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Introduction
The need for low cost, easy and equally achieved rehabilitation 
services for the population has led to a search for new ways to 
implement them. The recent corona pandemic has further 
forced health care and welfare sectors to find new digital alter-
natives for treating their clients. A possible availability improve-
ment in rehabilitation is through telerehabilitation based on 
technologies like Computer Vision (CV). A significant telere-
habilitation advantage is the unnecessity of clients’ physical 
travel to the therapist. Hence, they save time and costs, they 
can decide themselves when they do the therapeutic exercises, 
and it is easier to integrate the exercise into the daily activities. 
The benefit of CV based telerehabilitation is that the only 
technical equipment needed is a camera/cameras attached to a 
computing device for performing human motion analysis.

Tracking and analysis of human movement has been an 
intensive research topic for decades. Traditional CV based 
motion analysis uses marker-based approaches. However, the 
requirements of a controlled environment and very precisely 
calibrated equipment mean high acquisition costs.1 
Furthermore, marker-based systems typically require attach-
ment of physical markers to strategic body points for automatic 
kinematic data collection. This limitation makes routine use of 
motion analysis systems impractical, as it requires significant 
technical preparations prior to rehabilitation performance.

A significantly more practical and easy-to-use solution is CV 
based marker-less motion analysis. In this solution, a client only 
needs a computing device with one or more cameras attached for 
performing therapeutic exercises guided by the application. 
Literature sources propose several generic marker-less motion 
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analysis systems, typically utilizing emerging CV and machine 
learning-based techniques. These techniques are systems finding 
joint coordinates in a 2D space and systems localizing joints in 
3D space, typically multiple cameras but also single-camera 3D 
motion analysis systems are proposed. Considering practicality 
and user-friendliness, the optimal case, from a physiotherapy 
point of view, would be a single camera system capable of accu-
rately finding the 3D coordinates of all joints. This would enable 
analysis of advanced joint movements, such as hip and shoulders 
analysis in functional movements like walking and squatting but 
also simple movements as arm or leg stretching and bending.

However, CV based marker-less 3D pose estimation from a 
single image view is a challenge. Development of such systems 
has hitherto mostly been for the entertainment domain, but 
some systems exist also for sports and rehabilitation. A general 
issue of current marker-less motion tracking systems is the dif-
ficulty to achieve sufficient accuracy.2,3 Marker-less systems are 
therefore not widely used within rehabilitation.

This paper provides an overview of recent CV based marker-
less human motion analysis systems, validates the accuracy and 
practicality of these systems from a physiotherapy point of 
view and discusses their usability for rehabilitation both gener-
ally and with a practical example. The main purpose is to pro-
vide a state-of-the-art review of marker-less human pose 
estimation and their suitability for rehabilitation aids and to 
evaluate the need for future research.

The structure of the rest of the paper is as follows. Section 2 
presents related research. Section 3 discusses requirements of 
CV based motion analysis for physiotherapy needs. Section 4 
provides an overview of recent generic CV based marker-less 
human pose estimation systems, their performance and accu-
racy. Section 5 presents some rehabilitation aids using CV-based 
human motion analysis. Section 6 proposes some future 
research directions. Section 7 evaluates critically the suitability 
of current CV based marker-less systems and presents some 
concluding remarks.

Related Research
Human motion analysis for rehabilitation has been an active 
research topic for more the 30 years.4 Several reviews on CV 
based human motion analysis have already been published. 
Moeslund et al5 and Poppe6 survey vision-based human motion 
analysis. The thorough survey by Zhou and Hu4 on human 
motion tracking for rehabilitation covers non-visual tracking, 
visual marker based tracking and visual marker-free based 
tracking for both 2D and 3D approaches. Holte et al7 present 
developments in human pose estimation and activity recogni-
tion from videos. Yang et al8 present an overview of marker-less 
motion capture systems for person tracking. Colyer et al2 and 
Mündermann et al9 survey CV based motion analysis evolution 
towards a marker-less system. Colyer et al2 point out that the 
widespread manual cine film camera recording digitization 
prior to digital technologies did not necessarily require the 

attachment of markers. The survey also presents some` com-
mercial computer vision based marker-less motion analysis sys-
tems and surveys recently published studies on the accuracy of 
computer vision based marker-less human motion analysis in 
comparison with other human motion analysis systems. The 
systematic review by Webster and Celik10 on Kinect camera 
system11 applications includes stroke rehabilitation.

The Requirements on Computer Vision-Based 
Motion Analysis from a Physiotherapist Point of 
View
‘Telerehabilitation refers to the delivery of rehabilitation and 
habilitation services via information and communication tech-
nologies (ICT)’.12 Client and therapist are differently located 
and communicate with ICT technologies in a rehabilitation 
process.13 However, the process should resemble traditional 
rehabilitation where the client and the physiotherapist work in 
the same room. The process thus consists of a physiotherapy 
intervention where the interaction between the physiotherapist 
and the client starts from the physiotherapist’s interview and a 
clinical analyse ending up in a physiotherapeutic diagnose with 
a set goal and an intervention plan.14

The digital intervention used in CV for self-managing ther-
apeutic exercise should consist of 3 central tools: catching the 
exercise in real-time, understand the exercise and to evaluate 
the performance. On the base of these components, the appli-
cation should be able to give personalized feedback.15 In order 
to be effective the web-based platform used in CV assisted 
rehabilitation must ensure correct exercise performance of the 
client and automatic detection of wrong executing. When a 
client performs an exercise in front of a machine replacing a 
physiotherapist, then the client can perform movements 
wrongly. Especially after a surgery, this can be harmful, and the 
absence of a therapist can affect the motivation and slow down 
the recovery process.16 A client’s motivation to do the exercise 
is important for the rehabilitation process. Digital intervention 
capturing the exercise and providing real-time feedback can be 
one solution to support the process.15 Useful motion analysis 
software should include a professional system to analyse move-
ments like a therapist.16

To integrate CV in clinical rehabilitation, the assessment 
must be valid and reliable to be objective.17 CV use in rehabili-
tation assist the clients and physiotherapists assessment of the 
movements that the client is performing. The expected CV 
application output is the most important thing for enabling the 
application to measure and analyse movements correctly. When 
this is the case, the application is implementable in the reha-
bilitation process.

In clinical work, physiotherapists use universal goniometers 
to measure their clients’ joint angles to follow up the rehabilita-
tion process. Valid goniometric measurements are important 
data for physiotherapists’ clinical decision-making.18 Some 
variation in a goniometric joint angle measurement can emerge, 
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if the physiotherapist has improper placement of its fulcrum 
over the centre of rotation of the joint or wrong anatomic 
structures.19 Melián-Ortiz et al20 have shown, that the varia-
tion can be 1° to 7° from the actual degree in manual joint 
measurements with a universal goniometer. To minimize the 
variation, physiotherapists should follow standard written 
principals.

Computer Vision-Based Marker-Less Human 
Motion Analysis
Colyer et al2 consider that marker-less motion capture consists 
of the following 4 components:

1.	 The used camera systems.
2.	 The human body model.
3.	 Image features for motion capture.
4.	 The algorithms determining shape, pose and location of 

the body model.

Their review classifies used camera systems into depth-sensing 
camera systems and other camera systems, points out that 
marker-based and marker-less body motion capture use similar 
body model, discusses the use of some image feature (silhou-
ettes, visual hulls and colour models) in human motion capture, 
and classifies algorithms for body model analysis into genera-
tive and discriminative algorithms. A generative algorithm fits 
the body model of a person to extracted image information 
while a discriminative algorithm requires training using 
machine learning to be able to discover mappings directly from 
image features. This section presents (1) camera systems, (2) 
human pose estimation which covers body models, image fea-
tures motion capture and algorithms determining body model 
parameters and (3) performance and accuracy of CV based 
marker-less human motion analysis.

Camera systems

Marker-less human motion capture can use ordinary cameras 
where each image pixel has colour and brightness and/or 
depth-sensing cameras where each image pixel describes the 
distance from a space point to the camera.2 Depth cameras are 
narrow-baseline binocular-stereo cameras, for example 
Stereolab’s Zed Camera,21 and ‘active’ cameras which depth-
sense from reflection of emitted light into the observed scene, 
for example Micosoft’s Kinect camera.11 Active depth cameras, 
also called RGB-D cameras, also capture image pixel colour. 
These camera systems use either structured light to sense depth 
from known patterns projected onto the illuminated scene or 
time-of flight to measure the reflection time of a light pulse.22

Human pose estimation

CV based human pose estimation systems are 2D and 3D. A 
2D pose estimation estimates (x, y) coordinates of each joint in 

an image. A 3D pose estimation finds the corresponding (x, y, 
z) coordinates. From a physiotherapy point of view, 3D systems 
add more value as most human joints are movable in multiple 
directions. Accurate motion analysis therefore requires joint 
detection and localization in a 3D coordinate system. Recent 
human pose estimation systems use deep learning, a branch of 
machine learning, which maps the relation among the features 
directly on diversely represented data. It learns hierarchical 
information from the data and afterward weights hierarchies 
to compute the predicted output. Due to its hierarchical infor-
mation gathering property and high approximation capacity, 
deep learning is modern machine learning.23 Yang et al24 apply 
deep learning to a low-resolution single image to obtain a 
high-resolution image version. Yang and Ramanan25 present a 
deep learning based human pose estimation system.

A 2D pose estimation.  Since 2D systems are often the base of 
3D pose estimation, this subsection presents an overview of 
existing 2D pose estimation systems. There are several differ-
ent proposed approaches to 2D pose estimation in recent years. 
Initial proposals were handcrafted features such as histogram 
of oriented gradients (HOG)26 and Edgelet.27 However, these 
proposals suffer from insufficient accurately in detecting body 
parts and hence deep learning methods are currently evolv-
ing.28 The strength of deep learning, in contrast to handcrafted 
feature-based solutions, is its capability of extracting sufficient 
features from metadata.

The general techniques used for 2D pose estimation of a sin-
gle person are direct regression and heat-map based techniques.28 
In direct regression, key points from the body are directly 
regressed in 1 single step. DeepPose,29 a method for human pose 
estimation based on deep neural networks (DNN), is one of the 
first human pose estimation solutions using deep learning and 
direct regression. The model architecture is to a major extent 
convolutional and uses fully connected output layers for predict-
ing joint coordinates directly as numerical values.

A heat-map based solution predicts the probability of a joint 
occurring in each pixel. Common approaches for 2D pose esti-
mation are the generation of joint heat-maps, such as the stacked 
hourglass approach.30 In this approach, processing and extract-
ing features down to a low resolution uses convolutional and max 
pooling layers. Once reaching the lowest resolution, a top-down 
sampling sequence combines features across scales. Repeating 
this process of bottom-up and top-down sampling several times 
enables the network to reach sufficient output resolution (see 
Figure 1). Thereafter 2 consecutive rounds of 1x1 convolutions 
produce the final network predictions. The final output is a set of 
heat-maps where each heat-map represents a prediction of the 
probability for a joint being present in each pixel.

OpenPose31 is a multi-person pose estimation system that has 
formed the base for several recent pose estimation solutions. The 
main reason for its popularity is its capability of detecting up to 
25 joints for each person thus making it useful for performing 
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advanced human motion analysis. In OpenPose a convolutional 
neural network uses a multiple-stage classifier wherein each 
stage the result of the previous stage is improved. In the first 
stage, the input is an original image for prediction of possible 
locations of each key point in the image. The output is a confi-
dence map equivalent to a heat-map. Each subsequent stage 
takes the image data together with the confidence map produced 
at the previous stage for improving the accuracy of the heat-map 
for each stage. Introduction of the idea of part affinity maps 
(PAF) within OpenPose trains the model to associate body parts 
with specific persons in an image. As a result, OpenPose is a 
bottom-up solution providing accurate real-time pose estima-
tion regardless of the number of people in an image.

A 3D pose estimation.  This subsection presents an overview of the 
most recent generic and application-specific marker-less multi-
view 3D pose estimation systems. Pre-deep learning is a common 
approach to 3D pose estimation, especially used for hand from a 
colour image considering discriminative and generative methods. 
Unfortunately, the performance of these methods insufficient due 
to the dependencies on different factors such as prior knowledge 
of the image background, careful initialization etc.32

Systems based on image streams from multiple cameras.  For 
achieving an accurate joint estimation in a 3D space, many 
proposals focus on environments with multiple camera streams 
taken from different angles. Pavlakos et al33 propose a geom-
etry-driven approach automatically collecting annotations for 
human pose prediction tasks. Figure 2 shows the different 
components of this approach.

The initial component applies the stacked hourglass 
approach30 for generating 2D heat-maps for each joint in each 
view as outputs. Combining each heat-map using a 3D picto-
rial structure model performs 3D pose estimation.34 Finally, 

further examination of the 3D pose estimate determines relia-
ble joints for use as annotations.

Iskakov et  al35 propose a multi-view 3D pose estimation 
system based on the learnable triangulation of human pose. 
The input of the system, visually outlined in Figure 3, is a set of 
images captured from N cameras with known parameters.

Off-the-shelf 2D human detectors crop each captured frame. 
The cropped images are used as inputs to a deep convolutional 
neural network backbone based on a proposed architecture for 
production of joint heat-maps and joints’ confidences.36 Then, 
application of a softmax-argmax function calculates the 2D joint 
positions as the center of mass of the corresponding heat-maps. 
Finally, derivation of the 3D positions of the joints from the cor-
responding 2D joint estimates from multiple views uses a pro-
posed linear algebraic triangulation approach.37

Shere et al38 propose a multi-person 3D skeleton pose esti-
mation system using a pair of 360° cameras. Initially, 2 video 
recorders capture 360° sequences of an environment consisting 
of multiple persons. Tracking of each person occurs across the 
2D image sequence. OpenPose estimates joint locations from 
these tracks.31 In this case OpenPose provides for each frame a 
set of 2D joint coordinates, where each joint has an index and 
a number indicating the camera providing the frame. Assume, 
for instance, that the same joint appears in 2 different camera 
frames. A triangulation method estimates the 3D coordinate 
for that joint. Next follows bone length estimation by measur-
ing the distance between each 3D joint coordinate. Finally fol-
lows gradient descent optimization using Ceres39 for finding a 
skeleton pose fitting the joint estimates in the most optimal 
way. As a result, the solution can track humans from a multi-
person image and provides a skeletal pose of each person.

Systems based on an image stream from a single camera.  This 
section is an overview of marker-less systems using a single 

Figure 1.  A visualization of the repetitive stacked hourglass approach.
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camera/monocular video stream. Huang et al40 focus on multi-
view pose, but claim that their method is applicable to monoc-
ular video sequences without large modifications.

There are many proposed approaches for detecting 3D 
poses of the human body from a single image with and without 
background exclusion. For example, SCAPE is an important 
approach to 3D pose detection and estimation. It is among the 
first parametric models fitted to the ground truth image to esti-
mate a high-quality 3D pose.41

Accessibility of large datasets of 3D shapes and the deep 
learning performance advancement facilitated 3D reconstruc-
tion from a single image.42 Zimmermann and Brox43 used deep 
learning to estimate 3D hand pose from single images where a 
foremost part of training datasets was synthetic. Their project 
used through concatenation 3 networks for hand segmentation 
and successive 2D and 3D joint prediction. However, Mueller 
et al44 found a weakness in the project due to many synthetic 
datasets. Alternatively, they proposed for image translation a 

Figure 2.  Components of a geometry-driven approach to human pose estimation.

Figure 3.  A proposed multi-view 3D poses estimation system.
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Cycle-GAN technique, which translated synthetic images into 
real looking ones. Later, translated data for 2D and 3D joints 
prediction trained a regression. Furthermore, a convolution 
neural network (CNN) and optimization produced a better 2D 
joint prediction result.45

Many recent works estimate a substantial 3D reconstruction 
of the human body, but mostly inaccurately predict the 3D 
pose of a person. These works follow an end-to-end model, 
which predicts 3D joint locations, regress 3D heat-maps and 
classifies images based on their pose class.46 Pavlakos et al3 esti-
mate 3D human pose and shape from a single colour image. 
Bogo et al47 describe automatic estimation of 3D human pose 
and shape from a single image.

Kanazawa et  al48 present end-to-end recovery of human 
shape and pose. Their approach uses 2-stage and direct estima-
tion. Prediction of the 2D joint locations used firstly 2 stage 
methods, 2D pose detectors or ground truth 2D pose. 
Thereafter prediction of 3D joint locations from 2D joints 
locations used a regression or model fitting. Given a single 
image and minimal user input, Figure 4 shows computation of 
an initial pose, light direction, shape and segmentation.

Furthermore, also direct prediction approaches, which are dis-
criminative and keep the optimization objective unclear during 
implicating the information, can estimate 3D pose and shape. For 
example, using these approaches a convolution network has 
detected 91 human body landmarks. A random forest estimated 
the 3D body shape from these landmarks. Training use of these 
landmarks still requires the positions of the body shapes.3

Performance and accuracy

A critical issue related to all proposed marker-less human pose 
estimation systems is their accuracy level. Colyer et  al2 and 
Pavlakos et al3 stated that due to accuracy issues marker-less 

systems are not yet widely used within biomechanics. This sec-
tion analyses the accuracy of some recent techniques and their 
theoretical suitability for rehabilitation aids. A simple example 
is measurement of the angle of the knee joint, see Figure 5. In 
this measurement, the client is either lying down or standing 
up with his/her side directed towards the camera. First, the 
application estimates the coordinates of the hip, knee and ankle 
joints. These coordinates form a triangle, as shown in Figure 6. 
Estimation of all corner angles applies the law of cosines after 
calculating the Euclidean distances between all coordinates. 
The angle of interest is K in Figure 6 and its calculation uses 
the following equation:

K a a b c
ac

= −
− −
−
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The precision of the estimated knee joint coordinates is crucial 
for estimating a knee angle with sufficient accuracy. As discussed 
in section 2, the maximum tolerable error margin in joint angle 
measurement for physiotherapy purposes is ±5°. PCK 
(Percentage of Correct Key points) or its modified variant PCKh 
often represents joint localization performance of pose estima-
tion proposals. PCKh indicates a percentage value for the prob-
ability of correctly detecting a specific joint coordinate. The 
distance between the estimated and the actual joint coordinate is 
within the range of the head length for a correctly detected joint. 
A typical threshold value for PCKh is 0.5 denoted as PCKh at 
0.5, meaning 50% of the head length. Cao et al31 present results 
showing that OpenPose can accurately detect head, shoulder, 
elbow, wrist, hip, knee and ankle joints with a mean probability 
of up to 80% when PCKh at 0.5 is applied.

However, PCKh at 0.5 is not a sufficient threshold for joint 
angle measurements. Simulation demonstrates this as is shown 
in Figure 7. The black dots are the actual coordinates of the hip, 

Figure 4.  A framework of using single image to infer the shape and pose of a human body.
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knee and ankle joints while the coloured dots are estimations. 
An error margin for the estimated joint coordinates is the max-
imum distance from the actual joint in a circular area. The 
simulation generates uniformly random coordinates for all 
joints within the specified error margins to calculate the knee 
angle from random joint coordinates. After N repetitions of 
this procedure, dividing the number of knee angle measure-
ments within the tolerable margin with the total number of 
measurements gives the probability of estimating the knee 
angle within the tolerable error margin (±5°).

For an average male, the upper leg length, that is the dis-
tance between the hip and knee joint, is 46 cm. The lower leg 
length is 45 cm and the head length is approximately 20 cm. 
Application of PCKh at 0.5 means in practice, that the error 
margin for the joint coordinate estimate is 10 cm.

Assuming the real knee angle to 45°, then simulation with 
these parameters and N = 1000 shows, that the probability for 
measuring the knee angle within a ±5° margin is only 25%. To 
guarantee a maximum error margin of ±5°, when measuring 
the knee angle in this particular example, the error margin in 
estimating the joint coordinates can be at most 2.5 cm, which 
approximately corresponds to PCKh at 0.1.

The proposals of Slembrouck et  al49 and Gu et  al50 use 
OpenPose to detect 2D coordinates of human joints. Gu et al50 
analyse the performance and accuracy of OpenPose in comput-
ing lower limb angles from tracking joint coordinates of walk-
ing adults with a single cell phone RGB 30 Hz camera. A 
state-of-the-art commercial multi-camera system validated the 
computed lower limb angle values. The angle error was 10° or 
less in most tracking frames, an accuracy comparable with the 
accuracy of a marker-based depth camera system.51 Slembrouck 

et  al49 use triangulation. A 2D joint coordinates detected by 
OpenPose are further progressed into 3D joint coordinates by 
applying OpenPose on camera images from multiple angles 
before least squares triangulation. The authors claim that their 
system can track the pose of multiple persons in real-time with 
a frame rate between 20 and 25 fps and that lower body joint 
coordinates are detected with a standard deviation between 9.6 
and 23.7 mm. In the above-mentioned example, this means 
that their system could detect human joints with a tolerable 
accuracy for knee measurement purposes with a probability of 
approximately 70%.

Another proposal uses OpenPose with multiple synchro-
nized video cameras to compare marker-less motion capture 
accuracy with optical marker-based motion capture accuracy 
for 2 tested participants’ walking, countermovement jumping 
and ball throwing.52 Mean absolute errors (MAE) measured 
test participants’ corresponding joint position differences. For 
approximately 47% of all measurement MAE < 20 mm and for 
80% of all measurement MAE < 30 mm. The measurements 
thus indicated that 3D pose estimation with marker-less 
motion capture was a correct reproduction of the test partici-
pants’ movements. A rough estimate is therefore that the knee 
angle measurement has approximately the same accuracy as the 
proposal by Nakano et al.52

Schmitz et al53 compare the accuracy of single camera marker-
less motion capture with a ten-camera marker-based motion 
analysis system for 6 different postures of a jig simulating a 
human leg. A digital inclinometer with an accuracy of 0.1° meas-
ured the abduction-adduction angles, which both the marker-
based system and the marker-less system calculated as the mean 
of 30 frames. The deviation from the inclinometer measurements 
was less than 0.5° for both systems. The marker-based system 

Figure 6.  After estimating the coordinates of hip, knee and ankle joints, 

the knee angle K estimation applies the law of cosines.
Figure 5.  An illustration of a marker-less CV application measuring the 

knee joint angle.



8	 Rehabilitation Process and Outcome ﻿

estimated abduction more accurately and the marker-less system 
was more accurate for adduction, but the difference was ±0.5° or 
less. Statistical comparison of the accuracy of both systems used a 
t-test with a significance level of 0.05.

Computer Vision-Based Marker-Less Rehabilitation 
Aids
With a well working CV based marker-less approach the motion 
analysis could take place, for example, in the client’s home.2 In 
normal face-to-face clinical cases, the travel cost that is necessary 
for the session or the chance for therapy can be the main barriers 
for a client to get help.54 Some CV based real-time monitoring 
aids for rehabilitation have already been proposed and imple-
mented. This section presents some recent examples.

Balance is a central task for people and especially for elderly. 
It is important to be able to identify fallers, because the injuries 
that becomes when a person fall can be severe. Most of the inju-
ries are mild, but 5% to 10% of the injuries are severe for people 
that are older than 65 years.55 To be able to identify possible fall-
ers, Nalci et al56 analysed with the help of marker-less CV stand-
ing on one foot with eyes open and closed. Thereafter they 
compared the results with a golden standard balance board that 
analysed the sway. An experimental setup used a Dynamic 
Vision Sensor camera to capture pixel-level illumination changes 
of motion. The results had a high correlation and shows that CV 

can in the future be a possible equipment used in balance meas-
uring in rehabilitation to identify possible fallers.

Homebased exercises supervised by a therapist are one of 
the most important treatment in the recovery phase in several 
diagnosis like in osteoarthritis (OA) or stoke. The goal of home 
based exercises can be to decrease pain in the joint and get bet-
ter functionality but also to lower the costs for the therapy.57-59 
CV-aided systems that can capture exercises and give feedback 
can be a key to an effective and successful rehabilitation pro-
cess. Without feedback, therapeutic programs are difficult to 
personalize and motivate the client to do the exercises.15 There 
is also a possibility that if the clients do not get feedback they 
do the exercises wrongly. Especially after surgery, this can be 
harmful and slow down the recovery process.16 Dorado et al60 
present a developed easy-to-use CV system called ArthriKin, 
which offers a possibility to interact directly with a therapist to 
make a home based exercise program efficient. Baptista et al59 
have established a home-based training system for stroke 
patients. Their system uses 2 linked applications for the thera-
pist and the client. The patient side application (Kinect) gives 
real-time and visual feedback but also reports how the client 
preforms the therapeutic exercise. There have also been devel-
oped CV models to track objects to assist stroke patients, which 
try to reach for and grasp objects with the aid of a robotic 
device. Rehabilitation of patients with an injured arm or wrist 

Figure 7.  An illustration of a simulation tool calculating the level of accuracy for knee angle measurement for different error margins of joint coordinate 

estimations.
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has likewise used CV.61 A web camera records a cuboid object 
and software calculates the object’s position in real-time when 
the patient tries to move the object to match the position of an 
already present virtual object in a virtual 3D space.

Salisbury et  al62 demonstrated with a smartphone camera 
real-time measurements of a patient’s vestibular rehabilitation 
therapy. Vestibular rehabilitation is used for example patients 
with symptoms of dizziness and for elderly fall prevention. 
During Vojta therapy,63 body movements of patients having 
motor disabilities have been monitored and analysed in real-
time with CV-based experimental methods.64 A CV-based 
action identification system for upper extremity rehabilitation 
in patients’ home environments has been proposed.65 The pro-
posed system captures sequences of colour images with colour 
and depth of a patient’s upper extremity actions for identifica-
tion of movements. The image sequence with a rate up to 125 
images/s is processed and analysed to distinguish between cor-
rect and wrong rehabilitation actions in action training.

Rammer et  al66 propose a system for marker-less motion 
analysis of manual wheelchair propulsion. Their system requires 
a minimum of two Microsoft Kinect sensors (hardware devices 
with camera and microphone) for capturing motion data. The 
motion analysis focuses on the upper extremity kinematics 
during wheelchair propulsion. The system utilizes OpenSim,67 
an open-source software platform for biomechanical model-
ling, simulation and analysis. The wheelchair is located in a 
stationary wheelchair propulsion roller and the Kinect sensors 
are on each side of the wheelchair, see Figure 8.

Mehrizi et al68 present the development and validation of a 
CV-based marker-less motion capture method to assess 3D 
joint kinematics of symmetrical lifting tasks. A new CV based 
method is proposed for image feature extraction and calculat-
ing the joints kinematics without the need of physical markers. 

Figure 9 shows a visual overview of the proposed method. In 
short, the method works as follows. Two optical cameras cap-
ture video images from 2 different angles. Thereafter, a tech-
nique called Histogram of Oriented Gradients (HOG) detects 
objects, which in this case means detection of the human body. 
The next step is a reconstruction of the 3D pose of the body for 
each video frame using a modified implementation of the Twin 
Gaussian Process (TGP). The output of this process is a set of 
the 3D coordinates of 45 virtual markers. Based on these mark-
ers, the joint angels are calculable for analysing the lifting task.

Future Research Directions
Previous sections have presented several published proposals of 
marker-less CV based human pose estimation techniques. 
From a usability point of view, most presented proposals are 
promising for physiotherapy applications, as they only require a 
computing device together with one or more cameras. Many 
techniques already enable estimation of the 2D coordinates of 
human joints using only one camera and provide the potential 
for easy-to-use applications analysing simple mobility of some 
joints, such as knee and elbow. However, analysis of the mobil-
ity and functionality of more advanced joints, such as hip, 
wrists and shoulders require 3D pose estimation. Typical 3D 
pose estimation systems require multiple cameras, which is 
impractical from a usability point of view since application 
execution requires a complex camera setup. Some research 
papers propose single camera 3D pose estimation systems. 
These are the most promising for physiotherapy applications as 
they are easy to use (no complex camera setup) and capable of 
detecting the 3D coordinates of human joints.

A preliminary conclusion based on our literature review is 
that some proposals for human pose estimation already provide 
sufficient accuracy for physiotherapy needs. Accuracy differences 

Figure 8.  A marker-less system for analysing manual wheelchair propulsion.66
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in comparison with marker-based systems are negligible. 
However, implementation of existing solutions and testing these 
solutions for physiotherapy purposes is necessary before any reli-
able statement on their level of accuracy in comparison to each 
other is possible. Thus, the top priority for future research is to 
apply some of the most promising marker-less human pose esti-
mation algorithms in physiotherapy applications for rigourous 
testing. The testing could start from 2D applications, for exam-
ple knee and elbow angle measurements, and move on towards 
more complex 3D movement analysis applications of more 
advanced joints, such as hip and shoulders. Moreover, develop-
ment of suitable machine learning-based calibration methods 
for CV based marker-less human motion analysis systems for 
rehabilitation applications requires future research.

Conclusions
CV based marker-less pose estimation systems are attractive 
for rehabilitation aid applications as they can provide analysis 
and supervision of rehabilitation exercises for clients at home 
and thus reduce the need for physically meeting the physio-
therapist. Marker-less motion analysis systems are easy-to-use, 
as they only require a camera/a set of cameras and a computing 
device. Before we can widely integrate CV into physiotherapy, 
however, the assessment and analysis of active movements must 
be valid and reliable. When a physiotherapist uses marker-less 
CV as assistive equipment in rehabilitation the therapist can-
not manually or verbally instruct the movement that the client 
is performing, and the effect of the therapy, like for example the 
joint motion, cannot be measured by a physiotherapist. The 
most important issue is that the application can correctly and 
with sufficient accuracy measure and analyse movements a cli-
ent is performing. The system should also be able to give real-
time feedback so that the rehabilitation process is successful. 

Preliminary simulation results indicate that some recent CV 
based marker-less pose estimation systems already provide suf-
ficient accuracy for joint detection and localization in joint 
angle estimations. However, implementation of existing solu-
tions and rigourous testing of their accuracy is necessary and 
their accuracy in a range of real physiotherapy scenarios is nec-
essary before they can be widely adopted in rehabilitation.
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