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In this paper a new cross-validation method (𝐶𝑉𝑁) for selecting the bandwidth
of the smooth Kaplan–Meier estimator is introduced. Its performance is compared
to that of the usual cross-validation by simulations. The censoring variables in
the experimentations are discrete. A set of ideas explaining how the classical and
smooth Kaplan–Meier estimators work on the truncation model (usually encountered
in reliability studies) is also given in the paper.
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1. Introduction
Survival analysis is a branch of statistics which studies time to event random variables. For this type
of variables, it would be desirable to obtain their mean (life expectancy), their median (median life
expectancy), their variances, and their distributions in general. However, in most survival analysis
studies, the variable of interest is censored and, if the support of the censoring variable is shorter
than that of the variable of interest, some of its summary statistics cannot be estimated from the data.

One of the most important problems with survival data is the modelling of the survival function.
A popular tool for doing so is the Kaplan–Meier estimator. It enables one to estimate survival
probabilities and some quantiles of the variable of interest. It is an invaluable tool because it helps
to compare survival functions between subgroups in the data. Also, in some instances, the median
might be estimatable while the mean is not; in this case the Kaplan–Meier estimator gives an estimate
of the median and this quantity is the only information regarding life expectancy.

It is shown in the literature that smoothing a discontinuous distribution function estimator can
bring some advantages. When the data is complete, Reiss (1981) showed that the smooth empirical
distribution improves the empirical distribution in terms of mean squared error; Ghorai and Susarla
(1990) extended this result to the setting of censored data. They showed that the smooth Kaplan–
Meier estimator has a better mean squared error than the ordinary Kaplan–Meier estimator.

Implementation of the smooth Kaplan–Meier estimator requires a bandwidth and its value is of
vital importance for the performance of the estimator (see for instance Ghorai and Susarla, 1990).
Youndjé (2016) introduced some criteria for selecting this parameter of the estimator. But, apart
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from the 𝐶𝑉 method, the other methods were devised to work when the variable of interest and the
censoring variable are continuous. In this paper, we will put more emphasis on the case where the
censoring distribution is discontinuous. We will introduce a new cross-validation criterion (𝐶𝑉𝑁),
give some of its appealing theoretical properties and then compare its performance with that of the
𝐶𝑉 criterion on models in which the censoring random variable is discrete. The motivation of the
𝐶𝑉 method is given in details in Youndjé (2016).

This paper is organised as follows. In the next section, we introduce the 𝐶𝑉𝑁 criterion. Section 3
contains some of its theoretical properties. Simulations are carried out in Section 4. In Section 5 we
summarise the findings of the simulation study. All the proofs are gathered in the appendix.

2. The new cross-validation score function
Let 𝑋 and 𝐶 be two nonnegative independent random variables having distribution functions 𝐹 and
𝐺 respectively. In the sequel, we assume that 𝐹 is continuous. Let us set

𝑇 = 𝑋 ∧ 𝐶, Δ = 1[𝑋≤𝐶 ] .

In this article we consider the estimation of 𝐹 with right censored data. We assume that we have
independent and identically distributed (for short i.i.d.) observations

(𝑇1,Δ1), . . . , (𝑇𝑛,Δ𝑛)

of the random pair (𝑇,Δ) and we want to use them to estimate 𝐹. The popular estimator of 𝐹 in the
right censored data model is the Kaplan–Meier estimator given by

1 − 𝐹𝐾𝑀𝑛 (𝑥) =
∏

𝑖:𝑇(𝑖) ≤𝑥

(
1 − Δ(𝑖)

𝑛 − 𝑖 + 1

)
.

Here, (𝑇(𝑖) ,Δ(𝑖) ), 𝑖 = 1, . . . , 𝑛, are the 𝑛-pairs (𝑇𝑖 ,Δ𝑖), 𝑖 = 1, . . . , 𝑛, sorted in the lexicographical
order of (𝑇, 1−Δ). Let 𝐾 be a continuous and bounded probability function and ℎ = ℎ(𝑛) a positive
sequence. The smooth Kaplan–Meier estimator based on censored data can be expressed as (see for
example Ghorai and Susarla, 1990)

𝐹ℎ (𝑥) =
∫

1
ℎ
𝐾

( 𝑥 − 𝑦
ℎ

)
𝐹𝐾𝑀𝑛 (𝑦)d𝑦.

For a distribution function 𝐷, let us define the least upper bound of its support as

𝜏𝐷 = inf{𝑥 | 𝐷 (𝑥) = 1}.

Let 𝐿 denote the distribution function of the random variable 𝑇. It will be convenient in the sequel
to set 𝜏 = 𝜏𝐿 . It is also useful to notice that 𝜏 = 𝜏𝐹 ∧ 𝜏𝐺 .

For a distribution function 𝐷, set

𝐷 (𝑎−) = lim
𝑡↑𝑎

𝐷 (𝑡).
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Let 𝐺𝐾𝑀𝑛 = 𝐺𝑛 be the Kaplan–Meier estimator of 𝐺 based on (𝑇1, 1 − Δ1), . . . , (𝑇𝑛, 1 − Δ𝑛). It is
shown in Satten and Datta (2001) that 𝐹𝐾𝑀𝑛 can be expressed as

𝐹𝐾𝑀𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1
𝑊𝑖1[𝑇𝑖≤𝑥 ] , (1)

where
𝑊𝑖 =

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
.

This representation implies that

𝐹ℎ (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1
𝑊𝑖𝐻

(
𝑥 − 𝑇𝑖
ℎ

)
, (2)

with
𝐻 (𝑥) =

∫ 𝑥

−∞
𝐾 (𝑡)d𝑡.

Let us denote by 𝐹̃𝑛 the classical empirical distribution (which is not available in the setting of
censored data) i.e.

𝐹̃𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖≤𝑥 ] ,

and 𝐹̂ℎ the ordinary Nadaraya estimator of 𝐹 given by

𝐹̂ℎ (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

𝐻

(
𝑥 − 𝑋𝑖
ℎ

)
.

It follows from Equations (1) and (2) that, if there are no censored observations (hence no jump in
𝐺𝑛 i.e. 𝐺𝑛 ≡ 0) we have

𝐹𝐾𝑀𝑛 (𝑥) = 𝐹̃𝑛 (𝑥) and 𝐹ℎ (𝑥) = 𝐹̂ℎ (𝑥).

Let 𝐹−𝑖
ℎ be the kernel estimator of 𝐹 obtained with the data (𝑇1,Δ1), . . . , (𝑇𝑖−1,Δ𝑖−1),

(𝑇𝑖+1,Δ𝑖+1), . . . , (𝑇𝑛,Δ𝑛). Likewise let 𝐹̂−𝑖
ℎ be the leave-one-out Nadaraya estimator of 𝐹. We are

now going to summarise how the authors motivated the 𝐶𝑉𝐵(ℎ) criterion (note that 𝐶𝑉𝐵 is denoted
𝐶𝑉 in that paper) presented in Bowman et al. (1998). 𝐶𝑉𝐵(ℎ) is the cross-validation criterion used
to select the bandwidth of 𝐹̂ℎ .

Step 1 The error criteria for measuring the global performance of 𝐹̂ℎ, 𝐼𝑆𝐸 (𝐹̂ℎ) and 𝑀𝐼𝑆𝐸 (𝐹̂ℎ) are
defined by

𝐼𝑆𝐸 (𝐹̂ℎ) =
∫ (

𝐹̂ℎ (𝑥) − 𝐹 (𝑥)
)2 d𝑥 and 𝑀𝐼𝑆𝐸 (𝐹̂ℎ) = E

(
𝐼𝑆𝐸 (𝐹̂ℎ)

)
.

Step 2 The authors introduced the 𝐶𝑉𝐵(ℎ) criterion given by

𝐶𝑉𝐵(𝐹̂ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

∫ (
𝐹̂−𝑖
ℎ (𝑥) − 1[𝑋𝑖≤𝑥 ]

)2 d𝑥.
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Step 3 They showed that there exists a random variable 𝑇 independent of ℎ such that

𝐸𝐷 (ℎ) = 𝑀𝐼𝑆𝐸 (𝐹̂−𝑛
ℎ ), where 𝐷 (ℎ) = 𝐶𝑉𝐵(ℎ) − 𝑇.

We will use similar ideas to propose a bandwidth selector for the estimator 𝐹ℎ .

Step 1 Measures of global performance for 𝐹ℎ are given by

𝐼𝑆𝐸 (𝐹ℎ) =
∫ 𝜏

0
(𝐹ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥 and 𝑀𝐼𝑆𝐸 (𝐹ℎ) = E (𝐼𝑆𝐸 (𝐹ℎ)) ,

see Youndjé (2016) for the motivations.

Step 2 We introduce the following criterion (to be ready for use, this criterion will be modified in
step 4):

𝐶𝑉𝑁∗ (𝐹ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
∫ 𝜏

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝜏)1[𝑇𝑖≤𝑥 ]

)2 d𝑥.

Step 3 Set

𝑇 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝜏

0

(
𝐹2 (𝜏)1[𝑋𝑖≤𝑥 ] − 𝐹 (𝜏)𝐹2 (𝑥)

)
d𝑥,

and note that 𝑇 is independent of ℎ. We will prove in the Appendix that

𝐸𝐷 (ℎ) = 𝐹 (𝜏)𝑀𝐼𝑆𝐸 (𝐹−𝑛
ℎ ), where 𝐷 (ℎ) = 𝐶𝑉𝑁∗ (ℎ) − 𝑇. (3)

Step 4 This extra step compared to the approach of Bowman et al. (1998) is due to the fact that our
𝐶𝑉𝑁∗ involves the unknown functions 𝐹, 𝐺 and the quantity 𝜏. In this last step, we are going
to plug-in the estimates of these quantities. Our final 𝐶𝑉𝑁 criterion is given by

𝐶𝑉𝑁 (𝐹ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
∫ 𝑇(𝑛)

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹𝐾𝑀𝑛 (𝑇(𝑛) )1[𝑇𝑖≤𝑥 ]

)2
d𝑥.

Recall that 𝐹𝐾𝑀𝑛 is the Kaplan–Meier estimator of 𝐹,𝐺𝑛 = 𝐺𝐾𝑀𝑛 that of𝐺, and𝑇(𝑛) = max(𝑇𝑖 , 𝑖 =
1, . . . , 𝑛). It was shown in Youndjé (2016) that 𝑇(𝑛) is a consistent estimator of 𝜏.

In this paper, we will compare the performance of the 𝐶𝑉𝑁 criterion to that of the 𝐶𝑉 method
introduced in Youndjé (2016). This 𝐶𝑉 criterion is given by

𝐶𝑉 (𝐹ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑇(𝑛)

0

(
𝐹−𝑖
ℎ (𝑥) − Δ𝑖

1 − 𝐺𝑛 (𝑇−
𝑖 )

1[𝑇𝑖≤𝑥 ]

)2
d𝑥.

Note that when there is no censoring, we have: Δ𝑖 = 1, 𝐺𝑛 ≡ 0, 𝐹𝐾𝑀𝑛 (𝑇(𝑛) ) = 1 so that

𝐶𝑉𝑁 (𝐹ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑇(𝑛)

0

(
𝐹̂−𝑖
ℎ (𝑥) − 1[𝑋𝑖≤𝑥 ]

)2 d𝑥;

and therefore 𝐶𝑉 = 𝐶𝑉𝑁. Moreover, if the kernel function 𝐾 is supported over the interval [−1, 1],
we have

𝐶𝑉𝐵(𝐹̂ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑇(𝑛)+ℎ

0

(
𝐹̂−𝑖
ℎ (𝑥) − 1[𝑋𝑖≤𝑥 ]

)2 d𝑥.

It follows that the three criteria are very similar.
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3. Some theoretical properties of CVN
In this paper we will assume that the distribution function 𝐹, the kernel 𝐾 and the bandwidth ℎ satisfy
the following conditions:

(A.1) 𝐾 is nonnegative and
∫
𝐾 (𝑢)d𝑢 = 1;

(A.2) 𝐾 is compactly supported on [−1, 1];
(A.3) 𝐾 is symmetric and 0 <

∫
𝑢2𝐾 (𝑢)d𝑢 < +∞;

(A.4) 𝐹 is twice continuously differentiable, and 𝐹′ = 𝑓 , 𝐹′′ = 𝑓 ′ are bounded;

(A.5) lim𝑛→+∞ ℎ = lim𝑛→+∞ ℎ(𝑛) = 0.

Actually, we are going to establish an “optimality” result for a “truncated” version of 𝐶𝑉𝑁. We
are going to introduce a weight function (see for example Härdle and Marron (1985) for the case of a
regression function estimation) to deal with the random denominators in 𝐶𝑉𝑁. Let 𝑅 > 0 such that

𝑅 < 𝜏. (4)

We will consider the following quantities:

𝐶𝑉𝑁1(ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
1[𝑇𝑖≤𝑅]

∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥,

𝐶𝑉𝑁1∗ (ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
1[𝑇𝑖≤𝑅]

∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥,

𝑇1 =
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝑅

0

(
𝐹2 (𝑅)1[𝑋𝑖≤𝑥 ] − 𝐹 (𝑅)𝐹2 (𝑥)

)
d𝑥.

Some comments are in order here. Setting

𝑊𝑒(𝑢) = 1[𝑢≤𝑅] ,

we see that 𝐶𝑉𝑁1 (for instance) can be written as

𝐶𝑉𝑁1(ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
𝑊𝑒(𝑇𝑖)

∫ +∞

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2
𝑊𝑒(𝑥)d𝑥.

Therefore, the quantity 𝑅 helps us in setting a weight function. Note also, the presence of the weight
function inside and outside the integrals. We believe that this is inherent to the cross-validation
approach to distribution function estimation.

Condition (4) is technical and will help to cope with the random denominators in 𝐶𝑉𝑁1 and
𝐶𝑉𝑁1∗. For instance, it follows from that condition that

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
1[𝑇𝑖≤𝑅] ≤

1
1 − 𝐺 (𝑅) .

The fact that 𝑅 < 𝜏 is essential to obtain that 𝐺 (𝑅) < 1, as is evidenced by the case where the
censoring variable is uniform over ]0, 1[ and 𝐺 (1−) = 𝐺 (1) = 1.

We have the following theorem:
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Theorem 1. If Condition (4) holds and if (A.1)–(A.5) hold, then we have

(i) 𝐸 (𝐶𝑉𝑁1∗ (ℎ) − 𝑇1) = 𝐹 (𝑅)
∫ 𝑅

0
𝐸

(
𝐹−𝑛
ℎ (𝑢) − 𝐹 (𝑢))2 d𝑢,

(ii) 𝐶𝑉𝑁1(ℎ) a.s.
= 𝐶𝑉𝑁1∗ (ℎ) + 𝑜(𝐶𝑉𝑁1∗ (ℎ)).

The proof of Theorem 1 (i) is similar to that of Equation (3) and is thus omitted. The proof of
Theorem 1 (ii) is in the Appendix.

Remarks

(i) Theorem 1 (i) suggests that 𝐶𝑉𝑁1∗ is potentially a good bandwidth selector. Theorem 1 (ii)
says that 𝐶𝑉𝑁1 is equivalent (𝐶𝑉𝑁1/𝐶𝑉𝑁1∗ 𝑎.𝑠.−−−→ 1) to 𝐶𝑉𝑁1∗, thus 𝐶𝑉𝑁1 is likely also a
good selector.

(ii) Theorem 1 (ii) would have been more appealing (for practical situations) if the term 𝐹 (𝑅)
in 𝐶𝑉𝑁1 was 𝐹𝐾𝑀𝑛 (𝑅). Unfortunately, we were unable to prove Theorem 1 (ii) with 𝐹 (𝑅)
replaced by 𝐹𝐾𝑀𝑛 (𝑅).

(iii) What is the connection between 𝐶𝑉𝑁 (introduced in Section 2) and Theorem 1?

(a) Assume that 𝜏 and 𝐹 (𝜏) are known. Since Theorem 1 is true for all 𝑅 such that 𝑅 < 𝜏,
we can extrapolate by setting 𝑅 = 𝜏 and get

𝐶𝑉𝑁 𝜏 (𝐹ℎ) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
∫ 𝜏

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝜏)1[𝑇𝑖≤𝑥 ]

)2 d𝑥,

which is very similar to 𝐶𝑉𝑁.

(b) To analyse the case where 𝐹 (𝜏) and 𝜏 are unknown, set

𝐽𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
.

Since the kernel function 𝐾 is supported on [−1, 1], we have

𝐹ℎ (𝑥) = 𝐽𝑛 if 𝑥 > 𝑇(𝑛) + ℎ.

This equality is of course true when 𝑥 > 𝜏 + ℎ. It can easily be verified that

𝐽𝑛 = 𝐹
𝐾𝑀
𝑛 (𝑇(𝑛) ) = 𝐹𝐾𝑀𝑛 (𝜏).

Therefore
𝐽𝑛

𝑎.𝑠.−−−→ 𝐹 (𝜏).
See for example Stute and Wang (1993). It follows from (2) that

𝐽𝑛 = max
𝑥

(𝐹ℎ (𝑥)). (5)
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We have chosen to use 𝐽𝑛 as estimator of 𝐹 (𝜏) throughout this paper. The main in-
convenience of this choice is that 𝐽𝑛 is greater than or equal to (see Equation (5)) any
kernel estimate 𝐹ℎ (𝜏) of 𝐹 (𝜏) regardless of the kernel and the bandwidth. But, this
choice has also its advantages, since we do not need to choose a bandwidth and 𝐽𝑛 is
a strongly consistent estimator of 𝐹 (𝜏). Besides, when 𝐹 (𝜏) = 1, 𝐽𝑛 is better than any
kernel estimate 𝐹ℎ (𝜏) of 𝐹 (𝜏) (see Equation (5)).
Let us now turn to the estimation of 𝜏. In Youndjé (2016), it was shown that 𝑇(𝑛) is a
consistent estimator of 𝜏. In summary, if 𝑅 is replaced by 𝑇(𝑛) and 𝐹 (𝑅) by 𝐹𝐾𝑀𝑛 (𝑇(𝑛) )
in 𝐶𝑉𝑁1, then we obtain the 𝐶𝑉𝑁 criterion introduced in Section 2.

4. Simulations
This section is organised according to the distribution of the censoring random variable 𝐶. Section
4.1 presents simulations results when the censoring variable𝐶 is constant, that is we are dealing with
truncation models. The models where the censoring random variables are geometric are presented
in Section 4.2.

Let W(𝛼, 𝜆) be the Weibull random variable with parameters 𝛼 > 0 and 𝜆 > 0 whose distribution
function is given by

𝐹𝑊 (𝑥) = 1 − 𝑒−(𝜆𝑥 )𝛼 , 𝑥 > 0.

In our simulation study the target distribution function will be 𝐹 = 𝐹𝑊0 , where 𝑊0 = 𝑊 (𝛼0, 𝜆0),
𝛼0 = 1.6 and 𝜆0 = 1

16 . Throughout our experiments, the kernel function used is the Epanechnikov
kernel defined by

𝐾 (𝑥) = 3
4
1[−1, 1] (𝑥) (1 − 𝑥2).

Sample sizes 𝑛 = 100, 𝑛 = 300 and 𝑛 = 500 are considered throughout the experiments.

4.1 Models where 𝐶 is constant: right truncation models
Recall that in this case

𝐺 (𝑥) =
{

0 for 𝑥 < 𝑡0,

1 otherwise,
and 𝐺𝑛 = 𝐺 if there is at least one censored observation. Therefore, we have

𝐹𝐾𝑀𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
1[𝑇𝑖≤𝑥 ] .

This formula of 𝐹𝐾𝑀𝑛 (𝑥) and Proposition 2 in Youndjé (2016) can be used to prove that

E
(
𝐹𝐾𝑀𝑛 (𝑢)

)
=

{
𝐹 (𝑢) for 𝑢 < 𝑡0,

𝐹 (𝑡0) otherwise.

In this setting, another representation of the Kaplan–Meier estimator, which helps to gain more
insights and understanding is also available. Observe that in this framework 𝐺 (𝑇−

𝑖 ) = 0, so we have

𝐹𝐾𝑀𝑛 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖≤𝑡0 ]1[𝑇𝑖≤𝑥 ] =
1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖≤𝑥∧𝑡0 ] .
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This representation shows how powerful the Kaplan–Meier estimator is. It captures all the appealing
characteristics of the empirical distribution function 𝐹̃𝑛 (𝑥) when 𝑥 ≤ 𝑡0 and is equal to 𝐹̃𝑛 (𝑡0) when
𝑥 > 𝑡0.

A legitimate question is whether it is possible to deduce some of the properties of 𝐹ℎ (𝑥) in this
setting from those of the ordinary kernel estimator 𝐹̂ℎ of 𝐹? The answer is affirmative and is given
by the following equations:

𝐹ℎ (𝑥) = 𝐹̂ℎ (𝑥) when 𝑥 < 𝑡0 − ℎ, (6)

𝐹ℎ (𝑥) = 𝐹̃𝑛 (𝑡0) when 𝑥 > 𝑡0 + ℎ. (7)

To prove Equation (6), observe that in this setting we have

𝐹ℎ (𝑥) =1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖≤𝑡0 ]𝐻
(
𝑥 − 𝑇𝑖
ℎ

)

=
1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖≤𝑡0 ]𝐻
(
𝑥 − 𝑋𝑖
ℎ

)

=
1
𝑛

𝑛∑︁
𝑖=1

𝐻

(
𝑥 − 𝑋𝑖
ℎ

)
− 1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖>𝑡0 ]𝐻
(
𝑥 − 𝑋𝑖
ℎ

)
.

Since the term on the right hand side in the last equality is equal to zero when 𝑥 < 𝑡0 − ℎ, the proof
of Equation (6) is established. To prove Equation (7), note that 𝐹ℎ (𝑥) can also be written as

𝐹ℎ (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖≤𝑡0 ]𝐻
(
𝑥 − 𝑇𝑖
ℎ

)
=

1
𝑛

𝑛∑︁
𝑖=1

𝐻

(
𝑥 − 𝑇𝑖
ℎ

)
− 1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖>𝑡0 ]𝐻
( 𝑥 − 𝑡0

ℎ

)
.

For 𝑥 > 𝑡0 + ℎ, we have:
𝑥 − 𝑡0
ℎ

> 1, and
𝑥 − 𝑇𝑖
ℎ

≥ 𝑥 − 𝑡0
ℎ

> 1.

Since 𝐾 is supported on [−1, 1], we get

𝐹ℎ (𝑥) = 1 − 1
𝑛

𝑛∑︁
𝑖=1

1[𝑋𝑖>𝑡0 ] = 𝐹̃𝑛 (𝑡0),

and the proof of Equation (7) is complete.
In this subsection, we have 𝜏 < +∞. The measure of accuracy used to assess the performance of a

bandwidth ℎ of 𝐹ℎ is given by

𝐼𝑆𝐸 (ℎ) = 𝐼𝑆𝐸 (𝐹ℎ) =
∫ 𝜏

0
(𝐹ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥.

This measure will be slightly modified in Subsection 4.2 to take into account the fact that 𝜏 = +∞.
Two models are used to assess the finite sample behavior of 𝐶𝑉 and 𝐶𝑉𝑁 . The first model is the
Weibull-Truncation-50% (W-T-50%) one given by

Model W-T-50%: 𝑋 ∼ W(𝛼0, 𝜆0), 𝐶 ∼ Trunc(𝑡1),
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Table 1. Integrated squared error for ℎ̂𝑐𝑣𝑛 and ℎ̂0; mean, median and standard deviation
over 100 replications.

𝐶𝑉𝑁 results

𝐼𝑆𝐸 ( ℎ̂𝑐𝑣𝑛) 𝐼𝑆𝐸 ( ℎ̂0)

Model 𝑛 Mean Median Standard
deviation Mean Median Standard

deviation

W-T-50% 200 0.00945 0.00675 0.00878 0.00854 0.00538 0.00861
400 0.00394 0.00251 0.00470 0.00346 0.00197 0.00447
800 0.00221 0.00120 0.00266 0.00196 0.00101 0.00249

W-T-25% 200 0.01519 0.01120 0.01332 0.01384 0.01040 0.01286
400 0.00819 0.00475 0.00860 0.00711 0.00409 0.00806
800 0.00430 0.00279 0.00500 0.00387 0.00233 0.00466

where W(𝛼0, 𝜆0) is the Weibull random variable with parameters𝛼0 = 1.6, 𝜆0 = 1
16 and𝐶 ∼ Trunc(𝑡1)

(i.e. 𝐶 = 𝑡1), 𝑡1 = 12.724. With this choice of the parameters P(𝑋 > 𝐶) = 0.5 so the censoring level
is 50% when estimating 𝐹. The second model is the Weibull-Truncation-25% (W-T-25%) defined by

Model W-T-25%: 𝑋 ∼ W(𝛼0, 𝜆0), 𝐶 ∼ Trunc(𝑡2),

where W(𝛼0, 𝜆0) is the Weibull random variable with parameters 𝛼0 = 1.6, 𝜆0 = 1
16 and 𝐶 ∼

Trunc(𝑡2), 𝑡2 = 19.624. With this choice of the parameters, the censoring rate when estimating 𝐹 is
25%. The following notations are used in the simulations below (see the tables):

ℎ̂0 is the minimiser with respect to ℎ of 𝐼𝑆𝐸 (ℎ);
ℎ̂𝑐𝑣 is the minimiser with respect to ℎ of 𝐶𝑉 (ℎ);
ℎ̂𝑐𝑣𝑛 is the minimiser with respect to ℎ of 𝐶𝑉𝑁 (ℎ).
In Table 1 below are summarised the results of our computations regarding the 𝐶𝑉𝑁 method on

the truncation models. The values of 𝐼𝑆𝐸 ( ℎ̂𝑐𝑣𝑛) and 𝐼𝑆𝐸 ( ℎ̂0) are of comparable magnitude both
in terms of mean and standard deviation. This demonstrates that the 𝐶𝑉𝑁 method works well on
truncation models.

Table 2 displays the results of the computations regarding the 𝐶𝑉 method for truncation models.
We can draw the same conclusions as in Table 1. A curious thing to notice in Tables 1 and 2 is that
the results do not improve with the censoring rate. This is merely because 𝜏 (domain of integration
in 𝐼𝑆𝐸) is large when the censoring rate is small (25%). Equations (6) and (7) can help to explain
this phenomenon.

4.2 Models where 𝐶 is geometric
The distribution of the random variable 𝐶 is geometric with parameter 𝑝 ∈ ]0, 1[ (and one writes
𝐶 ∼ Ge(𝑝)) if its mass probability function is given by

P(𝐶 = 0) = 0, P(𝐶 = 𝑘) = 𝑝(1 − 𝑝)𝑘−1, 𝑘 = 1, 2, 3, . . .
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Table 2. Integrated squared error for ℎ̂𝑐𝑣 and ℎ̂0; mean, median and standard deviation
over 100 replications.

𝐶𝑉 results

𝐼𝑆𝐸 ( ℎ̂𝑐𝑣) 𝐼𝑆𝐸 ( ℎ̂0)

Model 𝑛 Mean Median Standard
deviation Mean Median Standard

deviation

W-T-50% 200 0.00948 0.00693 0.00879 0.00854 0.00538 0.00861
400 0.00402 0.00255 0.00470 0.00346 0.00197 0.00447
800 0.00222 0.00126 0.00269 0.00196 0.00101 0.00249

W-T-25% 200 0.01531 0.01124 0.01342 0.01384 0.01040 0.01286
400 0.00827 0.00481 0.00883 0.00711 0.00409 0.00806
800 0.00429 0.00279 0.00499 0.00387 0.00233 0.00466

If the censoring random variable 𝐶 is geometric, then 𝜏 = +∞ and some care needs to be taken to
define 𝐼𝑆𝐸 (𝐹ℎ). Because, for 𝛽 large enough∫ +∞

𝛽
(𝐹ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥 =

∫ +∞

𝛽
(𝐽𝑛 − 𝐹 (𝑥))2 d𝑥,

where

𝐽𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺𝑛 (𝑇−

𝑖 )
.

Thus we have ∫ +∞

𝛽
(𝐹ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥 =

{
+∞ when Δ(𝑛) = 0,∫ +∞
𝛽

(1 − 𝐹 (𝑥))2 d𝑥 otherwise.

In order to avoid having 𝐼𝑆𝐸 (𝐹ℎ) = +∞, we will use a modified definition of 𝐼𝑆𝐸 (ℎ). Let 𝜖 > 0 and
choose 𝜏𝜖 such that ∫ ∞

𝜏𝜖

(1 − 𝐹 (𝑥))2 d𝑥 < 𝜖.

Our 𝐼𝑆𝐸 in this subsection is defined by

𝐼𝑆𝐸 (ℎ) = 𝐼𝑆𝐸 (𝐹ℎ) =
∫ 𝜏𝜖

0
(𝐹ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥.

Two models are considered in this subsection. The model (W-G-50%) defined by

Model W-G-50%: 𝑋 ∼ W(𝛼0, 𝜆0), 𝐶 ∼ Ge(𝑝1),

where W(𝛼0, 𝜆0) is the Weibull random variable with parameters 𝛼0 = 1.6, 𝜆0 = 1
16 , and𝐶 ∼ Ge(𝑝1),

𝑝1 = 0.0574. In this model, P(𝑋 > 𝐶) = 0.5, so that the censoring level is 50% when estimating 𝐹.
The second model is the Weibull-Geometric-25% (W-G-25%) defined by

Model W-G-25%: 𝑋 ∼ W(𝛼0, 𝜆0), 𝐶 ∼ Ge(𝑝2),
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Table 3. Integrated squared error for ℎ̂𝑐𝑣𝑛 and ℎ̂0; mean, median and standard deviation
over 100 replications.

𝐶𝑉𝑁 results

𝐼𝑆𝐸 ( ℎ̂𝑐𝑣𝑛) 𝐼𝑆𝐸 ( ℎ̂0)

Model 𝑛 Mean Median Standard
deviation Mean Median Standard

deviation

W-G-50% 200 0.05218 0.03602 0.05558 0.04490 0.03428 0.05148
400 0.02294 0.01731 0.01850 0.02038 0.01525 0.01710
800 0.01049 0.00857 0.00804 0.00953 0.00776 0.00752

W-G-25% 200 0.02925 0.02215 0.02460 0.02579 0.01837 0.02330
400 0.01502 0.01091 0.01328 0.01334 0.00842 0.01248
800 0.00728 0.00484 0.00611 0.00643 0.00432 0.00562

Table 4. Integrated squared error for ℎ̂𝑐𝑣 and ℎ̂0; mean, median and standard deviation
over 100 replications.

𝐶𝑉 results

𝐼𝑆𝐸 ( ℎ̂𝑐𝑣) 𝐼𝑆𝐸 ( ℎ̂0)

Model 𝑛 Mean Median Standard
deviation Mean Median Standard

deviation

W-G-50% 200 0.05191 0.03648 0.05515 0.04490 0.03428 0.05148
400 0.02295 0.01678 0.01809 0.02038 0.01525 0.01710
800 0.01052 0.00856 0.00780 0.00953 0.00776 0.00752

W-G-25% 200 0.02931 0.02203 0.02470 0.02579 0.01837 0.02330
400 0.01512 0.01101 0.01331 0.01334 0.00842 0.01248
800 0.00734 0.00488 0.00621 0.00643 0.00432 0.00562

where W(𝛼0, 𝜆0) is the Weibull random variable with parameters 𝛼0 = 1.6, 𝜆0 = 1
16 , and𝐶 ∼ Ge(𝑝2),

𝑝2 = 0.0219. With this choice of the parameters, the censoring rate when estimating 𝐹 is 25%.
Tables 3 and 4 summarise the results of the computations done to assess the performance of the

criterion𝐶𝑉𝑁 and𝐶𝑉 when the censoring distribution is geometric. The quantities ℎ̂0, ℎ̂𝑐𝑣𝑛 and ℎ̂𝑐𝑣
have the same meaning as in Subsection 4.1. These tables show that both methods work well even
when 𝜏 = +∞. In contrast with Tables 1 and 2 the results improve when the censoring rate decreases.

4.3 Execution time
In the two subsections above, we have compared the 𝐶𝑉 and 𝐶𝑉𝑁 criteria statistically. To be a bit
more precise, if ℎ̂0 is the minimiser of 𝐼𝑆𝐸 (𝐹ℎ), we have compared their performances in estimating
𝐼𝑆𝐸 (𝐹ℎ̂0

). In this subsection we will examine if one bandwidth selector is computationally more
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Table 5. Ratios of execution time for heavily
censored models.

Model 𝑛 Time(𝐶𝑉)/Time(𝐶𝑉𝑁)

W-T-50% 200 2.457521
400 2.407998
800 2.661548

W-G-50% 200 2.117334
400 2.160770
800 2.353984

appealing than the other. We have

𝐶𝑉 (𝐹ℎ) = 1
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 and 𝐶𝑉𝑁 (𝐹ℎ) = 1

𝑛

𝑛∑︁
𝑖=1
𝑉𝑖 ,

with

𝑈𝑖 =
∫ 𝑇(𝑛)

0

(
𝐹−𝑖
ℎ (𝑥) − Δ𝑖

1 − 𝐺𝑛 (𝑇−
𝑖 )

1[𝑇𝑖≤𝑥 ]

)2
d𝑥,

𝑉𝑖 =
Δ𝑖

1 − 𝐺𝑛 (𝑇−
𝑖 )

∫ 𝑇(𝑛)

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹𝐾𝑀𝑛 (𝑇(𝑛) )1[𝑇𝑖≤𝑥 ]

)2
d𝑥.

From the second equation above, it is obvious that 𝑉𝑖 = 0 if Δ𝑖 = 0. Thus, when Δ𝑖 = 0, there is
no need to compute the integral contained in the formula of 𝑉𝑖 . On the other hand, the integral in
𝑈𝑖 has to be computed whatever the value of Δ𝑖 = 0. This observation suggest that 𝐶𝑉𝑁 might be
computationally superior to 𝐶𝑉. We have checked this assumption on models W-T-50% and W-G-
60%. We have computed the time it takes to calculate the results contained in Tables 1-4 for the
models W-T-50% and W-G-50%. In these models, censoring is heavy, thus 𝐶𝑉𝑁 is more likely to
outperform 𝐶𝑉 in terms of computation time. Because a faster computer takes less time to execute a
program compared to a slower one, we show below not the time taken by each method, but the time
taken by 𝐶𝑉 over the time taken by 𝐶𝑉𝑁. We believe this ratio to be less computer dependent. In
Table 5 the results regarding computation time are shown.

5. Conclusions
All our computations in this paper were done when the censoring variable is discrete. However, 𝐶𝑉
and 𝐶𝑉𝑁 are devised to work when the censoring random variable is completely arbitrary. To the
best of our knowledge 𝐶𝑉 and 𝐶𝑉𝑁 are the only methods which can be used to select the bandwidth
of the smooth Kaplan–Meier estimator when the censoring variable is discontinuous and there exists
no paper containing simulations (on this problem) with discontinuous censoring variable.

It is clear from Tables 1 and 2 that 𝐶𝑉𝑁 is superior to 𝐶𝑉 on the models studied (truncation
models). When the censoring random variable is geometric the situation is less clear. For the
model W-G-50%, the 𝐶𝑉 method obtains better results than 𝐶𝑉𝑁. For the model W-G-25%, 𝐶𝑉𝑁
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is superior to 𝐶𝑉. It is important to point out that the example analysed, that is 𝑋 ∼ W(𝛼, 𝜆) (with
𝛼 = 1.6 and 𝜆 = 1

16 ) was chosen so as to make 𝐶𝑉𝑁 outperform 𝐶𝑉 when the censoring mechanism
is truncation. In fact, experimentally we have found that for any fixed 𝛼, if one chooses 𝜆 small
enough, 𝐶𝑉𝑁 would outperform 𝐶𝑉 when the censoring variable is constant. The main thing to
point out from this simulation study is that no method is superior to the other one on all models.

The 𝐶𝑉𝑁 method has a huge advantage over 𝐶𝑉 (particularly when censoring is heavy), it is
computationally more efficient. When Δ𝑖 = 0, there is no need to compute the integral involving 𝐹−𝑖

ℎ

in the 𝐶𝑉𝑁 score function, while in 𝐶𝑉 one has to. The results presented in Table 5 show that 𝐶𝑉𝑁
is computationally superior to 𝐶𝑉 when the observations are heavily censored.

A. Proofs
A.1 Proof of Equation (3)
In this proof we are going to use the following equalities proved in Youndjé (2016):

E [Δ | 𝑋] = 1 − 𝐺 (𝑋−),

E
[
Δ1[𝑇≤𝑢]

1 − 𝐺 (𝑇−)

]
=

{
𝐹 (𝑢), for 0 ≤ 𝑢 < 𝜏
𝐹 (𝜏) for 𝑢 ≥ 𝜏.

Set

𝐸𝑖 =
Δ𝑖

1 − 𝐺 (𝑇−
𝑖 )

∫ 𝜏

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝜏)1[𝑇𝑖≤𝑥 ]

)2 d𝑥,

𝑇𝑖 =
∫ 𝜏

0

(
𝐹2 (𝜏)1[𝑋𝑖≤𝑥 ] − 𝐹 (𝜏)𝐹2 (𝑥)

)
d𝑥,

𝑍𝑖 =
Δ𝑖

1 − 𝐺 (𝑇−
𝑖 )
.

We have

𝑍𝑖 =
Δ𝑖1[𝑇𝑖≤𝜏 ]
1 − 𝐺 (𝑇−

𝑖 )
=

Δ𝑖1[𝑋𝑖≤𝜏 ]
1 − 𝐺 (𝑋−

𝑖 )
.

It follows that

E [𝑍𝑖 | 𝑋𝑖] =
1[𝑋𝑖≤𝜏 ]

1 − 𝐺 (𝑋−
𝑖 )

E [Δ𝑖 | 𝑋𝑖] = 1[𝑋𝑖≤𝜏 ] . (8)

To continue, let

𝐸 𝑖 = E [𝐸𝑖 | (𝑋1,Δ1), . . . , (𝑋𝑖−1,Δ𝑖−1), 𝑋𝑖 , (𝑋𝑖+1,Δ𝑖+1), . . . , (𝑋𝑛,Δ𝑛)] .
Observe that

𝐸𝑖 =
Δ𝑖

1 − 𝐺 (𝑋−
𝑖 )

∫ 𝜏

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝜏)1[𝑇𝑖≤𝑥 ]

)2 d𝑥.

It follows from (8) that

𝐸 𝑖 =
E [Δ𝑖 | 𝑋𝑖]
1 − 𝐺 (𝑋−

𝑖 )
∫ 𝜏

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝜏)1[𝑇𝑖≤𝑥 ]

)2 d𝑥 = 1[𝑋𝑖≤𝜏 ]
∫ 𝜏

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝜏)1[𝑇𝑖≤𝑥 ]

)2 d𝑥.
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We have

𝐸 𝑖 − 𝑇𝑖 =
∫ 𝜏

0

[ (
𝐹−𝑖
ℎ (𝑥))2

1[𝑋𝑖≤𝜏 ] − 2𝐹−𝑖
ℎ (𝑥)𝐹 (𝜏)1[𝑋𝑖≤𝜏 ]1[𝑋𝑖≤𝑥 ]

+ 𝐹2 (𝜏)1[𝑋𝑖≤𝑥 ]1[𝑋𝑖≤𝜏 ] − 𝐹2 (𝜏)1[𝑋𝑖≤𝑥 ] + 𝐹 (𝜏)𝐹2 (𝑥)] d𝑥

=
∫ 𝜏

0

[ (
𝐹−𝑖
ℎ (𝑥))2

1[𝑋𝑖≤𝜏 ] − 2𝐹−𝑖
ℎ (𝑥)𝐹 (𝜏)1[𝑋𝑖≤𝑥 ] + 𝐹 (𝜏)𝐹2 (𝑥)

]
d𝑥.

It follows that

E(𝐸𝑖 − 𝑇𝑖) = E(𝐸𝑖) − E(𝑇𝑖)
= E(𝐸 𝑖) − E(𝑇𝑖)
= E(𝐸 𝑖 − 𝑇𝑖)

=
∫ 𝜏

0

[
𝐹 (𝜏)E (

𝐹−𝑖
ℎ (𝑥))2 − 2𝐹 (𝜏)E (

𝐹−𝑖
ℎ (𝑥)) 𝐹 (𝑥) + 𝐹 (𝜏)𝐹2 (𝑥)

]
d𝑥

=
∫ 𝜏

0
𝐹 (𝜏)E (

𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥.

Hence we have

E(𝐷 (ℎ)) = E(𝐶𝑉𝑁∗ (ℎ) − 𝑇)

= E

(
1
𝑛

𝑛∑︁
𝑖=1

(𝐸𝑖 − 𝑇𝑖)
)

=
1
𝑛

𝑛∑︁
𝑖=1

∫ 𝜏

0
𝐹 (𝜏)E (

𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥

=
∫ 𝜏

0
𝐹 (𝜏)E (

𝐹−𝑛
ℎ (𝑥) − 𝐹 (𝑥))2 d𝑥.

This last equality is the desired result.

A.2 Proof of Theorem 1 (ii)
We have

𝐶𝑉𝑁1(ℎ) − 𝐶𝑉𝑁1∗ (ℎ)

=
1
𝑛

𝑛∑︁
𝑖=1

(
Δ𝑖

1 − 𝐺𝑛 (𝑇−
𝑖 )

− Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )

)
1[𝑇𝑖≤𝑅]

∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥

=
1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
(𝐺𝑛 (𝑇−

𝑖 ) − 𝐺 (𝑇−
𝑖 ))

1 − 𝐺𝑛 (𝑇−
𝑖 )

1[𝑇𝑖≤𝑅]
∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥.

It follows that

|𝐶𝑉𝑁1(ℎ) − 𝐶𝑉𝑁1∗ (ℎ) | = 1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
|𝐺𝑛 (𝑇−

𝑖 ) − 𝐺 (𝑇−
𝑖 ) |

1 − 𝐺𝑛 (𝑅) 1[𝑇𝑖≤𝑅]

×
∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥.
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Since 𝐺𝑛 converges uniformly to 𝐺 on [0, 𝜏] (see Stute and Wang, 1993), there exists an 𝑛0 ∈ N,
such that 𝑛 ≥ 𝑛0 implies

|𝐶𝑉𝑁1(ℎ) − 𝐶𝑉𝑁1∗ (ℎ) | a.s.≤ 2
𝛾

1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
|𝐺𝑛 (𝑇−

𝑖 ) − 𝐺 (𝑇−
𝑖 ) |1[𝑇𝑖≤𝑅]

×
∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥,

where 𝛾 = 1 − 𝐺 (𝑅). Therefore we have

|𝐶𝑉𝑁1(ℎ) − 𝐶𝑉𝑁1∗ (ℎ) |
a.s.≤ 2

𝛾

1
𝑛

𝑛∑︁
𝑖=1

Δ𝑖
1 − 𝐺 (𝑇−

𝑖 )
1[𝑇𝑖≤𝑅]

∫ 𝑅

0

(
𝐹−𝑖
ℎ (𝑥) − 𝐹 (𝑅)1[𝑇𝑖≤𝑥 ]

)2 d𝑥 sup
0≤𝑢≤𝑅

|𝐺𝑛 (𝑢) − 𝐺 (𝑢) |

= 𝑜(𝐶𝑉𝑁1∗ (ℎ)).
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