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SUMMARY

Bisulfite DNA methylation sequencing (Methyl-Seq) becomes one of the most important technologies
to study methylation level difference at a genome-wide scale. Due to the complexity and large scale of
methyl-Seq data, power calculation and study design method have not been developed. Here, we propose
a “MethylSeqDesign” framework for power calculation and study design of Methyl-Seq experiments by
utilizing information from pilot data. Differential methylation analysis is based on a beta-binomial model.
Power calculation is achieved using mixture model fitting of p-values from pilot data and a parametric
bootstrap procedure. To circumvent the issue of existing tens of millions of methylation sites, we focus
on the inference of pre-specified targeted regions. The performance of the method was evaluated with
simulations. Two real examples are analyzed to illustrate our method. An R package “MethylSeqDesign”
to implement this method is publicly available.
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1. INTRODUCTION

DNA methylation is a chemical modification of DNA nucleotides when a methyl-group (CH3) is attached
at the 5th position of cytosine (5mC). It is one of the best characterized and the most studied epigenetic
markers, which has shown to control gene expression in both normal cell development and abnormal
biological process such as cancer. Particularly in gene promoter regions, hyper-methylation is shown
closely related to silencing gene expressions. In mammals, such as human, DNA methylation happens
almost exclusively at cytosine site that follows with guanine known as CpG site. There are tens of thousands
of regions with a high frequency of CpG sites in the whole genome that are classified as CpG islands,
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Fig. 1. (A) An illustration of sodium bisulfite modification. (B) Comparison of three elements between single
hypothesis testing and Methyl-Seq genome-wide screening.

which typically exist at or near the transcription starting sites of genes. DNA methylation process has
been found to link to many important biological processes, such as genomic imprinting, X-chromosome
inactivation, repression of repetitive elements, aging, and carcinogenesis (Li and others, 1993; Paulsen
and Ferguson-Smith, 2001; Robertson, 2005). In cancer studies, aberrant DNA methylation changes are
considered as one of the leading factors in developing tumors (Esteller, 2005; Baylin, 2005; Delpu and
others, 2013; Licht, 2015).

Over the past couple decades, sodium bisulfite treatment has become widely used tool to study DNA
methylation at the level of single nucleotide resolution. When DNA is treated with sodium bisulfite, the
unmethylated cytosines are converted to uracil and amplified by polymerase chain reaction as thymine
while methylated cytosines remain protected from this conversion (see Figure 1(A)). The outcome of
this treatment leads to identifying methylated and unmethylated cytosines when the sequencing reads
are mapped to reference genome using special mapping pipelines such as Bismark, which consider
Thymine/Cytosine mismatch. Two major technologies have been developed to quantify the DNA methy-
lation after bisulfite conversion. One is methylation microarray, which targets on pre-selected CpG sites in
certain regions, mostly within CpG islands. The total number of targeted CpG sites is relatively small, for
example, Illumina HumanMethylation27 and HumanMethylation450 Bead chips cover only about 27K
and 480K CpG sites) compared to over 28 million CpG sites in human genome (Schumacher and oth-
ers, 2006). Another recently developed technology is coupling bisulfite conversion with next generation
sequencing (NGS) to quantitatively query the methylation status across the whole genome. Whole genome
bisulfite sequencing (WGBS) can provide accurate and quantitative estimates of the proportion of methy-
lated cells in a population at each of the tens of millions of CpG sites across genome. However, accurate
estimates of methylation level requires large number of reads to cover CpG sites of interest. Because of
unevenly distributed CpG sites across the genome, a large proportion of sequencing reads do not contain
any CpG sites, which results in high cost of WGBS. To overcome this disadvantage, reduced represen-
tation bisulfite sequencing (RRBS) (Meissner and others, 2005) was introduced to target on CpG rich
regions, relying on restriction enzyme that can ensure the capture of at least one CpG site per sequencing
read. Using RRBS, methylation levels of a portion of genome regions can be accurately obtained at much
lower cost compared to WGBS. Here, we use “Methyl-Seq” to refer to bisulfite sequencing technology
including WGBS and RRBS. Due to the popularity of Methyl-Seq and the high sequencing cost with
limited budget, sample size and power calculation methods become critical for design of such studies.

Traditional power calculation methods seek the statistical power (1 − β; β here is type II error) to
detect the difference between groups by pre-specifying effect size (θ ), type I error rate (α), and sample
size (N ). Alternatively, one can calculate the required sample size with pre-specified statistical power, θ

and α. The effect size θ is the measure of group difference that is generally obtained from a pilot study
or researchers’ belief. Usually, the type I error rate is set to be 5% and the desired statistical power is
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70–80% for a study design. This classical framework is based on performing a single hypothesis testing.
For high-throughput genome-wide experimental data, however, many hypotheses are tested simultaneously
to compare the methylation difference at the thousands of regions or millions of CpG sites. Therefore,
genome-wide power calculation should be based on appropriately controlled type I error rates. One
widely used in Genomic study is false discovery rate (FDR; Benjamini and Hochberg, 1995) and in this
article, we use FDR to control genome-wide type I error rate. In addition, Gadbury and others (2004)
introduced a useful concept, called expected discovery rate (EDR), to replace test power 1 − β from
single hypothesis to address genome-wide detection power. Since genome-wide screening considers the
whole set of differentially methylated loci/regions (DML/DMRs), specifying a single effect size θ for
power calculation is no longer valid. Alternatively, the distribution of effect sizes of DML/DMRs is
needed, which could be estimated from pilot data. Figure 1(B) shows changes of the essential elements
in genome-wide screening, compared to traditional single hypothesis testing.

There are three unique characteristics inside Methyl-Seq data that should be considered in power and
sample size calculation. First, it generates random binomial data for each sample at each CpG site. A
model with discrete distributions is more suitable for Methyl-seq data and both sampling and biological
variations should be considered. For this reason, the beta-binomial model (Dolzhenko and Smith, 2014;
Feng and others, 2014; Park and others, 2014) has gained popularity over the binomial model. Second,
for Methyl-Seq experiments, researchers have choices of different sequencing depth (R) for the design. In
other words, one can choose to process one sample per lane, which results in roughly 250 million reads in
Illumina HiSeq 2500 platform or three samples per lane each with 83 million reads for the same sequencing
cost. Therefore the power calculation problem may need to consider both N and R. Finally, there are about
28 million CpG sites in human genome. Based on the current technology, it is impossible to sequence
most CpG sites with sufficient coverage even with ultra-deep sequencing depth. As a result, many CpG
sites will have zero or almost zero reads in many subjects. We further discussed the coverage of single
CpG sites and CpG region in the Section 1 of the supplementary material available at Biostatistics online.
Therefore, it is not realistic to study the differences of methylation levels at all CpG sites. To circumvent
this difficulty, we restrict to methylation regions by aggregating methylation data across multiple CpG
sites within a particular region, such as promoter regions, for power calculation.

Many power calculation methods have been developed for RNA-Seq data, such as RNASeqPower (Hart
and others, 2013), Scotty (Busby and others, 2013), and PROPER (Wu and others, 2015). For microarray
methylation data, Tsai and Bell (2015) proposed method for study design and power calculation. To the
best of our knowledge, for Methyl-seq data, no existing power calculation method has been developed
so far in the literature. Here, we propose a statistical framework “MethylSeqDesign” for sample size
and power calculation for studies with Methyl-seq data. The “MethylSeqDesign” R package is publicly
available at https://github.com/liupeng2117/MethylSeqDesign.

The article is structured as follows. In Section 2, the statistical framework of MethylSeqDesign is
proposed. In Section 3, we present comprehensive simulations and real data applications. Section 4 is real
data application. Section 5 provides conclusion and discussion.

2. GENOME-WIDE POWER CALCULATION IN METHYL-SEQ

2.1. Notations and terminology

Consider D0={Y = (ygj)G×(n0+n1), M = (mgj)G×(n0+n1), X = (xjp)(n0+n1)×P} (1 ≤ g ≤ G, 1 ≤ j ≤ n0 + n1)
a pilot Methyl-Seq dataset, where ygj and mgj represent the methylated and total read counts for CpG
region g of subject j, respectively. Let X be a design matrix of dimension (n0 + n1) × P, which contains
case/control group information and other continuous or discrete covariates. n0 and n1 are the number of
controls and cases in the pilot data. Denote N0 and N1 the target number of controls and cases for power

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://github.com/liupeng2117/MethylSeqDesign
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calculation. Let Rj = ∑G
g=1 mgj be the total number of reads observed in subject j (a.k.a. library size).

We consider genome-wide power calculations under genome-wide type I error control using FDR = E
(number of claimed false positives/number of claimed positives). Following Gadbury and others (2004),
we use expected discovery rate, EDR = E (number of claimed true positives/number of total true positives),
as the genome-wide power. The methylation level is the proportion of methylated cells among all cells at
a particular CpG site or region. Statistical power is impacted by both sample size and sequencing depth.
Therefore, the statistical framework of MethylSeqDesign becomes to estimate the genome-wide power
̂EDR(N0, N1, R|D0) based on the pilot data (D0 with n0 controls, n1 cases, and sequencing depth R0) for
designing a future experiment with N0 controls, N1 cases, sequencing depth R, and under a prespecified
FDR level (e.g. FDR = 5%).

2.2. Three sequential steps for genome-wide Methyl-Seq power calculation

Park and Wu (2016) proposed the “DSS-general” method, a model-based method for detecting
DML/DMRs based on beta-binomial model with arcsine link function. The estimation procedure is based
on generalized least square (GLS) approach, which can significantly reduce the computation demands
compared to other beta-binomial based methods (Dolzhenko and Smith, 2014; Feng and others, 2014). In
addition, Park and Wu (2016) showed superior performance of their method in terms of DMR detection
accuracy and type I error rate control. Therefore, in this article, we will adopt Park and Wu (2016)’s
approach for our power calculation tool.

Below we propose three sequential steps in MethylSeqDesign to estimate EDR. In Step I, p-values and
effect size distribution of all methylated regions from pilot data are obtained using DSS-general. In Step II,
a beta-uniform mixture (BUM) model is applied to characterize the genome-wide p-value distribution and
to estimate the proportion of true DMRs. In Step III, a parametric bootstrapping method based on DMR
posterior probability is used to simulate and transform the genome-wide p-value distribution towards the
targeted sample size and sequencing depth. The detailed description of our method is as follows.

Step I. Differential methylation analysis on pilot data.

To account for both sampling and biological variation, denote by Ygj the methylated read count for gene
g(g = 1, 2, ..., G) in sample j(j = 1, 2, ..., (n0 + n1)), let qgj be the underlying methylation level for gene g
and sample j, Ygj ∼ bin(mgj, qgj) and qgj ∼ beta(αgj, βgj). Marginally, Ygj ∼ Beta-bin

(
mgj, πgj, φg

)
, where

πgj and φg are the mean and dispersion parameter of beta distribution, such that πgj = E(qgj) = αgj
αgj+βgj

,

φg = 1
αgj+βgj+1 and we assume φgj = φg for all j = 1, 2, ..., (n0 + n1). Here, we account for covariate effect

as,

arcsin
(
2πgj − 1

) = xjβg , (2.1)

where xj = (xj1, xj2, ..., xjp) is jth subject’s covariate, and βg = (βg1, βg2, ..., βgp)
T is a vector of p covariate

coefficients for gth CpG region.
Denote Agj = arcsin

(
2Ygj

/
mgj − 1

)
. As shown in Park and Wu (2016), the expectation of Agj can

be approximated as E
(
Agj

) ≈ arcsin
[
2E
(
Ygj

)/
mgj − 1

] = arcsin
(
2πgj − 1

) = xjβg . Furthermore,

the variance of Agj can also be also approximated as Var
(
Agj

) ≈ 1+(mgj−1)φg

mgj
, which is approximately

independent of the mean structure. Given dispersion parameter φg , the regression coefficients βg can be

estimated using GLS method, i.e. β̂g = (
X T V −1

g X
)−1

X T V −1
g A, where Vg = diag

(
1+(mgj−1)φg

mgj

)
is the

covariance matrix. The estimator of φg is given by φ̂g = (n0+n1)(σ̂2
g −1)

�j(mgj−1)
, where σ̂ 2

g = �jmgj(Agj−xj β̂
(0)
g )

n0+n1−p , β̂
(0)

g is
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the GLS estimator of βg under φ̂g = 0. The estimate of covariance structure is V̂g = diag
(

1+(mgj−1)φ̂g

mgj

)
.

Given φ̂g and V̂g , the estimator of variance of β̂g is �̂g ≡ ˆvar
(
β̂g

)
=
(

X T V̂ −1
g X

)−1
.

Hypothesis testing for H0 : CT β = 0 vs. HA : CT βg �= 0 is based on Wald statistics

Zg(C) = CT β̂g√
CT �̂gC

,

where C can be any linear combination of the covariate effects. The statistic approximately follows a
standard normal distribution under null hypothesis.

For simplicity, here we consider the study with two groups (case and control), i.e. p = 2 with intercept
and case/control effect. Let n0 = n1 = n be the number of subjects in each group in pilot data, and
N0 = N1 = N be the target number of subjects in each group. Here, we assume equal sample sizes for
control and cases in pilot and target cohorts while the method can be easily generalized for n0 �= n1 and
N0 �= N1 later (see the leukemia application in Section 4.2). Then the model becomes arcsin

(
2πgj − 1

) =
β0g + xj2β1g . In this case, C = (0, 1). Here the variance of β̂1g is

V̂ar
(
β̂1g

)
=

n0+n1∑
j=1

mgj

1+(mgj−1)φ̂

n0∑
j1=1

mgj1

1+
(

mgj1 −1
)
φ̂

×
n1∑

j2=1

mgj2

1+
(

mgj2 −1
)
φ̂

=

2n∑
j=1

mgj

1+(mgj−1)φ̂

n∑
j1=1

mgj1

1+
(

mgj1 −1
)
φ̂

×
n∑

j2=1

mgj2

1+
(

mgj2 −1
)
φ̂

=
n ×

(
1
n

n∑
j1=1

mgj1

1+
(

mgj1 −1
)
φ̂

+ 1
n

n∑
j2=1

mgj2

1+
(

mgj2 −1
)
φ̂

)
n2 × 1

n

n∑
j1=1

mgj1

1+
(

mgj1 −1
)
φ̂

× 1
n

n∑
j2=1

mgj2

1+
(

mgj2 −1
)
φ̂

= 1

n

Āg + B̄g

Āg × B̄g

= 1

n
	g ,

(2.2)

where Āg = 1
n

n∑
j1=1

mgj1

1+
(

mgj1 −1
)
φ̂

and B̄g = 1
n

n∑
j2=1

mgj2

1+
(

mgj2 −1
)
φ̂

. The Wald test statistic becomes

Zg = β̂1g√
ˆvar(β̂1g)

= β̂1g√
1
n	g

. (2.3)

where β̂1g is the GLS estimator of β1g .
Remark 1: A common over-dispersion parameter (φ̂) over all CpG regions is used which is the mean of all
tag-wise dispersion parameters (φ̂g) estimated from the procedure proposed by Park and Wu (2016). This
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is because when sample size is small, estimation of region-specific dispersion parameter is not precise,
and region-specific power calculation is very challenging.
Remark 2: One interesting finding is that the quantities Āg and B̄g in (2.2) are in the mean form that depends
on coverage and dispersion parameter given a region g. When mgj is small, it has negative correlation with
	g , while Āg and B̄g are roughly independent on mgj when mgj is large. If we assume the dispersion param-
eter stay constant, 	g is mostly impacted by sequencing depth. In Section 2.1 of the supplementary
material available at Biostatistics online, we further studied the property of the quantity 	g by
simulation.

Step II. Mixture model fitting for p-value distribution.

A BUM model (Allison and others, 2002) has been proposed to fit the p-value distribution. To be specific,
we use a beta distribution f1(p|r, s) with shape parameter r and s (0 < r < 1 ≤ s) for p-values of DMRs and
a uniform distribution f0(p) for p-values of non-DMRs. The mixture density of overall p-value distribution
is f (p|r, s, λ) = λf0(p)+(1−λ)f1(p|r, s), where λ is the proportion of non-DMRs. The constraints for r and
s is used to have a proper shape for the p-value distribution of DMRs. A proper estimation of λ is essential
in fitting a BUM model. We apply censored BUM (CBUM) proposed by Markitsis and Lai (2010) to
reduce the impact of extremely small p-values, since our main purpose is to estimate the proportion of true
DMRs for those with relatively larger p-values. The detailed comparisons of performance between BUM
and CBUM methods are included in Section 2.2 of the supplementary material available at Biostatistics
online. The shape parameters r and s can then be estimated using maximum likelihood approach using λ̂

estimated from the CBUM method.

Step III. Parametric bootstrapping based on DMR posterior probability to estimate EDR.

Theoretically, the p-value distribution for non-DMRs with zero effect size follows a uniform distribution
that does not change with the sample size. However, we expect that the p-values for those DMRs will be
more significant as sample sizes increase. Equations (2.2) and (2.3) reveal a transformation of Z-statistics
of DMRs from the pilot data with sample size n to the targeted sample size N . When the effect size β̂1g and
the common over-dispersion parameter φ̂ stay approximately unchanged, the Wald test statistics change

by a factor of
√

N
n ×

√
	g

	
′
g

(see (2.2) and item (2) below; n is the pilot sample size, N is the targeted

sample size, 	g is the quantity under pilot sequencing depth R0, and 	
′
g is the quantity under the targeted

sequencing depth R). Throughout this article, we assume sequencing depth of pilot data R0 is deep enough
and the targeted sequencing depth R does not exceed R0 (i.e. R ≤ R0). Since 	g is a function depending
on pre-estimated dispersion parameter φ̂g and count data {mgi1, mgj2; 1 ≤ g ≤ G, 1 ≤ j ≤ (n0 + n1)},
it is readily calculated from pilot data. To estimate for 	

′
g , we can randomly subsample from pilot data

to achieve sequencing depth R and derive 	
′
g by definition based on subsampled counts m

′
gj and φ̂g . The

influence of sequencing depth on 	g is further discussed in Section 2.1 of the supplementary material
available at Biostatistics online. We found that when the median coverage level is above 160, 	g is roughly
constant and the correction term for different sequencing depth is not necessary. Otherwise, the correction

term
√

	g

	
′
g

is needed.

Let Ig be the latent variable indicating region g a DMR (Ig=1) or non-DMR (Ig=0), and let pg be the
p-value of region g from the aforementioned Wald test in pilot data. The detailed parametric bootstrapping
procedure is described as follows:

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
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(1) Calculate the posterior probability of the DMR indicator Ig with posterior probability

P(Ig = 1|λ̂, r̂, ŝ, pg) = (1 − λ̂)f̂1(pg|r̂, ŝ)

λ̂ + (1 − λ̂)f̂1(pg|r̂, ŝ)
,

where λ̂, r̂, and ŝ are estimated in Step II. In the bth parametric bootstrapping (1 ≤ b ≤ B), draw
I (b)

g from P(Ig|λ̂, r̂, ŝ, pg) for 1 ≤ g ≤ G.
(2) Transform Z-statistics for DMRs using equation

Z (b)
g = I (b)

g × Zg ×
√

N

n
×
√

	g

	
′
g

+ (1 − I (b)
g ) × Zg ,

where we assume that the effect size β̂1g and the common over-dispersion parameter φ̂ of a DMR in
(2.2) and (2.3) are roughly fixed. Therefore, when I (b)

g = 1, region g is a DMR in the bth parametric

bootstrap and the Wald statistic is transformed to Zg ×
√

N
n ×

√
	g

	
′
g

. When I (b)
g = 0, the Wald statistic

remains unchanged.
(3) Compute p-value based on the 2-sided test: p(b)

g = 2 × (1 −�(|Z (b)
g |)) for a DMR region (I (b)

g = 1),
where� is a cumulative density function of a standard normal distribution.When I (b)

g = 0, Z (b)
g = Zg ,

and p(b)
g = pg remain unchanged.

(4) Control FDR at level α:

(a) In the bth simulation, calculate FDR(b)(u) =
∑G

g=1(1−I (b)
g )·χ(p(b)

g ≤u)∑G
g=1 χ(p(b)

g ≤u)
for a given p-value threshold

u, where χ(·) is an indicator function that takes value one when the statement is true and zero
otherwise. Here, by definition, the denominator is the number of detected regions under p-value
threshold u, and the numerator is the number of non-DMRs among those detected regions.

(b) Let u(b) = argmax
u

(FDR(b)(u)) ≤ α), where u(b) is the p-value threshold to keep FDR at α level

for the bth simulation.

(5) Obtain the estimated EDR for the bth simulation with ̂EDR
(b) =

∑G
g=1 I (b)

g ·χ(p(b)
g <u(b))∑G

g=1 I (b)
g

. Here, by

definition, the denominator is the number of total DMRs and the numerator is the number of
detected true DMRs.

(6) Repeat steps (1) to (5) for B times and the robust estimator of EDR from the B simulations is
̂EDR(N |D0) = median

b
(̂EDR

(b)

). The first and third quantile of bootstrapped EDRs can also be

derived to account for the variability of EDR estimation.

3. SIMULATION

3.1. Simulation scheme

We simulated data based on parameters estimated directly from the mouse pregnancy dataset (see details
in Section 4.1 (Katz and others, 2015)). We empirically drew the total number of reads and baseline
methylation level of control group from the data. Effect size (methylation level difference between two
groups) was either fixed or randomly generated from U (0.1, 0.2). In total, 10,000 regions were simulated,
and we assigned 10% regions as DMRs. The common dispersion parameter was set to φ = 0.048, which
was the mean dispersion parameters estimated from the data.
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The steps to simulate pilot data with sample size n and sequencing depth R0, and targeted data with
sample size N and sequencing depth R are shown below.

(1) Draw total read mgj for region g and sample j randomly from the mouse pregnancy data, and baseline
methylation level qg for each CpG region from the empirical distribution estimated from the mouse
pregnancy data.

(2) To simulate pilot data with sequencing depth R0, we directly use the total reads drawn from step 1.
When simulating the targeted data with sequencing depth R �= R0, we downsample the matrix of
total reads based on the ratio of R

R0
.

(3) DM index: Generate random number Ig from U (0, 1) for each region. If Ig ≤0.1 the gth region is
DMR and Ig = 1. Otherwise, it is non-DMR and Ig = 0. This generates roughly 10% DMRs.

(4) Effect size 	: Draw effect size from U (0.1, 0.2) for each DMR. The effect size for non-DMRs is
set to 0.

(5) Generate the number of methylated reads: If the gth region is non-DMR, then ygj ∼
Beta-bin(mgj, qg , φ). If the gth region is DMR, then in control group ygj ∼ Beta-bin(mgj, qg , φ)

while in case group, the methylated counts ygj ∼ Beta-bin(mgj, q′
g , φ), where q′

g = qg + 	g if
qg ≤ 0.5 and q′

g = qg − 	g otherwise.
(6) Follow above steps to simulate pilot data and the targeted data.

3.2. Performance comparison with other hypothesis testing methods

We compared the statistical power of our proposed test statistic (3) with other three methods: Beta value
(2Ygj

/
mgj) with t-test, M value (logit

(
2Ygj

/
mgj

)
) with t-test, and A value (Agj = arcsin

(
2Ygj

/
mgj − 1

)
)

with t-test.
To compare the performance, we conducted the analysis by stratifying the baseline methylation pro-

portion in control group into three categories: low (0 < qg < 0.2), medium (0.2 < qg < 0.8), and high
(0.8 < qg < 1). In each baseline group, we simulated 20 times independent analysis, in which pilot data
had 10 subjects in each group (i.e., n0 = n1 = 10), and 10 000 regions (10% are DMRs). As shown in
Figure S3 of the supplementary material available at Biostatistics online, we compared the power based on
how many true DMRs could be declared among different numbers of top declared DMRs. As a result, the
result clearly shows better performance of using our arcsin transformation and Wald statistics compared
to other approaches. Furthermore, we observe that the power of each method is stronger in either low
or high baseline group and relatively weaker in medium baseline group, which is reasonable because
the effect size is at methylation level scale and for binomial distribution, the same difference is easier to
detect when methylation is close to boundary 0 or 1. Overall, the results justifies the need of using arcsine
transformation and Wald test statistics for our power calculation framework.

3.3. Performance evaluation

We simulated B=10 pilot datasets (b = 1, 2, ...B) with pilot sample size n0= 2, 4, 6, 8, 9, and 10 when R0

are 5 million reads. For each pilot dataset with (n0, R0), the projected power for targeted sample size Ni=2,
6, 10, 15, 25, 50 (i = 1, 2, ..., 6) and Rj = 0.25, 0.5, 1, 2, 3, 4 million reads (j = 1, 2, ..., 6) from a power

calculation method is denoted by ̂EDR(Ni, Rj; n0, R0). Since the underlying truth is known, the true EDR

for each (Ni, Rj) can be estimated as ̂EDR
(
Ni, Rj

) =
B∑

b=1

̂EDR
(b)

(Ni ,Rj)

B , where ̂EDR
(b) (

Ni, Rj

)
is the actual

EDR in the bth simulation when sample size Ni and Rj are simulated. We propose the following benchmarks
based on root mean squared error (RMSE) to evaluate performance of different power calculation methods:

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
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Table 1. Performance evaluation in simulation study stratified by different effect sizes. Performance eval-
uation based on RMSE of ˆEDR(D; D0) in simulation analysis. Results based on different pilot sample
size (n0 = 2, 4, 6, 8, 9, and 10) are shown in different rows. In the first three columns, stratified analy-
sis is performed as 	 =0.1, 0.14, and 0.18. In the last column, “sOverall” refers to generating 	 from
U (0.1, 0.2)

RMSE (computing time in seconds)

Pilot n0 	 = 0.1 	 = 0.14 	 = 0.18 Overall

2 0.27(332) 0.12(176) 0.04(171) 0.10(198)
4 0.16(190) 0.04(175) 0.04(172) 0.03(179)
6 0.08(150) 0.02(164) 0.02(144) 0.01(148)
8 0.05(153) 0.02(149) 0.01(154) 0.02(144)
9 0.03(153) 0.02(151) 0.02(158) 0.01(150)
10 0.02(116) 0.01(121) 0.03(118) 0.01(120)

(1) Consider two-dimensional power calculation from (n0, R0) to (Ni, Rj) (i = 1, 2, ..., 6 and j =
1, 2, ..., 6). The RMSE of estimated EDR from power calculation is

RMSE =

√√√√√ B∑
b=1

6∑
i=1

6∑
j=1

[
̂EDR

(b) (
Ni, Rj; n0, R0

)− ̂EDR
(
Ni, Rj

)]2

B × 6 × 6
.

We first performed a stratified analysis based on different level of effect size, as we already know it will
impact the EDR. 	 was set as 0.1, 0.14, and 0.18. In each setting, we generated the same number of regions
to compare the performance (Figure 2 for 	 = 0.14, Figures S4 and S5 of the supplementary material
available at Biostatistics online for 	 = 0.1 and 0.18). Table 1 shows the RMSEs and computing time of
Figure 2, Figures S4 and S5 of the supplementary material available at Biostatistics online. As shown in
Figure 2, similarly in Figures S4 and S5 of the supplementary material available at Biostatistics online,
the estimated true EDR increases as the sequencing depth increases; however, the gain of EDR decreases
as the sequencing depth increases. When the ratio of targeted sequencing depth to the pilot sequencing
depth > 0.4 (i.e. prop > 0.4), increasing sequencing depth has almost no effect on the true EDR. The
observed trend of true EDR is consistent with the trend of predicted EDR as described in Section 2.1 of
the supplementary material available at Biostatistics online. This consistency indicates that our method
can estimate EDR prediction well when sequencing depth changes. We also observed that the predicted
EDR curves from MethylSeqDesign are close to the true EDR curves, and the performance improves as
the sample size of pilot data (n0) increased. The result of Table 1 shows affordable computing time (2–5
min using a regular laptop) for one run under this simulation setting. Secondly, to mimic real situation,
we generated 	 from U (0.1, 0.2) and compared the predicted versus true curves as shown in Figure S6
of the supplementary material available at Biostatistics online. We observed results similar to that in the
case of fixed 	.

3.4. Cost and benefit analysis and study design

In this subsection, we illustrated two scenarios where our method can guide Methyl-Seq study design. In
scenario 1, a desired level of EDR was given, and we would like to find the optimal combination of N

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data


44 P. LIU AND OTHERS

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

pilot.N: 2 vs 2 pilot.N: 4 vs 4 pilot.N: 6 vs 6 pilot.N: 8 vs 8 pilot.N: 9 vs 9 pilot.N: 10 vs 10
prop: 0.05

prop: 0.1
prop: 0.2

prop: 0.4
prop: 0.6

prop: 0.8
prop: 1

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Target N

ED
R

edr ● predicted true

Fig. 2. EDR prediction from MethylSeqDesign compared with true EDR under different pilot data sample sizes and
sequencing depth. Effect size 	 is fixed at 0.14. The pilot data sample size per group varied from 2 to 10, and R0 = 5M
is fixed. The predicted EDRs by the pilot data are shown by the dotted curves. The targeted data sample size per group

varied from 2 to 50, and the ratio of targed sample sequencing depth to that of pilot is prop = Rj
R0

, which varied from
0.05 to 1. The estimated true EDRs by targeted data are in solid curves.

and R that achieves the desired EDR with the minimal budget. Whereas in scenario 2, a fixed budget limit
was given, and we would like to find the optimal combination of N and R which spends within the budget
and maximizes the EDR. We obtained the sequencing cost information from Sequencing and Microarray
Facility core at MD Anderson for this example. Price per lane (P) is $1500 dollars when the total number
of reads per lane (D) is set at 250 M with alignment rate (A) of 50%. Library preparation cost per sample
(X ) including bisulfite conversion treatment is $300. The total cost can be written as:
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Total cost = R · 2 · N

D · A
· P + X · 2 · N

= R · 2 · N

250 · 0.5
· 1500 + 300 · 2 · N .

(3.4)

Based on (3.4), we can calculate the cost for any combination of N and R. Given this extra information,
the optimal combinations of N and R in both scenarios can be derived. In scenario 1, the optimal N and R
combination corresponds to the design with the lowest cost among those with the desired level of EDR;
in scenario 2, the optimal design is the one with the highest EDR with costs at most the given budget.

We simulated pilot data (n0 = 4 and R0 = 1/4 lane) based on the settings described in Section 3.1. The
targeted sample size N = 4 to 50 by a gap of 2, and targeted sequencing depth R = 1/10, 1/8, 1/6, 1/4 of
one lane. The EDR for each N and R combination is estimated from pilot data and the corresponding cost
for each design is calculated. The optimal design can be identified according to different constraints: (i) in
scenario 1, we want to achieve at least 80% EDR; (ii) a limited budget $20 000 dollars is given in scenario
2. For any given design (i.e. combination of N and R), if there is no other design achieving higher EDR
with lower cost than the current one, it is called an admissible design (in dark color), otherwise it is an
inadmissible design (in light color). Figure 3 shows the resulting N–R and cost-EDR corresponding plots.
The optimal design is highlighted and circled. In scenario 1, the optimal design to achieve at least 80%
EDR is to perform N = 12 and R = 1/8 lane and the design will cost $11 700 to achieve EDR = 0.807
(see the left two plots in Figure 3). In scenario 2, with maximal budget of $20 000, the optimal design is
N = 20 and R = 1/10 lane, which will cost $18 000 and achieve EDR = 0.922 (the two plots on the right
of Figure 3).

4. REAL DATA APPLICATION

4.1. Breast cancer mouse data

In this subsection, we demonstrated the performance of MethylSeqDesign using the Katz’s data (Katz and
others, 2015), which was used to investigate the protective risk effect of pregnancy toward breast cancer in
a mouse model. The DNA methylation data were from the mammary gland tissue. The sample library was
prepared usingAgilent SureSelectXT Mouse Methyl-Seq Kit. The kit design covered 109 Mb of Ensemble
regulatory features (promoters, promoter flanking regions, enhancers, etc.), CpG islands, known tissue-
specific DMR, and open regulatory elements. The dataset was generated with mm9 mouse reference
genome (Kent and others, 2002). Aligned reads outside of the targeted regions (provided by Agilent
SureSelectXT Mouse Kit) were removed. Data preprocessing was performed by R package “MethyKit.”
We only used samples from batch one, which harvested from mammary gland tissue immediately after
involutions including five parous and five non-parous mice.

A total of G = 297 773 methylation regions of interest (ROI) are pre-defined from the Agilent Sure-
SelectXT kit. We randomly subsampled 2 vs. 2, 3 vs. 3, and 4 vs. 4 samples from the full data as the
pilot data, and used MethylSeqDesign to calculate the predicted EDR. We repeated this procedure for 10
times. The predicted EDR from the subsampled data was compared with the reference EDR calculated
using the full data. As shown in Figure 4, although the underlying true EDR is unknown, as the sample
size of subsampled data increases, the predicted EDR from subsampled data converges to the predicted
EDR from the full 5 vs. 5 samples.

4.2. Chronic lymphocytic leukemia data

Kushwaha and others (2016) studied hypomethylated and hypermethylated regions and how the methy-
lation changes affect gene expression in the oncogenesis of chronic lymphocytic leukemia (CLL) (GEO
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Fig. 3. Illustration of study design optimization in two scenarios. The first row plots all N and R combinations. The
optimal N and R combination is highlighted and circled, the admissible combinations are highlighted in dark and
inadmissible ones are in light background. The second row plots the corresponding Budget and EDR relation for N
and R combinations. The dashed line marked the targeted EDR in scenario 1 and budget limit in scenario 2.

accession number GSE66167). RRBS was performed for a genome-wide DNA methylation analysis in 43
tumors and 8 controls. We implemented MethylSeqDesign to the dataset using targeted regions defined
as 250 bp tiling windows with at least 10 read counts.

Similar to the previous example, the true underlying EDR is unknown in real data. We instead showed
the performance of our method by comparing the predicted EDR from smaller sample size to full sample
size. Since the sample size in control and tumor groups were unbalanced (number of tumor samples is
roughly 5 times more than that of controls), we kept this ratio and randomly subsampled (n0, n1) = (2,10),
(4,20), and (6,30) from full dataset to treat as pilot data and repeated independent subsampling for 10 times
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A

B

Fig. 4. (A) Real data application using mouse pregnancy dataset. (B) Real data application using CLL dataset. The
mean and 95% CI of the predicted EDR from subsampled data is shown in dotted curve, and the solid curve is the
reference EDR from the full data. As sample size of subsampled data increases, the predicted EDR becomes closer
to the reference.

for each (n0, n1) pair (see formulation for unbalanced design in Section 3 of the supplementary material
available at Biostatistics online).

For full data (n0, n1) = (8, 43), we also derived predicted EDR and treated it as a reference to compare
with predicted EDR from smaller pilot data (shown in Figure 4).Although no underlying truth was available
for this application, predicted EDR from our method gave reasonably accurate results, where increased
sample size in pilot data generated less variation in predicted EDR curves and converged to the result from
large pilot data. In this example, power calculation using (n0, n1) = (3, 15) pilot data is roughly sufficient.
The required larger sample size is reasonable due to unbalanced design and small sample size in n0.

5. DISCUSSION AND CONCLUSION

NGS-based bisulfite sequencing is an increasingly important high-throughput technology to measure
genome-wide methylation patterns. An important goal of Methyl-Seq is to detect DMRs, such as promoter
regions and transcription biding sites. During the study design stage, it is essential to accurately estimate
study power based on appropriate method, particularly when pilot data exist. Given thousands of targeted
methylation regions are considered simultaneously to detect differential methylation, it is imperative that
the power calculation method is able to appropriately control genome-wide type I error rate, to evaluate
genome-wide statistical power and to account for varying DMR effect sizes. To our knowledge, there is
no existing method for this purpose. In this article, we proposed a MethylSeqDesign statistical framework

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz016#supplementary-data
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to accommodate all three elements mentioned above with FDR, EDR, and estimating effect sizes from
pilot data. This method uses a beta-binomial model to account for variations in the Methyl-Seq count
data that is due to sampling variations and biological heterogeneities between subjects. We use FDR to
control genome-wide type I error rate, and EDR as the genome-wide power. In addition, the use of Wald
test statistic enables the transformation of statistics from pilot data to targeted sample size and sequencing
depth, which allows two-way power calculation and saves computing time. Our method utilizes the pilot
data to estimate the genome-wide distribution of methylation level difference between two groups (effect
size) and the proportion of true DMRs, which can be efficiently avoid arbitrary guesses by researchers.
Finally, with the specified cost function, we demonstrated how our method guides the selection of proper
study designs in two scenarios.

The MethylSeqDesign framework needs a pilot dataset as input. It is crucial that the pilot data are
technically similar to the targeted data as possible. If no pilot dataset is available in the local lab, existing
datasets on the public domain with similar biological and technical setting (e.g. similar tissue, disease,
and sequencing protocols) are the appropriate alternative. In general, a pilot data with larger sample size
would yield a superior estimate of EDR.Although pilot sample size required for accurate power calculation
depends on biological and experimental variability in each project, from our experience, n0 = n1 = 5 is
usually sufficient for accurate power calculation. Our second real example shows that unbalanced n0 and
n1 design requires larger pilot sample size.

In this article, we restricted the power calculation framework to pre-defined targeted regions since
only small proportion of CpG sites (5–20%) is available for differential methylation analysis. When
the sequence depth is sufficiently deep, the effect on identifying DMRs is minimal, so does on power
calculation. However, sequencing depth can still play important roles when sequencing depth is not deep
enough. In this article, our method allows a two-dimensional power calculation by considering both sample
size and sequencing depth.

In summary, we proposed a MethylSeqDesign framework to deal with the study design and power
calculation issues for epigenetic studies of DNA methylation where the ROI are prespecified.As technology
advances and sequencing cost decreases, the emergence of more large-scale Methyl-Seq studies will lead to
increased demand for Methyl-Seq study design and power calculation. An R package “MethylSeqDesign”
is publicly available at https://github.com/liupeng2117/ MethylSeqDesign and all code and data used in
this article are available at https://github.com/liupeng2117/ MethylSeqDesign_data_code.

6. SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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