four random forest models perform best, having the lowest RMSE 
and MAE values and appropriate uncertainty quantification. Of these RFlc performs 
best as it has a slightly lower MAE value. Section 2 of the supplementary material 
presents additional results from this predictive assessment study, including scatter 
plots of the observed versus the predicted concentrations for each model and pol-
lutant. In addition, line plots showing the temporal variation in the RMSEs are pre-
sented illustrating how model performance varies over the 60-month study duration.

5  Study 2 – Understanding spatio‑temporal patterns in monthly air 
pollution concentrations across Scotland

This section summarises the pollutant predictions and their uncertainties from the 
best performing models identified in Sect. 4.3, which are: NO2 – random forest on 
the original scale (RFoc ); PM10 – linear model with varying seasonality (LMvs ); and 
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PM2.5 – random forest on the log scale (RFlc ). These models are re-fitted to the entire 
data, and are subsequently used to produce predictions and 95% prediction inter-
vals at a monthly temporal resolution between January 2016 and December 2020 
on a regular 1  km2 grid across all of Scotland. These predictions are provided as 
a data product for others to use, and are available to download from https:// github. 

Table 1  Results of the 
predictive model comparison 
study for each of the three 
pollutants. The models and 
metrics are summarised in 
Sects. 4.1 and 4.2

Pollutants Models RMSE MAE Bias Coverage AIW

NO2 LMcs 7.97 4.23 0.78 92.85% 29.51
LMvs 7.82 4.16 0.75 92.28% 28.42
AM 9.71 4.94 0.25 84.02% 25.37
AMsp 12.29 5.92 1.51 68.64% 23.48
AMLSS 9.55 4.79 −0.44 82.87% 24.80
AMLSSsp 12.31 5.84 1.06 67.26% 22.80
SPgp 12.14 6.01 1.45 99.46% 98.23
SPar 12.15 5.99 1.37 97.98% 134.49
RFoc 7.70 4.36 0.32 94.97% 32.26
RFlc 7.98 4.19 −0.82 95.02% 32.67
RFoc_sp 7.91 4.49 0.38 95.27% 33.52
RFlc_sp 8.15 4.30 −0.85 95.20% 34.03

PM10 LMcs 3.09 1.71 0.08 94.04% 10.55
LMvs 2.73 1.44 0.15 93.81% 9.32
AM 3.01 1.57 0.19 89.44% 9.02
AMsp 3.81 1.74 0.06 83.21% 8.53
AMLSS 2.99 1.56 −0.03 88.37% 8.74
AMLSSsp 4.01 1.79 −0.12 80.94% 8.22
SPgp 2.75 1.47 −0.11 99.86% 25.30
SPar 2.80 1.47 −0.17 99.93% 35.29
RFoc 2.78 1.52 0.19 93.89% 10.99
RFlc 2.76 1.49 0.04 94.11% 11.00
RFoc_sp 2.77 1.51 0.22 93.99% 11.17
RFlc_sp 2.75 1.47 0.04 94.07% 11.16

PM2.5 LMcs 1.56 0.81 −0.00 94.19% 5.30
LMvs 1.18 0.57 0.02 94.11% 4.12
AM 1.30 0.66 0.08 90.79% 3.95
AMsp 1.27 0.69 0.12 89.66% 3.70
AMLSS 1.31 0.62 −0.02 88.24% 3.69
AMLSSsp 1.30 0.67 0.04 85.24% 3.41
SPgp 1.15 0.54 −0.12 99.98% 24.43
SPar 1.20 0.61 0.02 99.49% 11.54
RFoc 1.15 0.56 0.08 94.67% 4.69
RFlc 1.15 0.54 0.03 94.58% 4.75
RFoc_sp 1.15 0.57 0.09 94.81% 4.74
RFlc_sp 1.15 0.55 0.03 94.88% 4.85

https://github.com/Qiangqiang-Zhu/air-pollution-prediction
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com/ Qiang qiang- Zhu/ air- pollu tion- predi ction. In this section our analysis focuses 
on the three motivating questions outlined in Sect. 1, namely the: (i) overall spatial 
and temporal trends; (ii) locations where pollution concentrations have reduced the 
most; and (iii) the precision of the predictions. Additional results summarising the 
relative importance of the individual predictors are presented in Section  3 of the 
supplementary material.

5.1  Spatio‑temporal pollution trends

Figure 4 presents the seasonal patterns in the average (over all 1 km2 grid cells in 
Scotland) predictions of NO2 (top left), PM10 (top right) and PM2.5 (bottom) between 
2016 and 2020, where each year is represented by a separate line. For NO2 , a clear 
consistent seasonal pattern is evident, where concentrations are approximately twice 
as high on average in the winter compared to the summer, with a minimum around 
July and a maximum around December-January. The plot shows the spatially aver-
aged concentrations over all 1 km2 grid squares in Scotland, which as they are mostly 
rural explains the low average concentrations. Across the 5-year study period NO2 
concentrations exhibit a general downward trend, which appears to be particularly 
pronounced in 2020. The latter is likely to be due in part to the impact of national 
lockdowns during the Covid-19 pandemic, which resulted in reduced vehicular and 
industrial emissions. However, Covid-19 lockdowns could only explain part of the 

Fig. 4  Line plots of the average (over all 1 km2 grid cells in Scotland) monthly predicted concentrations 
between 2016 and 2020. Top left – NO2 ; top right – PM10 ; and bottom – PM2.5

https://github.com/Qiangqiang-Zhu/air-pollution-prediction
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reduction in NO2 concentrations, because this reduction is evident in January 2020 
while the lockdowns only started in March 2020. For PM10 and PM2.5 the concentra-
tions usually reach their lowest levels around July each year, although there is some 
variation in this from year to year. In addition, the pollutant levels in 2020 are gener-
ally lower than most previous years, which may also be partly a result of the Covid-
19 lockdowns. For these pollutants Fig. 4 is dominated by the two high pollution 
events in February and April 2019, which were discussed in Sect. 2.1.

As a result of this seasonality in the predictions, Figs. 5, 6 display spatial maps 
of the predicted seasonal mean concentrations for NO2 (see Fig. 5) and PM2.5 (see 
Fig. 6) over the period 2016–2020. Here, Spring – {March, April, May}; Summer 
– {June, July, August}; Autumn – {September, October, November}; and Winter 

Fig. 5  Spatial maps of the predicted seasonal mean NO2 concentrations over the period 2016–
2020. Here, a Spring – {March, April, May } ; b Summer – { June, July, August } ; c Autumn – 
{ September, October, November } ; and d Winter – { December, January, February }
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– {December, January, February}. For brevity, the seasonal maps for PM10 are pre-
sented in Section 3 of the supplementary material. Figure 5 shows that as expected 
there are higher mean NO2 concentrations across Scotland in winter compared to 
summer, which re-enforces the results from Fig.  4 above. Urban areas appear to 
exhibit the biggest seasonal changes, with increases from around 20 �g/m3 in sum-
mer to 30 �g/m3 in winter. In contrast, rural areas exhibit minimal seasonal vari-
ation, with most grid squares changing by less than 3 �g/m3 on average between 
summer and winter.

For PM2.5 (see Fig. 6) the spatial patterns are again fairly consistent for all four 
seasons, with the highest concentrations in the urban centres and along the east coast 
(partially driven by trans-boundary pollution). The figure suggests that the average 

Fig. 6  Spatial maps of the predicted seasonal mean PM2.5 concentrations over the period 2016–
2020. Here, a Spring – {March, April, May } ; b Summer – { June, July, August } ; c Autumn – 
{ September, October, November } ; and d Winter – { December, January, February }
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concentrations are higher in spring than in the other seasons, but this is likely in 
part to be influenced by the high air pollution episode in April 2019. An additional 
reason for a spring peak in concentrations is the elevated nitrate concentrations from 
agricultural operations across the UK and continental Europe, causing higher aver-
age particulate matter levels than in winter (Department for Environment Food & 
Rural Affairs, 2023) months. Finally, PM2.5 concentrations show the least regional 
variation in summer, with a spatial standard deviation of 0.354 �g/m3 compared to 
0.924 �g/m3 in winter. Thus, the spatial inequality in pollution exposure is typically 
highest when concentrations are highest, which is in winter for NO2 and in winter 
and spring for PM2.5.

5.2  Long‑term changes in concentrations

We examine how average concentrations have increased or decreased over the whole 
study period in different parts of Scotland, by regressing the yearly average con-
centrations at each 1  km2 grid square separately against calendar year (scaled to 
t = 1,… , 5 ). Figure 7 presents the estimated regression slopes from these models 
for each 1 km2 grid square. It shows that NO2 concentrations have typically reduced 
by between 1 �g∕m3 and 3 �g∕m3 in urban areas, but have remained largely constant 
or even increased slightly by 1 �g∕m3 in the north Highlands. In contrast, PM10 and 
PM2.5 concentrations have almost universally reduced across Scotland over the five 
year period, with reductions of between 0.1 �g∕m3 and 1.0 �g∕m3 for PM10 and up 
to −0.4 �g∕m3 for PM2.5 . These reductions are typically largest in the urban areas 
and on the eastern coast, with the former possibly being due to the fact that urban 
concentrations are highest and hence have greater scope for reductions.

5.3  Predictive uncertainty quantification

Figure 8 presents maps of the average widths of the monthly 95% prediction inter-
vals for each of the three pollutants, to showcase the levels of uncertainty in our 
model predictions. It shows that predictive uncertainty is highest where concentra-
tions are highest for both NO2 and PM10 , which is likely to be due to the approximate 

Fig. 7  Maps of the estimated slopes of the temporal trends obtained from regressing the annual mean 
concentrations of each pollutant against a normalised calendar year variable for NO2 , PM10 and PM2.5
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log-normality of the data that causes the variance to increase with the mean. In con-
trast, predictive uncertainty for PM2.5 is generally larger in the rural areas where 
concentrations are lower but the monitoring sites are very sparse. In this respect the 
spatial sparseness of the data is more dominant for increasing predictive uncertainty 
than the average level of pollutant concentrations, which is probably because the lat-
ter has a relatively small variation across the country (see Fig. 6).

6  Discussion

This paper has presented a new study comparing statistical and machine learn-
ing prediction methodologies in a Scottish air pollution context, and has provided 
a new data resource for others to use comprising monthly average predictions and 
95% prediction intervals of NO2 , PM10 and PM2.5 at a 1  km2 resolution for all of 
Scotland between 2016 and 2020. We have compared normal linear models that are 
commonly used in a land use regression context against more complex approaches, 
with the latter collectively allowing for nonlinear predictor-response relationships 
and spatio-temporal autocorrelations. These models were used in a temporal downs-
caling and data-fusion context (Berrocal et al., 2010), because they integrated meas-
ured and modelled pollutant concentration data, climate model outputs and geospa-
tial inputs (such as the road network) with different spatio-temporal resolutions.

Our results show that, overall, random forests have the best prediction perfor-
mance, having optimal values of RMSE for NO2 and PM2.5 and near optimal values 
for PM10 . Linear models with temporally varying seasonality also yield strong pre-
dictive capabilities, with RMSE and MAE values that are similar to those from the 
random forests. These methods also provide appropriate uncertainty quantification, 
as their 95% prediction intervals are close to the nominal coverage levels. In con-
trast, the models with spatio-temporal smoothing components give comparatively 
poor results, either exhibiting much larger RMSE/MAE values of having inappro-
priate coverage probabilities. This is particularly evident for NO2 , which is highly 
traffic dependent and hence is more localised spatially with very short-range spatial 
autocorrelations. The poor general performance of spatial smoothing models could 

Fig. 8  Spatial distributions of the average widths of the monthly 95% prediction intervals over the period 
2016–2020 for NO2 , PM10 and PM2.5
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also be due to the availability of informative spatially-structured predictors, whose 
inclusion in the models will have made the residuals close to independent and hence 
the spatial smoothing components largely irrelevant. Moreover, given that the mon-
itoring sites are sparsely and unevenly distributed across Scotland, the quality of 
the predictions based on geographical location from spatial smoothing terms are not 
based on a large amount of spatial information, leading to their poorer performance.

Comparing our results to those from existing studies is somewhat difficult given 
the differences in the study designs and regions, which include the temporal scale 
of measurements, the volume of data available, the choice of validation strategies, 
and the average pollutant concentrations. For example, Chen et al. (2019) compared 
various regression and machine learning techniques for predicting PM2.5 and NO2 
concentrations in Europe, and reported cross validation RMSEs of around 3 �g/m3 
for PM2.5 and 9 �g/m3 for NO2 from both random forest and linear regression mod-
els. Additionally, Larkin et al. (2017) used global LUR models with data from 5,200 
monitoring sites in 58 countries to predict NO2 concentrations, achieving an RMSE 
of around 4.5 �g/m3 . Similarly, de Hoogh et  al. (2016) developed Europe-wide 
LUR models for NO2 and PM2.5 , incorporating satellite-derived and chemical trans-
port modelling data. Our models’ performance metrics are in the middle of those 
reported by the above studies, with RMSEs of around 1.15 �g/m3 for PM2.5 and 8 
�g/m3 for NO2 . However, as mentioned above these results are not directly compa-
rable. Furthermore, it is also common that different study designs and datasets for 
the same region may lead to very different conclusions. For instance, in the United 
States, Ren et  al. (2020) compared 13 spatio-temporal modelling algorithms, and 
found that nonlinear machine learning methods achieved higher prediction accuracy 
than statistical models. Conversely, Berrocal et al. (2020) found that spatial statisti-
cal models outperformed machine learning algorithms when predicting PM2.5 con-
centrations. Clearly, it is impossible to tell for certain why these differences arise, 
but the most likely cause is that the random forests and the spatio-temporal smooth-
ing models utilise different aspects of the data to make the predictions. Random for-
ests are essentially non-spatial and hence use the information in the covariates to 
make the predictions, while the spatio-temporal smoothing models utilise a combi-
nation of the covariates and the residual (after covariate adjustment) spatio-temporal 
autocorrelation in the pollutant concentrations to make the predictions. Thus, if the 
main predictive facet of the data comes from the covariates then one would expect 
random forests to do better, while if residual spatio-temporal correlation is the domi-
nant component then one would expect the spatio-temporal Kriging style models 
to do better. There are however many other differences between the studies listed 
above (and ours) that could be the reason for the different optimal prediction mod-
els, including differences in the quality and number of covariates, the temporal fre-
quency of the data, the number and spatial configuration of the monitoring sites, and 
the type of cross-validation approach utilised.

The results from the final prediction models show that elevated concentrations of 
NO2 are highly localised to the city centres, while particulate matter also exhibits ele-
vated concentrations on the east coast due to trans-boundary pollution imported from 
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Europe. During the study period the predicted 5-year average concentrations of NO2 
across Scotland range between 4.46 and 30.9 in urban areas and between 2.12 and 22.7 
in rural ones, which compare to targets for annual mean concentrations (not 5-year 
averages) of 40 �g/m3 from the National Air Quality Strategy (NAQS) and 10 �g/m3 
from the more recent World Health Organisation (WHO) guidelines that were enacted 
after the study period in 2021. For PM10 these targets are 18 �g/m3 (NAQS) and 
15 �g/m3 (WHO) respectively, and the 5-year average concentrations during the study 
were below these levels across the country (see Figure 10 in the supplementary mate-
rial). Finally, for PM2.5 these targets are 10 �g/m3 (NAQS) and 5 �g/m3 (WHO), and 
while the former was achieved for all of Scotland on average over the study period, the 
latter is not going to be easy to achieve as 14.14% of the grid squares did not meet this 
target albeit as a 5-year rather than an annual average.

Figure  4 highlights that NO2 and PM2.5 concentrations generally decreased dur-
ing the study period in Scotland, while more recent data from Air Quality in Scotland 
(https:// www. scott ishai rqual ity. scot/ data/ trends) shows that these decreasing trends 
have continued in the subsequent years, with statistically significant decreasing trends 
being observed at most monitoring sites. However, further reducing pollutant concen-
trations in the future is going to be even more challenging, because one has to reduce 
both emissions from sources critical to human productivity and livelihoods such as traf-
fic and heating, as well as influencing emissions from other countries that are imported 
to Scotland as trans-boundary pollution.

The results of this paper provide a baseline for future research developments, which 
on the methodological side include the development of multivariate statistical and 
machine learning prediction models that borrow strength when making predictions 
across multiple pollutants. Meanwhile, one of the main motivations for this study is the 
prediction of monthly average pollutant concentrations with uncertainty quantification 
at a fine spatial resolution across Scotland, which will be used as exposure estimates 
in a future epidemiological study. Here, we aim to utilise monthly data on prescription 
rates for respiratory diseases treated in primary care, which are available from https:// 
www. opend ata. nhs. scot/ datas et/ presc ripti ons- in- the- commu nity. A key challenge 
in this work will be producing representative pollution estimates for the populations 
who attend each general practitioner (GP) surgery, given that the exact locations of the 
patient populations are partially unknown. This uncertainty will need to be fed into the 
pollution exposure estimates, by allowing them to be inherently uncertain when esti-
mating their health effects.
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