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EXAMPLES OF SMOOTH SURFACES IN P3
WHICH ARE ULRICH-WILD

GIANFRANCO CASNATI

ABSTRACT. Let F C P? be a smooth surface of degree 3 < d < 9 whose
equation can be expressed as either the determinant of a d X d matrix of
linear forms, or the pfaffian of a (2d) x (2d) matrix of linear forms. In
this paper we show that F' supports families of dimension p of pairwise
non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p.

1. Introduction and notation

We work on an algebraically closed field k of characteristic 0 and PV will
denote the projective space over k of dimension N.

Let FF C PV be a subvariety of dimension n and set Or(h) := O ® Op~(1).
We recall that the variety F is called arithmetically Cohen—Macaulay (aCM for
short) if

W (F, Zppx (th)) =0, i=1,...,n, t€Z.

Definition 1.1. A vector bundle £ on F is called aCM if h(F,E(th)) = 0 for
i=1,....,n—1and t € Z.

When F' = PV it is well known that aCM bundles are exactly direct sums
of line bundles: this is the so called Horrocks’ theorem (see [21]: for a modern
treatment see also [26]).

The property of being aCM is invariant up to shifting degrees. For this
reason we restrict our attention to initialized bundles, i.e., bundles £ such
that hO(F,E(—h)) = 0 and h°(F,E) # 0. Moreover, we are also interested
to indecomposable bundles, i.e., bundles which do not split in a direct sum of
bundles of lower rank.

D. Eisenbud and J. Herzog in [15] proved that the aCM varieties supporting
only finitely many aCM bundles are linear spaces, smooth quadrics, rational
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normal curves, the Veronese surface, up to three reduced points and the smooth
cubic scrolls in P4

On the opposite side M. Casanellas and R. Hartshorne proved in [7] and [8]
that a smooth cubic surface is endowed with families of arbitrary dimension of
non-isomorphic, indecomposable aCM bundles.

Thus a natural way to classify varieties could be according to the complexity
of the category of aCM bundles that the varieties support. Inspired by an
analogous classification for k-algebras of finite type, T. Drozd and G. M. Greuel
proposed in [14] a classification of aCM varieties as

o of finite representation type if they are endowed with only a finite num-
ber of initialized, indecomposable, aCM bundles;

o of tame representation type if they are endowed with either an infinite
discrete set of initialized, indecomposable, aCM bundles or, for each r,
the initialized, indecomposable, aCM bundles of rank r form a finite
number of families of dimension at most n;

o of wild representation type if they are endowed with families of dimen-
sion p of pairwise non-isomorphic initialized, indecomposable, aCM
bundles for arbitrary large p.

As pointed out in [14] the trichotomy of representation types is exhaustive
for curves due to the classical results of Grothendieck and M. F. Atiyah (see [1]).
A priori it is not clear if the same holds also for varieties of dimension n > 2.
Indeed this is a non-trivial question which has been answered positively by D.
Faenzi and J. Pons—Llopis in [17] under suitable restrictions on F. Indeed, they
proved that all the aCM varieties of positive dimension which are not cones are
of wild representation type except

e the aforementioned varieties of finite representation type,
e clliptic curves, nodal rational curves and every smooth, rational, quar-
tic scroll in P4,

If £ is an aCM vector bundle of rank r on the variety F C PV of degree d,
then it can be viewed as a sheaf on PV, thus

I.(&) .= @ HO(F,E(th))

teZ

has a natural structure of module over the ring S := k[zo,...,zn].

As pointed out by B. Ulrich in [28], the minimal number of generators of
the S-module I',.(€) is at most rd. The bundles for which such a maximum is
attained are worth of interest.

Definition 1.2. We say that & is Ulrich if it is initialized, aCM and h° (F, 5) =
rd.

If € is Ulrich, then it is globally generated by definition. More in general
Ulrich bundles on F' of rank r are exactly the bundles £ on F having a linear
minimal free resolution over PV (see [8]). E.g. for N = 3 (which is the case we
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are interested in)
0— Ops(—1)% — O — € — 0.

The problem of the existence of Ulrich bundles on a fixed variety is a
changelling problem (see e.g. the aforementioned [8] and also [3], [11], [12],
[16], [24]). A particularly important result for us is due to J. Backelin, J. Her-
zog and H. Sanders, who proved in [2] that each hypersurface supports Ulrich
bundles.

It is thus natural to ask whether each variety of wild representation type also
supports families of dimension p of pairwise non-isomorphic, indecomposable,
Ulrich bundles for arbitrary large p. Varieties enjoying such a property will
be briefly called Ulrich-wild. In particular Ulrich-wildness is known for the
smooth cubic surface (see the aforementioned [8]), all the Segre products but
P! x P! (see [13]), del Pezzo surfaces of degree at least 3 (see e.g. [9], [25], [27]).

In order to complete the picture, the author has been informed that J. O.
Kleppe and R. M. Mir6-Roig proved the Ulrich—wildness of linear determinan-
tal varieties in the unpublished paper [23] as a particular case of a more general
study.

In [17], the authors prove the following useful result (see Theorem 1 and
Corollary 1). Its proof is based on the construction of Ulrich bundles of ar-
bitrarily high rank as extensions of Ulrich bundles of lower degree, as in [25],
[27].

Lemma 1.3. Let F C PN be a closed subscheme. If A and B are simple Ulrich
bundles on F satisfying h®(F,A@ BY) = h°(F,B® AY) = 0 and h'(F, A ®
BY) > 3, then X is Ulrich—wild.

We will prove the following result in Sections 2 and 3 using the above lemma
as the main ingredient.

Theorem 1.4. Let F C P3 be a smooth surface of degree d > 3.

(1) If the equation of F is the determinant of a d x d matriz of linear forms
(we briefly say in this case that F is linear determinantal), then it is
Ulrich—wild.

(2) If the equation of F is the pfaffian of a (2d) x (2d) matriz of linear
forms (we briefly say in this case that F is linear pfaffian) and d <9,
then it is Ulrich—wild.

In both the cases, the first step of the proof is to check that F' supports at
least two non-isomorphic, simple, Ulrich bundles of low rank satisfying some
technical conditions. Then we apply the aforementioned result from [17] which
guarantees the Ulrich—-wildness of F'.

The existence of Ulrich bundles of rank 1 and 2 on surfaces is well-understood
(see [6]: see also [3], [16], [24]). Very recently, A. Beauville proved in [4] and [5]
the existence of rank 2 Ulrich bundles on each abelian, bielliptic and Enriques
surface.
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It is obvious that line bundles are simple. The main point of our proof for
linear determinantal surfaces is that if an Ulrich line bundle £ satisfying the
needed conditions actually exists, then there is also another Ulrich line bundle
not isomorphic to £. We recall these easy facts in Section 2.

The existence of simple Ulrich bundles of rank 2 satisfying the needed con-
ditions on a surface F' is a little bit less evident: we prove it in Section 3 by
dealing with the stability of certain Ulrich bundles whose existence is known
(e.g. see the aforementioned papers [3], [16]).

Notice that each linear determinantal surface is trivially linear pfaffian, but
the converse is not true. Indeed the general surface of degree d > 4 is not linear
determinantal, but it is linear pfaffian if d < 15, (see Proposition 7.6 of [3]). It
is classically known that each cubic surface is linear determinantal (see [18]).
Moreover, E. Coskun, R. S. Kulkarni and Y. Mustopa proved that each quartic
surface is linear pfaffian (see Corollary 1.2 of [10]).

Hence the above results imply the following consequences.

Corollary 1.5. If F C P3 is a smooth surface of degree d = 3,4, then it is
Ulrich—wild.

As we already explained above the proof of the Ulrich—wildness for cubic
surfaces is already known. Indeed in [8] the authors proved it by constructing
explicit families of Ulrich bundles of arbitrarily large dimension.

Corollary 1.6. If F C P3? is a general smooth surface of degree 5 < d < 9,
then it is Ulrich—wild.

The author would like to thank F. Malaspina for several helpful discussions.
Particular thanks go to F. Catanese for having suggested to the author some
important and helpful properties of Ulrich line bundles on a smooth surface
in P3. Finally, the author would like to thank the referee for her/his ques-
tions, remarks and suggestions which have considerably improved the whole
exposition.

1.1. Notation

In what follows F C P3 will denote a smooth surface of degree d and h
the class of the hyperplane section of F. We have wp = Op((d — 4)h) and
h'(F,Op(th)) =0 for t € Z.

Recall that for each vector bundle F of rank r on F’ we have the following
the Riemann—Roch formula

L) xF)=r (1+ (d3 1)) e )

For all the other notation we refer to [20].
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2. Linear determinantal surfaces

Let F C IP3 be a linear determinantal smooth surface of degree d, i.e., there
is a d x d matrix ® with linear entries such that F' = { det(®) =0 } C P3. We
recall the following results.

Lemma 2.1. Let F C P? be a smooth surface of degree d. Then F is linear
determinantal if and only if it is endowed with an Ulrich line bundle L.

Proof. Assume that F' supports an Ulrich line bundle £. Thus £ is initialized
by definition, hence h°(F, £(—h)) = 0. Moreover, Grothendieck duality on F
(see Paragraph (6.3) of [3]) yields that M := £Y((d — 1)h) is Ulrich too. In
particular it is initialized, hence

12 (F, £(=2h)) = 1°(F, £¥((d — 2)h)) = h°(F, M(~h)) = 0.

It follows that the hypothesis of Corollary 1.12(a) of [3] are satisfied, hence F' is
linear determinantal. The converse also follows from the same aforementioned
corollary. (|

Lemma 2.2. Let F C P3? be a smooth surface of degree d. The line bundle £
on F is Ulrich if and only if L = Op(A), where A C F is a smooth projectively
normal curve in P3 with degree and genus given by

1 1
(2.1) §:= §d(d_1)’ = 6<d_2)<d_3)<2d+1)'
Proof. See Proposition 6.2 of [3] and the previous lemma. O

We are now ready to prove Theorem 1.4 in the particular case of linear
determinantal smooth surfaces.

2.1. Proof of (1) of Theorem 1.4

If F' is linear determinantal, then it is endowed with an Ulrich line bundle
Op(A) as in Lemma 2.1. Adjunction on F and the equalities (2.1) yield

3

It is easy to check that the line bundle Op((d — 1)h — A) is Ulrich too (see
[3], Paragraph (6.3)). We have

A? # ((d—1)h—A)-A

due to the equality (2.2), thus Op(A) 2 Op((d—1)h—A), ie., Op(2A — (d —
1)h) 2 Op. Since Op(h) is ample and (2A — (d —1)h) - h = 0, we deduce that

K (F,0p(2A — (d — 1)h)) = 0.

(2.2) A? =21 —2—(d—4)§ = (d).

The Riemann—Roch theorem on F' thus returns

h' (F,0p(2A — (d — 1)h)) — B*(F,0p(2A — (d — 1)h)) = d* — 2d.
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It follows that w := h!(F,Op(2A — (d — 1)h)) > 3 when d > 3. Since line
bundles are trivially simple and both Op(A) and Op((d —1)h — A) are Ulrich,
it follows that F' is Ulrich—wild, by Lemma 1.3.

Remark 2.3. Notice that each cubic surface is linear determinantal. Indeed for
d = 3 the curve A in Lemma 2.1 is a rational cubic due to Lemma 2.2. Tt is
easy to check that each smooth cubic surface contains 72 linear systems whose
general element is a rational cubic curve.

When d > 4, the general surface F' does not support Ulrich line bundles
Op(A). Indeed the Noether—Lefschetz theorem (see [19]) implies that the locus
inside the projective space associated to H° (]P’3, Ops (d)) of surfaces F' with
Picard group generated by Op(h) is the complement of a countable union of
proper closed subsets. It follows that every curve on a general surface F of
degree d > 4 is the complete intersection of F' with another surface: looking
at the first equality (2.1), we deduce that A is cut out on F by a surface of
degree (d —1)/2. The adjunction formula for A in P? and the second equality
(2.1) would force the equality

%(Sd?’ —12d* +9d + 8) = %(d —2)(d —3)(2d + 1)
whose unique integral solutions are 0 and +1, a contradiction.

Assume that F' := {f = 0} supports an Ulrich line bundle Op(A). As we
noticed above, it also supports the Ulrich line bundle Op((d — 1)h — A) 2
Op(A). Square matrices of order d with linear entries are parameterized by an
affine space M of dimension 4d2. The group GLg4 x GL4 acts on such an M by
left and right multiplication.

On the one hand, the set My C M of classes of matrices ® such that f =
det(®) is closed, hence it has finitely many irreducible components. On the
other hand, the irregularity of F' is 0, thus Pic(F) is discrete.

It follows that the natural morphism m: My — Pic(F) associating to the
class containing ® the cokernel of the morphism ¢: Ops(—1)%¢ — O&d with
matrix ® is locally constant on M. Thus m is constant on each irreducible
component, hence im(m) is finite. Since im(m) is the set of Ulrich line bun-
dles on F', we conclude that these bundles are finitely many or, equivalently,
that there is a finite even number of matrices ® up to the natural action of
GL4 x GLg4 such that f = det(®).

3. Pfaffian surfaces

Let FF C P2 be a linear pfaffian smooth surface of degree d, i.e., there is
a (2d) x (2d) skew-symmetric matrix ¢ with linear entries such that F' =
{ pf(®) =0 } C P3. We have the following result.

Lemma 3.1. Let F C P2 be a smooth surface of degree d. Then F is linear
pfaffian if and only if it is endowed with an Ulrich rank 2 vector bundle & with
(&) =m:=(d—-1)h.
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Proof. If there is an Ulrich rank 2 vector bundle € with ¢;(€) = 1 := (d—1)h,
then F is linear pfaffian by Corollary 2.4 of [3].

Conversely let F' = { pf(®) =0 } for a suitable (2d) x (2d) skew-symmetric
matrix ® with linear entries. Then Theorem B of [3] implies that the cokernel £
of the morphism ¢: Ops(—1)%2¢ — (9;,%2(1 having matrix ® is aCM and ¢;(€) =
~v1. Moreover it is easy to check that it is also initialized and h° (F , 5) = 2d,
thus £ is actually Ulrich.

Computing the above formula for an Ulrich bundle £ of rank 2 on F' (so that
X(€) = 2d) with ¢;(€) = 1, we obtain that

(3.1) () = 72 = %d(d— 1)(2d—1).

We recall now some facts about the notions of stability and p-stability of
bundles. The slope p(F) and the reduced Hilbert polynomial pr(t) of F of a
bundle on F' are

w(F) = cr(F)h/rk(F),  pr(t) =: x(F(th))/rk(F).
The bundle £ is p-semistable if for all subsheaves G with 0 < rk(G) < rk(€)

1(G) < p(é),

and p-stable if the inequality is always strict.
The bundle £ is called semistable if for G as above

pg(t) < pe(t),

and stable if again the inequality is always strict. The following chain of im-
plications is well-known.

€ is u-stable = £ is stable = & is semistable = & is p-semistable.

The following remark will be helpful.

Remark 3.2. If £ is Ulrich, then it is semistable (hence p-semistable) and it is
stable if and only if it is p-stable (see Theorem 2.9 of [8]).

If £ is a vector bundle of rank 2 with reduced Hilbert polynomial p(t),
then there exists the coarse moduli space M3#(p) parameterizing S-equivalence
classes of semistable rank 2 bundles on F' with reduced Hilbert polynomial p(t)
(see Section 1.5 of [22] for details about S-equivalence of semistable sheaves).
We will denote by M3.(p) the open locus inside M%:(p) of stable bundles.

The scheme M35 (p) is the disjoint union of open and closed subsets
M32(2; ¢1, c2) whose points represent S-equivalence classes of semistable rank
2 bundles with fixed Chern classes ¢; and c¢o. Similarly M3 (p) is the disjoint
union of open and closed subsets M$,(2; ¢y, ¢2).

As in Section 2 of [8] we can define open loci /\/lif’U(Q; c1,02) C M35(25¢1,¢2)
and M?U(Q;Cl,CQ) C M&5.(2;¢1,c2) parameterizing S-equivalence classes of
semistable and stable Ulrich bundles respectively.
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Proposition 3.3. Let ' C P? be a smooth surface of degree d. If € is a bundle
of rank 2 on F with ¢1(E) = 1, then it is Ulrich and strictly semistable if and
only if it fits into an exact sequence of the form

(3.2) 0— Op(A) — & — Op((d—=1)h —A) — 0,

where A C F is a smooth projectively normal curve in P3 with degree 6 and
genus m given by the equalities (2.1).

Proof. If £ is Ulrich and strictly semistable, then it is certainly u-semistable.
It follows the existence of an exact sequence

0 —=F —=E&—G—0

for suitable coherent proper subsheaves F and G with u(F) = u(€) = A-h and
G torsion-free.

Due to Theorem 2.9 of [8], it follows that both F and G are Ulrich line
bundles. In particular F = Op(A) and G = Op((d — 1)h — A) for a suitable
smooth and projectively normal curve A of degree ¢ and genus 7 given by the
equalities (2.1) (see Lemma 2.2).

Conversely let £ be a bundle fitting into the sequence (3.2): we know from
Lemma 2.2 that O (A) is Ulrich. As pointed out in Paragraph (6.3) of [3], by
Grothendieck duality we deduce that Op((d — 1)h — A) is Ulrich too.

Taking the cohomology of the sequence (3.2) suitably twisted, very easy com-
putations show that the bundle £ is Ulrich, hence semistable. Since u(Or(A))
= u(€), it follows that £ cannot be p-stable, hence stable in view of Remark
3.2. (I

Notice that, once the divisor A is fixed, bundles fitting in the sequence (3.2)
are parameterized by the projective space P(V'), where V := H! (F, Or((d —
1)h— 2A)): thus the computation made in Paragraph 2.1 shows that this space
has dimension w > d? — 2d — 1.

It is interesting to better understand points represented by semistable Ulrich
bundles inside M}S’U(2; Y1, Y2)-

Corollary 3.4. Let F C P23 be a smooth surface of degree d. The points in
M;S’U(Q;'yl,'yg) \ M;’U(Q;’yl,'yg) are in one-to-one correspondence with the
set of unordered pairs {Op(A),Op((d — 1)h — A)} where A C F is a smooth
projectively normal curve in P3 with degree § and genus T given by the equalities
(2.1).

Proof. Taking into account Proposition 3.3 we know that £ represents an S-
equivalence class in M;S’U(Q; ",72) \M;U (2;71,72) if and only if it fits into
the sequence (3.2) for some divisor A on F which is a smooth projectively
normal curve in P3 with degree § and genus 7 given by equalities (2.1).
Notice that 0 C Op(A) C £ is the Jordan—Holder filtration for £. Indeed

E/OR(A) 2 Op((d—1)h—A), pe(t) = pop(a)(t) = Poy((d-1)h—na)(t).
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We conclude that gr(€) =2 Op(A)@Or((d—1)h—A). Hence all the bundles fit-
ting in the aforementioned sequence (3.2) are S-equivalent and they correspond
to the same point in M?’U(2;71,72). If A is another divisor on F enjoying
the same properties as A, it is easy to check that

Or(A) & Op((d— 1)h — A) = Op(B) & Op((d - 1)h — &)

if and only if A is linearly equivalent to either A, or (d — 1)h — A because they
are all curves of degree §. O

We prove Theorem 1.4 for linear pfaffian smooth surfaces.
3.1. Proof of (2) of Theorem 1.4

The statement obviously follows from Paragraph 2.1 if F' is linear deter-
minantal: thus we will assume that F' is not linear determinantal from now
on.

It follows that F does not support any Ulrich line bundle (by Lemma 2.1),
but it certainly supports an Ulrich bundle of rank 2 with Chern classes v;
and v2 (by Lemma 3.1). Proposition 3.3 and the equality (3.1) imply that
each such a bundle is necessarily stable, thus simple and indecomposable. As
pointed out in [3], Lemma 7.7 and Remark 7.8, we know that each component
of the moduli space M%(2;v1,72) containing an Ulrich bundle is generically
smooth of dimension at least (see Theorem 4.5.8 of [22])

1
4y =97 = 3x(OF) = —d(d® — 18d + 35)

which is greater than d in the range 3 < d < 15.

Since M}’U(Q; Y1,72) is open inside M3%.(2;7v1,72), it follows that there are
at least two non-isomorphic stable Ulrich bundles A and B of rank 2 on each
pfaffian surface of degree 3 < d < 9. The reduced Hilbert polynomials of 4
and B coincide, because they depend only on the Chern classes 71,72 (more
generally the reduced Hilbert polynomials of an Ulrich bundle F on F' is

pﬂwznfwmﬁmnde;ﬁ;

see [8], Lemma 2.6 for the computation of the standard Hilbert polynomial).
Since A and B are also non-isomorphic and stable, it follows from Proposition
1.2.7 of [22] that

W (F,A®BY) =h’(F,B® AY) =0,
thus
W (F,A®BY) =h*(F,A®BY) = x(A®B") > —x(A® BY).
The above inequality, equality (1.1) with F := A ® BY and the equalities
tk(A®@BY) =4, c1(A®BY) =0 and co(A® BY) = 4y5 — 77 imply

1
W' (F,A® BY) > 4y, — 77 — 4x(OF) = —gd(dQ —12d+23) >3
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which we already know is at least 3 in the range 4 < d < 9. We conclude that
F' is Ulrich—wild, again by Lemma 1.3.

Remark 3.5. Essentially the same argument used in the above proof and the
results proved in [4] and [5] allow to prove the Ulrich-wildness of Abelian,
bielliptic and Enriques surfaces.
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