
USING CMA-ES FOR TUNING COUPLED PID
CONTROLLERS WITHIN MODELS OF

COMBUSTION ENGINES

K. Henclová∗

Abstract: Proportional integral derivative (PID) controllers are important and
widely used tools of system control. Tuning their gains is a laborious task, especially
for complex systems such as combustion engines. To minimize the time an engineer
spends tuning the gains in a simulation software, we propose to formulate a part
of the problem as a black-box optimization task. In this paper, we summarize the
properties and practical limitations of gain tuning in this particular application.
We investigate the latest methods of black-box optimization and conclude that the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with bi-population
restart strategy, elitist parent selection and active covariance matrix adaptation is
best suited for this task. Details of the algorithm’s experiment-based calibration
are explained as well as derivation of a suitable objective function. The method’s
performance is compared with that of PSO and SHADE. Finally, its usability is
verified on six models of real engines.

Key words: PID controller, tuning coupled controllers, CMA-ES, black-box opti-
mization

Received: August 12, 2018 DOI: 10.14311/NNW.2019.29.020
Revised and accepted: October 24, 2019

1. Introduction

In a running combustion engine, one or more PID controllers ensure that certain
quantities (e.g. intake pressure or exhaust gas temperature) remain constant or
within given range. Since these quantities may be naturally related and affect each
other, controllers are often coupled and their gains cannot be tuned independently
of each other.

When engines are modeled, as in simulation software WAVE1, controllers may
and need to be tuned using simulations with little or no knowledge about the
transfer function that describes the system. The complicated finite-element model

∗Kateřina Henclová; Czech Technical University in Prague, Faculty of Nuclear Sciences and
Physical Engineering, Břehová 78/7, CZ-115 19 Praha 1, Czech Republic, E-mail: katerina.

henclova@fjfi.cvut.cz
1WAVE is 1D engine and gas dynamics simulation software package developed by Ricardo

Software [33] and it was used by the author of this paper. This software has been utilized by
world’s leading automobile companies for many years and has proven its modelling quality.

c©CTU FTS 2019 325

mailto:katerina.henclova@fjfi.cvut.cz
mailto:katerina.henclova@fjfi.cvut.cz

Neural Network World 5/2019, 325–344

cannot be described by a simple formula and, moreover, it comes with its own
modeling and discretization errors.

Presently, manual work makes up a major part of the controller tuning process.
This lengthy procedure is based on trial and error and requires a knowledgeable and
experienced control engineer. For systems with a single controller (or multiple but
decoupled controllers), simple rules of thumb can be employed (e.g. Ziegler-Nichols
[38]). Similar, already-solved problems can also provide a guideline. However, when
having a complicated or unique system of coupled controllers, the complexity of
the task makes it very difficult to solve even for an experienced control engineer.
Moreover, in our application of PID controllers within combustion engine models,
other professionals need to tune the controllers as well, creating the need for a
simple-to-use, robust tool.

Our goal is to formulate at least a part of the problem and deliver a method
that would eliminate or significantly lower the need for manual tuning. It should
find a solution within acceptable time and with as little user interaction as possi-
ble, making the controller tuning accessible for users with little experience. When
combined with simple tuning rules or educated guess, our method is to use the
provided solution approximation as a starting point and quickly find a more re-
fined solution. Further testing of solutions found by our method (such as verifying
their robustness) is, however, still left for manual post-processing. In principle,
it is simple to replace the proposed objective function by its expected value over
parametric uncertainties. However, the uncertainties on the parametric space are
not available for the considered application and thus it is not a part of this work.
Moreover, such approach would significantly increase the computational load.

The proposed method is used to design the controller gains for a predefined
trajectory of the controller. For more complex system that requires the use of gain
scheduling [1] or fuzzy PID [31], the proposed method will be used to design the
gain in the operational point designed by the supervising engineer. The engineer
will also be responsible for selection of the gain scheduling or fuzzy rules.

The PID tuning problem with either one controller or multiple but decoupled or
symmetric controllers can be and has been reformulated as a black-box optimization
problem and solved with an appropriate method. Evolutionary algorithms too have
been used to tune PID controllers, e.g. genetic algorithm [27], differential evolution
(DE) [5,22], particle swarm optimization (PSO) [7,8,29] and many hybrids [22,26].

The tuning problem with multiple coupled controllers can too be formulated as
an optimization problem, albeit more complex. (To the author’s knowledge, there
have not been any papers dealing with such problems.) A simple trick can be used
to carefully transform the multiple objectives (one for each controlled quantity)
into a single objective and thus enable the problem to be solvable by usual means.

The time budget sets the greatest limitation. With simulations taking up to
several minutes each, we aim for an overnight or a one-day computation on a regular
PC, i.e. a few thousand simulation runs at most. This imposes high expectations
upon efficiency of the method used.

Considering properties of the problem, we choose to use a variant of the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [15, 19, 20, 24], an evo-
lutionary algorithm founded deep in probability theory. It has proven to be very
effective and robust method in the extensive testing of Black-Box Optimization

326

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

Benchmarking (e.g. [4,18]), surpassing the above mentioned algorithms and many
others (on the relevant sort of problems). Despite its fame in the optimization
community and large number of practical applications, it has so far been little used
for tuning PID controllers [22,23,37] or similar problems [16,17].

In this paper, we experiment with the algorithm’s settings and come up with a
method that meets practical requirements, such as tolerable runtime, and is thus
fit for common use by engineers working with complicated simulations (e.g. users
of WAVE). Moreover, we demonstrate its applicability on six models of real-world
engines with one, two and three controllers.

For comparison with CMA-ES, we use PSO (as implemented in the software
package DEAP [6]) and a restarted version of SHADE (Success-History based
Adaptative DE [34]) with an implementation based on that by Tanabe [35]. We
show that they do not perform by far so well as CMA-ES.

2. Formulation of the problem

In this section, the multiple-controller tuning problem is formulated as a problem
of numerical optimization. Compared to other research on controller tuning [5, 7,
8,22,26,27], dealing with coupled controllers requires an extra level of complexity.

2.1 PID controllers in the context of engine simulations

PID controllers are well known and powerful tools in system control [9, 30]. Their
input is the error function

e(t) = |actual(t)− target(t)| , (1)

i.e. the time-dependent absolute difference between the desired target value and
the actual value of a quantity (as measured by a sensor or computed by a model).
The output control signal that defines the system’s subsequent reaction is given as

C(t) = Pe(t) + I

∫ t

0

e(τ)dτ +D
d

dt
e(t), (2)

where P , I and D are the proportional, integral and derivative gains, respectively.
In our application, the controllers’ implementation is provided within the sim-

ulation software WAVE. All the computations as well as the whole engine model
are given to us as a black box (as by an end user) and we cannot analyze them.
The software as well as the models are calibrated to mirror the real world. The
simulation is fully deterministic and we do not introduce any random perturbations
of environment variables during the tuning process.

We input the controllers’ gains into the simulation software and obtain com-
puted trajectory of the controlled quantities over time. Our goal is to find such
constant gains P , I and D for each controller, that the corresponding controlled
quantities converge to the target value and do so as quickly as possible. The entire
tuning process is offline but, due to nonlinearities in the system, the curve is not
as smooth as it is common for simple systems.

In this work, the initial values and the (nonzero) constant target values of the
controlled quantities are provided and comply the context of combustion engines.

327

Neural Network World 5/2019, 325–344

2.2 Definition of the objective function

With k controllers within a system, each determined by three constant gains P ,
I and D, there are 3k gains to be tuned: x = (P1, I1, D1, . . . , Pk, Ik, Dk).
When the controllers’ gains are set and the whole simulation is run, it outputs the
error functions ei(t) = ei(x, t), i = 1, . . . , n, described by Eq. (1). It remains to
process ei so that the final function value contains all information about the input’s
(candidate solution’s) quality. Without loss of generality, we always assume that
that higher quality inputs have lower function values, thus having the problem of
numerical minimization. For practical purposes, the minimizer found need not be
unique.

In this section, vector x is arbitrary but fixed. Hence, for simplicity of notation,
x shall be left out from the functions’ arguments.

2.2.1 Controlling multiple objectives

Let us assume for a moment that once controllers’ gains are set, quality of the
setting is characterized by functions Fi(t) : R3k → R, i = 1, . . . , n, that describe
the n controlled quantities’ development (simulation time t being given), i.e. n
objectives to be optimized. In our case, the number of controllers is the same as
the number of controlled quantities (i.e. k = n) but, in general, this is not required.
We expect k to be small, typically k ≤ 5.

These objectives can be combined into a single one using a weighted sum (see
e.g. [28]). Then the objective function describing the response of the whole model
is F (t) =

∑n
i=1 wi Fi(t), where wi is the weight constant corresponding to the

i-th controlled quantity. Since the range of Fis may differ significantly depending
on the corresponding units, we make them comparable by setting wi = pi/scalei,
where pi describes priority of the i-th objective (in this work, we always have
pi = 1, i = 1, . . . , n) and scalei contains knowledge of its typical value or range.
We further set scalei = targeti > 0 to be the (constant and nonzero) target value
of the i-th controlled quantity. targeti is the remainder of the integral under its
(constant) curve, considering that the simulation time is equal for all the objectives.

Thus we have

F (t) =

n∑
i=1

1

|targeti|
Fi(t) (3)

and it remains to define Fi(t).

2.2.2 Step-response based objective function

Defining Fi(t) is based on the step response curve, see Fig. 1. The step response
describes how the controlled quantity behaves after an engine is started. The
abrupt step change of the target value is the most difficult part for the controllers
to deal with. Once the engine is running, the changes in the environment and the
target values are not so sudden. Thus, when we tune the controllers for the “worst
case scenario”, there is a good reason to believe (supported by empirical evidence)
that they will be able to control other cases as well. When the environment changes
too much, e.g. hitting the extremes of RPM (rotations per minute), the controller
gains may be changed using gain scheduling [1].

328

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

Fig. 1 For a given setting of controllers, the error at time t is given as e(t) =
|actual(t)− target(t)|.

Functions Fi are naturally given by formula

Fi(t) =

∫ t

t0

T (τ) E(ei(τ)) dτ, t0 ≥ 0, (4)

where t0 is the initial time (typically t0 = 0), T (τ) is a function of time, E(ei(τ)) is
a function of error, ei(τ) is the error as defined in Eq. (1). In our case, t is given by
the end of the simulation. Function E(ei(τ)) describes the concern over the actual
error size, while T (τ) the concern over when the error occurs (i.e. T (τ) can also be
perceived as weight). The commonly used criteria of step response quality (IAE,
ITAE, ITSE or ISE) all fit this framework. Considering the application, the ITAE
criterion [10] was chosen:

ITAE(t) =

∫ t

0

τ |e(τ)| dτ. (5)

The information about when error occurs must not be lost even after combining
multiple objectives in Eq. (3), leading to further modifications. First, the time is
shifted, so that the value of one second loses its importance as a factor. Then,
nonconvergent solutions could be penalized. Or the importance of time can be
stressed by increasing the degree of its polynomial. Or the beginning of the time
interval can be left out, as the corresponding large error is – from the optimization
viewpoint – only noise. Various possibilities have been experimented with and the
best option found was to set

Fi(t) =

∫ t

t0

(τ + 1)|ei(τ)| dτ t0 ≥ 0. (6)

Selection of shift t0 ≥ 0, its justification and influence upon performance is dis-
cussed later.

2.2.3 The objective function

In previous steps, we have constructed the objective function

F (x, t) =

n∑
i=1

1

|targeti|

∫ t

t0

(τ + 1)|ei(x, τ)| dτ, (7)

329

Neural Network World 5/2019, 325–344

where n, targeti and 0 ≤ t0 < t are given and the error functions ei are computed
by the simulation software.

This objective function can be easily modified to fit the needs of other applica-
tions. For example, one can incorporate regularization to enforce smooth solutions.

2.3 Character of the problem and practical limitations

Character of the problem plays a crucial role when choosing a fitting method to
solve it. For any set of controllers’ gains, the FEM simulation provides us with all
data necessary to compute the objective function value Eq. (7) but we are forced
to take it as a black box. We can carefully assume that, in general, the objec-
tive function is non-convex, non-linear, non-quadratic and highly multimodal. It
is probably continuous and noiseless, but we know nothing of its conditioning or
geometry. There are no derivatives available and neigher can we presume smooth-
ness (that would allow for derivative approximation). Since gains cannot be tuned
independently of the others, the objective function is non-separable.

Practical limitations must be considered as well. Engine simulations, as in
WAVE, take up to several minutes (per case – when parameters like rotations
per minute etc. are fixed), but the time budget is limited. Usually aiming for
an overnight computation, we are allowed only a few thousand evaluations of the
objective function. That is, when parallelization is used, and therefore we require
the optimization algorithm to be parallelizable. Last but not least, the algorithm
must be robust – it must reliably produce decent results.

3. The optimization method

Metaheuristic and evolutionary methods have been extremely successful when tack-
ling hard black-box optimization problems. In order to find the best-fitting method
for our application, results of the extensive Black-Box Optimization Benchmarking
(BBOB) were consulted [3, 4, 18, 21]. The Covariance Matrix Adaptation Evolu-
tion Strategy with bi-population restart scheme (BIPOP-CMA-ES) has proven its
efficiency in the tests as well as in a growing number of practical applications.
However, its use for tuning of PID controllers remains scarce [22,23,37].

3.1 CMA-ES: idea of the basic algorithm

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [14, 15] is an
evolutionary algorithm that uses stochastic and algebraic tools to define optimally
diverse population of candidate solutions in an area that seems to be most promis-
ing. The size of the area and its location are determined based on the algorithm’s
previous experience with the objective function. New candidate solutions are sam-
pled from a multivariate normal distribution:

xk ∼ m+ σN (0, C), k = 1, . . . , λ, (8)

whose mean m and covariance matrix C are adapted in each generation along with
the general step size σ. The number of sampled candidate solutions λ is called the
population size.

330

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

The mean in the new generation is defined as weighted average of several best-
ranking individuals (the parent set) of the last generation. The weights are constant
and depend only on the individuals’ relative ranking. The covariance matrix is
supposed to capture information about the objective function’s features (curvature)
around the mean. The matrix of the previous generation is weighted and further
improved by exploiting the maximum likelihood principle (when estimating the
distribution’s parameters from the data) and by adding information of the overall
progress across generations (the evolution path). The latter technique is also used
for controlling the overall step length σ.

Authors of CMA-ES have designed the method so that minimal user interaction
or manual setting of parameters is necessary. The starting point is needed in order
to initiate the first mean m(0) but otherwise all the parameters are assigned usable
default values. A user might want to change only the initial step length σ(0) and
the population size λ. The parent set size is given as µ = 1

2λ. The population size
is by default very small, given by the formula λdef = 4+b3 log(d)c , where d is the
problem dimension [15]. For a given budget, smaller population size means faster
adaptation. More often than not, this is a desirable property. Choice of m(0) and
σ(0) is described further.

3.2 Extensions of the basic algorithm

The basic algorithm can be upgraded. In this application the elitist BIPOP-aCMA-
ES version is used, i.e. Covariance Matrix Adaptation Evolution Strategy [15]
with active covariance matrix updates [24], elitist scheme of parent selection [19]
and bi-population restart strategy [20]. The choice of this particular variant, as
well as setting the algorithm’s parameters, is supported by numerical experiments
described in Section 4.

3.2.1 Restart strategies

Restart strategies enable the basic algorithm to become more robust by outweighing
premature convergence. They are based on changing the population size, balancing
exploration of the search space and exploitation of the most promising areas.

The default population size λdef is small and the optimal population size may
be much larger. The IPOP (increasing population) strategy doubles the population
size (the factor of 2 is empirical) every time a new restart is launched, while other
parameters remain unchanged [2].

The more advanced BIPOP (bi-population) restart strategy [20] makes use of
two interlacing regimes. The first one uses the IPOP restart strategy, while the
second uses varying small populations. After each restart, it is decided which of the
two regimes is to be applied next depending on whose count of conducted function
evaluations is lower. The maximal population size is limited by the number of
restarts under the first regime.

Two restart criteria need to be set carefully and adjusted for each model, be-
cause they depend on its numerical values. TolFunHist defines the tolerance for
range of the best function values in recent history. TolFun defines the tolerance for
function values of the current generation. For both criteria, it was observed that
it is generally beneficial to try larger values first and diminish them if they invoke

331

Neural Network World 5/2019, 325–344

restarts too often (occurrence of premature restarts is usually obvious). Alterna-
tively, TolFun can be set to a small value, preferably a fraction of TolFunHist.
That way, most restarts are called by TolFunHist and only one restart criterion
needs tuning.

3.2.2 Elitist selection

There are multiple options of choosing parents of a new generation [19]. The ba-
sic algorithm selects all parents from the current generation (non-elitist selection).
However, this scheme does not exploit very good solutions found early in the search.
They are used as parents within the one generation that produced them and then
are lost. Selecting the parent set among the individuals of the current generation
and their parents as well (elitist selection) helps to preserve the exceptionally good
individuals until they are superseded and thus amplify their influence. This ap-
proach speeds up the convergence and is advantageous in our problem, where good
solutions are scarce. The downside is that it may, and sometimes it does, lead to
premature convergence to a local optimum.

3.2.3 Active covariance matrix adaptation

In the basic algorithm, the successful individuals are used for the covariance matrix
adaptation. Variance in directions that have proven to be beneficial is increased
and thus they are preferred when sampling next generation. With the so-called
active updates, information hidden in the unsuccessful individuals is exploited as
well [24]. As opposed to passive decay over time, variance in detrimental directions
is actively decreased. Besides telling the method where to go, we also tell it where
not to go.

3.3 Important properties of CMA-ES and their use

CMA-ES does not use gradients and it does not even presume their existence.
Moreover, it does not even use the actual values of the objective function once rel-
ative ranking has been assigned to the candidate solutions (except for some stop-
ping/restart criteria). As a result, transformations of the objective function that
have no effect upon the relative ranking of individuals do not effect the method’s
performance, making it more robust.

Further, the method exhibits invariance to invertible linear transformations of
the search space. In particular, CMA-ES is invariant to scaling of variables (coordi-
nate axes), which is the key property that makes it well-suited for tuning multiple
controllers: parameters of one controller are usually of roughly the same scale,
but with multiple controllers, the scaling may differ by many orders. Scaling of
variables is used in the following way. The algorithm is given an initial approx-
imation of the solution (hereafter called the reference point): s = (s1, . . . , sN).
Then, when the algorithm wants to evaluate vector v = (v1, . . . , vN), it scales it
by the reference point’s elements’ magnitudes and inputs vector w in the engine
model: w = (|s1| · v1, |s2| · v2, . . . , |sN | · vN). Because the scale coefficients are all
positive and signs of the variables are essential, the algorithm must always have a
zero vector as its starting point. Also, the initial step length is set to σ(0) = 1.0.

332

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

Algorithm 1 Elitist BIPOP-aCMA-ES

set λ, µ
initialize m,σ,C = I, pσ = 0, pc = 0
initialize restart regime = 1, count1 = 0, count2 = 0
while termination criteria not met do
while restart criteria not met do

if not first generation in a restart then
for i = 1, . . . , µ do
xi+µ = xi {parents of previous generation}
fi+µ = fi {parents’ objective function values}

end for
end if
for i = 1, . . . , λ do
xi ∼ N (m,σ2C) {sample new population from normal distribution}
fi = evaluate(xi) {evaluate xi with objective function}

end for
sort xi, i = 1, . . . , λ+ µ acc. to fi {assign relative (descending) ranking}
m∗ = m
m = update m(xi, . . . , xµ) {move the mean utilizing the parents}
{the evolution paths contain information about past progress}
pσ = update pσ(pσ, σ

−1C−1/2(m−m∗)) {isotropic evolution path update}
pc = update pc(pc, σ

−1(m−m∗), ‖pσ‖) {anisotropic evolution path update}
C = update C(C, pc, (x1 −m∗)/σ, . . . , (xλ+µ −m∗)/σ) {covariance matrix up-

date}
σ = update σ(σ, ‖pσ‖) {step size update}
if restart regime = 1 then
count1 = count1 + λ

else
count2 = count2 + λ

end if
end while
if count1 < count2 then

restart regime = 1
else

restart regime = 2
end if
reinitialize parameters and variables acc. to selected restart regime

end while

4. Experiment-based calibration of the optimiza-
tion method

For the experiments, the 1D engine simulation software package WAVE by Ricardo
Software was used [33], as the primary incentive was to develop a working auto-
mated tuner of PID controllers within WAVE. CMA-ES Python code provided by
the method’s author [11] was used.

333

Neural Network World 5/2019, 325–344

Since models of engines take several minutes to run, while the CMA-ES run-
time is negligible, time will be measured in number of evaluations of the objective
function (= number of simulation runs).

4.1 The basic testing model

For the algorithms’ calibration and basic testing, a quick-to-run model with three
strongly coupled controllers was used. It is known that these controllers can be
tuned well using only P and I gains (setting D = 0) as well as using all available
P, I and D gains.

The model is depicted in Fig. 2. It represents a single cylinder (orange circle)
engine. The blue “clouds” contain information about the surroundings (e.g. am-
bient pressure and temperature or initial fluid composition). The thick black lines
depict the ducts. The green element is an orifice – an opening of variable diameter.
The yellow PID elements are the controllers to be tuned. From left to right, the
first PID controller controls the orifice diameter, the second one controls the fuel-
air ratio by manipulating the fuel injector, and the third controls the compression
ratio (the ratio of the maximum to minimum volume in the cylinder). The arrow-
like elements are actuators that perform the actual mechanical control based on
the control signal outputted by the corresponding controllers.

The controlled quantities measured by sensors (depicted as gray circles) are:
indicated mean effective pressure (IMEP; the average pressure acting upon the
piston during its cycle; controlled by adjusting the fuel-air ratio), exhaust gas
temperature (controlled by the compression ratio, i.e. the ratio of largest and
smallest possible capacity of the combustion chamber), volumetric efficiency (the

Fig. 2 The basic testing model in WAVE.

334

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

ratio of the volume of fluid actually displaced by a piston; controlled by opening
of the orifice). Clearly, they influence each other heavily, so the controllers are
coupled and cannot be tuned independently of each other.

When start of the engine is simulated, the controllers face a simultaneous step
change of all three target values. Appropriate target values of the controlled quan-
tities are provided. In Fig. 3, each plot contains two step responses. Controllers
tuned by an engineer (hereafter called the baseline solution) yield the dark blue
curves. This solution is sufficient but, apparently, a solution found by our method
(light blue) is even better. More importantly, it can be reached with little user
interaction, saving a lot of expert manual work.

Fig. 3 The basic testing WAVE model: comparison of good solutions. Pink: the
target value, dark blue: tuned by engineer, light blue: tuned by the algorithm.

However, most candidate solutions are unacceptable: oscillatory, convergent to
a different value in one or more criteria, or even divergent (see Fig. 4). Nevertheless,
it is important to observe the development of the quantities’ values in order to
determine the shift t0 used in the objective function. Larger t0 means greater risk

Fig. 4 The basic testing WAVE model: unsatisfactory solutions still provide enough
information to estimate a fitting shift.

335

Neural Network World 5/2019, 325–344

of leaving out important information but possibly faster search. As a rule of thumb,
a time point is chosen just before the initially erratic curve starts to follow a trend.
It seems fitting to set the total simulation time such that the shift makes up the
first 20%.

Setting t0 > 0 is specific to our problem, where it is guaranteed empirically
that leaving out most of the transient part (i.e. where 0 < τ < t0) does not lead to
unacceptable solutions. This approach reduces the “noise” in the objective function
caused by the information contained in the transient part, making the problem
easier to solve by an optimization method. However, this approach certainly cannot
be used in all applications of PID controllers, especially when large overshoot is an
issue, e.g. due to circuit breakers.

4.2 Tuning CMA-ES

CMA-ES was tuned using the basic testing model with PI controllers only (i.e. all
derivative gains were set to zero as is common in this application). The experimen-
tal evidence summarized in Tab. II shows that the average run times of the tuned
method are very similar for PI and PID modes. The D parameters were, however,
included in testing – both with the basic test model (Tab. II) and other, real-world
models (Tab. III).

Because the method uses randomness and each run is different, each test was
run ten times and minimum, maximum and average run times were computed. The
same reference point (i.e. scaling) of rather ‘poor quality” is used for all runs of
all tests. Compared to the vector of a good solution, its elements are off by two
orders of magnitude on average.

There are two simple termination criteria. Either the target objective function
value is hit or the budget of 12000 function evaluations is depleted. A different
solution might be found each time, but setting the target value to 0.5 ensures high
quality of any of them (all the corresponding step responses are almost identical).
In practice, however, the algorithm should be stopped manually by the user because
the desired objective function value varies greatly from model to model and the
target value is difficult to estimate. We recommend the current-best solution to be
plotted as its corresponding set of step responses. Then the human intervention is
simple enough to be done even by an inexperienced user.

The results are summarized in Tab. I. The best setting found is always compared
to the setting, where one or two specified attributes were changed.

When choosing a variant of CMA-ES, the results show that the best combi-
nation is the elitist parent selection scheme with active updates of the covariance
matrix and cumulative step-size adaptation (CSA) step size adaptation. CSA [15]
uses information of the algorithm’s overall progress across generations, while the
alternative two-point step-size adaptation (TPA) [12]) implements a line search
along the direction of the latest mean shift.

Then we experiment with the initial population size λ0 (i.e. the population
size before the first restart). For a given cost, smaller populations enable more
generations than large populations, causing faster adaptation [15]. Larger popu-
lations perform more exhaustive search. Using smaller than default populations
is discouraged by Hansen but bigger populations can sometimes be more efficient,

336

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

setting min max average

active, not elitist 644 10877 4145
CMA-ES variants elitist, not active 327 5361 2184

not active, not elitist 812 > 12000* > 5334

adaptation method TPA 926 > 12000* > 4724

λ0, µ0 λ0 = 2λdef, µ0 = λdef 1533 8812 3273
λ0 = 2λdef, µ0 = 1/2λdef 697 10973 4181

0.8× 1.5 987 8980 3147
TolFunHist 1.2× 1.5 674 4990 2058

2.0× 1.5 871 4960 2837

shift t0 0.0 s 919 9567 3687
0.6 s (10%) 354 11169 2963

BEST setting 268 2267 1098

Tab. I Experiments’ results comparing various settings of CMA-ES and the ob-
jective function, where always only the specified attribute or two were changed from
the BEST setting (shift t0 = 1.2s (20%), CMA-ES variants = active and elitist,
adaptation method = CSA, population size λ0 = λdef, parent set size µ0 = 1/2λdef,
restart parameter TolFunHist = 1.5). Entries marked *: number of evaluations
once exceeded the maximum number of iterations allowed. When computing the
corresponding average value, the value of 12000 was used in such cases, resulting
in lower-bound for the average run time.

so double initial population size is tested: λ0 = 2λdef. The parent set size µ0,
by default equal to half of the population size, is then either doubled as well (i.e.
µ0 = 1

2λ0) or it stays the same (i.e. µ0 = 1
2λdef).

The best working value of the influential restart parameter TolFunHist (toler-
ance in function value history) for the basic testing model was found to be n/2,
where n = 3 is the number of controlled quantities. It was further observed that
setting n/2 seems to be almost universally usable in our context, even though the
optimal value differs for each model. The tolerance in function value was set to
TolFun = 0.1 for the basic testing model and later roughly adjusted for other mod-
els, scaled in proportion to the “usual” numerical values of the objective function
and expected threshold.

In the objective function, shift t0 = 1.2 second proved to be most effective.
For detailed parameter description see the CMA-ES tutorial [13].

4.3 Testing the method’s robustness

Now the baseline solution is taken and other reference points are derived from it by
multiplying each of its elements by factors 10−3, 10−2, 10−1, 101, and 102 (scaling
by 103 proved to be too challenging for all tested methods). They simulate various
quality of user’s estimate and are used to test the consequent change in the tuned
method’s performance.

337

Neural Network World 5/2019, 325–344

In these tests, both PI and PID controllers are considered. Since there are no
PID baseline solutions with nonzero D parameters available, they are estimated
based on the corresponding magnitudes of P and I parameters.

Results are summarized in Tab. II together with other methods’ robustness
tests. The run times are very good: of 120 runs, 8 reached 2000 to 3000 evalu-
ations and only two exceeded 3000 evaluations. Surprisingly, there is no greater
difference between the 6-dimensional PI setting and 9-dimensional PID setting,
dimensionality being balanced by the system’s greater flexibility. Closer look at
algorithms’ behavior suggests that too large search area (i.e. scaling) leads to “nee-
dle in haystack” type of situation. The run times are also influenced by the fact
that there exist good solutions at the “10−1 level”.

To conclude, when the reference point (scaling) is within a reasonable range
of two orders of magnitude in each coordinate, the average run times are very
usable. A user should be able to provide such a reference point – an estimate of
the solution. If in doubt, as a rule of thumb, magnitudes of the reference point’s
coordinates should be chosen rather smaller than larger.

5. Comparison with PSO and SHADE

Performance of the above-described variant of CMA-ES on the problem of tuning
coupled controllers was further compared with performance of two other prominent
evolutionary algorithms: the particle swarm optimization (PSO) and the differen-
tial evolution (DE) in its success-history based adaptive variant SHADE.

5.1 PSO

PSO [25] is inspired by bird flocks or fish schools, where every individual moves
by itself, yet the whole self-organized system acts as a single organism. Each
particle within a swarm moves in the search space as it is assigned a different
“velocity” vector in each generation. This vector is defined as a combination of the
previous “velocity”, the individual’s best known position so far and the swarm’s
(or sub-swarm’s) best known position. This way, the whole swarm moves towards
historically best areas.

For PSO implementation, the default setting of PSO in the DEAP (Distributed
Evolutionary Algorithms in Python) optimization framework [6] is used, adding
only the essential scaling of variables as described above.

5.2 SHADE

The basic DE algorithm [32] maintains a population of candidate solution, which
are further combined and tested for better objective function values. Each candi-
date solution X is tested against a new point Z, which was obtained as a binary
crossover ofX and Y = A+f(B−C), where A, B and C are three distinct candidate
solutions in the population and f ∈ [0, 2] is a parameter. The crossover probability
of each vector element is given by parameter cr ∈ [0, 1]. Both parameters and the
population size greatly influence efficiency of the search.

338

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

Considering the context of our problem and the performance-comparing tests in
[36], the SHADE variant of DE was chosen to compete with CMA-ES. This upgrade
[34] introduces adaptation of parameters cr and f based on success history that is
stored in an external archive.

Implementation of the SHADE algorithm by Tanabe was used [35] and tuned
in accordance with its author’s recommendations [36] and additional experiments,
setting, most notably, initial cr = 0.5, initial f = 0.5 and population size = 2n,
where n is the problem dimension. One restart criterion was added to the standard
SHADE algorithm, based on recommendations in [36]: if the number of objective
function evaluations exceeds 1000, restart can be launched if the best-so-far solution
is not updated for 50 × n evaluations. The particular numbers were set based on
experiments and the first condition proved very important.

Unlike in CMA-ES and PSO, the reference point is not used for scaling but
to define boundaries of the area, from which the initial population is sampled.
Each coordinate of the reference vector is multiplied by −10 and 10 to define the
boundaries. Candidate solutions in further generations are not restricted.

5.3 PSO and SHADE experiment results

The experiments with PSO and SHADE were performed with same set of 13 ref-
erence points as in the previous tests of CMA-ES, with 5 runs of each test. The
stopping criteria were either hitting the target value of the objective function or
depleting the budget of 10000 objective function evaluations. See Tab. II for results.

PSO was able to outperform CMA-ES but was not very reliable. Its good
performance was limited to very good reference points and the algorithm very
often (36 out of total 65 runs) did not converge within the given budget.

The performance of SHADE was more consistent but very slow compared to
CMA-ES. Same as PSO, SHADE never converged within the given budget for the
reference points of baselines multiplied by 101 and 102 or the one used for CMA-ES
calibration.

6. Verification of the method on models of real
engines

It was shown that, on the testing model, the described version of CMA-ES performs
very well and clearly outperforms PSO and DE. Its usability is now verified on
models of real engines provided by Ricardo. The testing set consists of two models
with 1 controller (labeled M1.1, M1.2), three models with 2 controllers (labeled
M2.1, M2.2, M2.3) and one model with 3 controllers (labeled M3.1). A baseline
setting of controllers is given for each model: a PI controller setting tuned manually
by an engineer.

The single-controller models are tested with 5 reference points: the baseline
solution and its element-wise multiples by factors 10−2, 10−1, 101 and 102. The
multi-controller models are tested with three reference points: the baseline solution
and its multiples of 10−1 and 101. The primary reason for this restriction is the
enormous time consumption. Each test is run five times. A run is terminated upon

339

Neural Network World 5/2019, 325–344

P
S

O
ru

n
s

S
H

A
D

E
ru

n
s

C
M

A
-E

S
ru

n
s

av
er

a
g
e

ru
n

ti
m

e
re

fe
re

n
ce

p
.

#
1

#
2

#
3

#
4

#
5

#
1

#
2

#
3

#
4

#
5

m
in

m
a
x

P
S

O
S

H
A

D
E

C
M

A
-E

S

P
I

b
as

el
in

e
11

3
61

–
–

–
1
3
0

3
9
6

3
4
1

2
1
0
0

1
5
5

1
2

1
6
8

–
6
2
4

7
6

10
1

P
I

b
.

–
–

–
–

–
–

–
–

–
–

5
4
0

2
0
6
4

–
–

1
0
4
9

10
2

P
I

b
.

–
–

–
–

–
–

–
–

–
–

8
2
1

5
7
0
0

–
–

2
0
6
1

10
−
1

P
I

b
.

56
76

48
3
9

3
2

3
4
2

1
5
6

1
5
6
0

2
6
0

5
3
8

6
1

8
1
6

5
0

5
7
1

3
1
7

10
−
2

P
I

b
.

89
3

-
48

3
2
26

4
03

5
1
5
5

1
5
1
4

2
7
8
3

1
4
3
7

2
1
2
3

2
2
2

1
3
3
4

–
2
6
0
2

5
9
2

10
−
3

P
I

b
.

-
-

-
-

1
60

0
4
1
1
8

1
0
9
0

2
1
0
2

1
2
4
3

1
4
2
2

2
5
9

1
6
1
7

–
1
9
9
5

8
1
2

P
ID

b
as

el
in

e
56

2
28

10
5

7
1

2
8

4
2
8

3
0
7

4
9
7

4
4
1

6
5
8

3
2

2
5
6

1
5
9

4
6
6

6
7

10
1

P
ID

b
.

–
–

–
–

–
–

–
–

–
–

6
2

1
4
6
2

–
–

1
1
0
2

10
2

P
ID

b
.

–
–

–
–

–
–

–
–

–
–

9
5
3

4
1
3
0

–
–

2
0
2
2

10
−
1

P
ID

b
.

33
16

4
10

4
2
80

43
2
3
9

4
1
8

2
0
9

4
3
7

3
9
0

1
4
1

7
8
2

1
2
5

3
3
9

3
4
3

10
−
2

P
ID

b
.

38
7

62
4

30
1

11
86

–
6
5
2
4

1
0
1
8

1
1
5
0

3
2
9
7

1
5
5
6

2
0
2

9
4
1

–
2
7
0
9

5
8
0

10
−
3

P
ID

b
.

–
–

13
62

17
34

16
80

1
6
7
3

2
1
2
5

1
9
4
5

1
4
7
7

2
1
6
3

4
1
6

2
3
2
4

–
1
8
7
7

1
1
3
8

ca
li

b
.

re
f.

p
.

–
–

–
–

–
–

–
–

–
–

2
6
8

2
2
6
7

–
–

1
0
9
8

T
a
b
.
II

R
es

u
lt

s
o
f

a
lg

o
ri

th
m

te
st

in
g

o
n

th
e

ba
si

c
m

od
el

.
5

P
S

O
ru

n
s,

5
S

H
A

D
E

ru
n

s
a
n

d
1
0

C
M

A
-E

S
ru

n
s

w
er

e
pe

rf
o
rm

ed
fo

r
ea

ch
o
f

1
3

re
fe

re
n

ce
po

in
ts

.
T

h
e

va
lu

e
o
f

“
–
”

m
ea

n
s

th
a
t

a
sa

ti
sf

a
ct

o
ry

so
lu

ti
o
n

(i
.e

.
so

lu
ti

o
n

w
it

h
fu

n
ct

io
n

va
lu

e
le

ss
th

a
n

0
.5

)
w

a
s

n
o
t

fo
u

n
d

w
it

h
in

th
e

p
ro

vi
d
ed

bu
d
ge

t
o
f

1
0

0
0
0

fu
n

ct
io

n
ev

a
lu

a
ti

o
n

s.
A

ve
ra

ge
ru

n
ti

m
e

w
a
s

n
o
t

co
m

p
u

te
d

if
o
n

e
o
r

m
o
re

ru
n

s
d
id

n
o
t

fi
n

is
h

w
it

h
in

th
e

gi
ve

n
bu

d
ge

t.

340

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

reaching the (empirically set) target value specific to the given model or budget
depletion. Solutions are not necessarily unique.

All results are summarized in Tab. III.

model reference p. min max aver.

PI baseline 2 68 28
101 PI b. 35 153 79

M1.1 102 PI b. 95 519 225
10−1 PI b. 20 120 66
10−2 PI b. 49 296 123

PI baseline 1 22 9
101 PI b. 4 28 11

M1.2 102 PI b. 80 225 187
10−1 PI b. 34 100 51
10−2 PI b. 57 181 94

PI baseline 11 66 35
M2.1 101 PI b. 244 280 255

10−1 PI b. 4 32 21

PI baseline 8 98 29
M2.2 101 PI b. 60 770 364

10−1 PI b. 44 107 64

PI baseline 9 78 32
M2.3 101 PI b. 250 757 629

10−1 PI b. 49 1188 347

PID baseline 10 91 57
M2.3 101 PID b. 274 857 522

10−1 PID b. 82 1576 749

PID baseline 41 331 152
M3.1 101 PID b. 827 1763 1268

10−1 PID b. 179 3867 2476

Tab. III Real-world models

6.1 Single-controller models

The single-controller models are included because of their importance in practical
use and they represent the typical use of a PI controller in a combustion engine.
Model M1.1 contains a turbocharger and M1.2 contains a twin turbocharger.

With dimension being only 2, the run times for both models are very short.
Good reference points for single controllers can be obtained by commonly used rules
of thumb (e.g. Ziegler-Nichols) or provided by previous (personal or programmed)
experience with similar models.

341

Neural Network World 5/2019, 325–344

6.2 Multi-controller models

The two-controller models M2.1 and M2.2 do not pose a greater challenge than
the single-controller models. For M2.3, PI and PID control is compared. The
extreme differences in minimal and maximal run time values of “10−1 PI baseline”
and “10−1 PID baseline” tests are caused by non-optimal setting of the restart
parameter tolerance in function value history (tolhistfun) described above. After
adjustment, the “10−1 PI baseline” and “10−1 PID baseline” run times drop and
the results of PI control resemble those of M2.2.

Unlike the previous cases, the three-controller model M3.1 requires a full PID
control. The reference point was obtained by estimating the D gains and adding
them to the given (not very good) PI engineer-tuned baseline “solution”. It can be
seen that this model is considerably harder to tune than the previous models. While
the algorithm has no trouble finding the same near-optimal “solutions” similar to
the one given by an engineer, it was hard to get to an actual global optimum, when
all three controlled quantities converge.

7. Conclusion

This paper has shown how the Covariance Matrix Adaptation Evolution Strategy
can be applied to the problem of tuning the gains of multiple coupled PID con-
trollers within combustion engine simulations. It was shown that its version with
bi-population restart scheme, elitist parent selection and active covariance matrix
updates is capable of finding good parameters of up to three PID controllers through
minimization of a fitting objective function. The method has been calibrated on
a testing model and verified on models of real-world engines, showing its practical
usability and tolerable computation times even for poor-quality reference points.
On the testing model, CMA-ES clearly outperformed PSO and SHADE methods.

Acknowledgement

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors. The author would like to thank Ricardo
Prague, s.r.o. for their support.

References

[1] ÅSTRÖM K. J., WITTENMARK B. Adaptive Control: Second Edition. Courier Corpora-
tion, 2013. ISBN 9780486319148.

[2] AUGER A., HANSEN N. A restart CMA evolution strategy with increasing population
size. In: B. McKay et al., editors, The 2005 IEEE International Congress on Evolutionary
Computation (CEC’05), 2005, 2, pp. 1769–1776, doi: 10.1109/CEC.2005.1554902.

[3] AUGER A., FINCK S., HANSEN N., ROS R. BBOB 2009: Comparison Tables of All
Algorithms on All Noiseless Functions. Technical Report RT-0383, INRIA, April 2010.

[4] AUGER A., FINCK S., HANSEN N., ROS R. BBOB 2010: Comparison Tables of All
Algorithms on All Noiseless Functions. Technical Report RT-388, INRIA, September 2010.

342

http://dx.doi.org/10.1109/CEC.2005.1554902

Henclová K.: Using CMA-ES for Tuning Coupled PID Controllers within. . .

[5] BINGUL Z. A new pid tuning technique using differential evolution for unstable and inte-
grating processes with time delay. In: Neural Information Processing: 11th International
Conference, ICONIP 2004, Calcutta, India, November 22-25, pp. 254–260, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30499-9.

[6] FORTIN F.A., RAINVILLE F.M., GARDNER M.A., PARIZEAU M., GAGNÉ. C. DEAP:
Evolutionary Algorithms Made Easy. Journal of Machine Learning Research, 13, pp. 2171–
2175, Jul 2012.

[7] GAING Z.L. A particle swarm optimization approach for optimum design of PID controller
in AVR system. IEEE Transactions on Energy Conversion, 19(2), pp. 384–391, June 2004.
ISSN 0885-8969.

[8] GHOSHAL S.P. Optimizations of PID gains by particle swarm optimizations in fuzzy based
automatic generation control. Electric Power Systems Research, 72(3), pp. 203–212, 2004,
doi: 10.1016/j.epsr.2004.04.004.

[9] GOODWIN G.C., GRAEBE S.F., SALGADO M. E. Control System Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2000. ISBN 0139586539.

[10] GRAHAM D., LATHROP R.C. The Synthesis of Optimum Transient Response: Criteria
and Standard Forms. Transactions of the American Institute of Electrical Engineers, Part
II: Applications and Industry, 72(5), pp. 273–288, Nov 1953. ISSN 0097-2185.

[11] HANSEN N. cma 1.1.06: Python Package. https://pypi.python.org/pypi/cma.

[12] HANSEN N. CMA-ES with Two-Point Step-Size Adaptation. Research Report RR-6527,
INRIA, 2008.

[13] HANSEN N. The CMA Evolution Strategy: A Tutorial. http://arxiv.org/abs/1604.00772,
2016.

[14] HANSEN N., KERN S. Evaluating the CMA evolution strategy on multimodal test func-
tions. In: International Conference on Parallel Problem Solving from Nature, pp. 282–291.
Springer, 2004.

[15] HANSEN N., OSTERMEIER A. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2), pp. 159–195, 2001, doi: 10.1162/

106365601750190398.

[16] HANSEN N., NIEDERBERGER A.S.P., GUZZELLA L., KOUMOUTSAKOS P. Evo-
lutionary optimization of feedback controllers for thermoacoustic instabilities. In: IU-
TAM Symposium on Flow Control and MEMS, pp. 311–317. Springer, 2008, doi: 10.1007/
978-1-4020-6858-4_36.

[17] HANSEN N., NIEDERBERGER A.S.P., GUZZELLA L., KOUMOUTSAKOS P. A method
for handling uncertainty in evolutionary optimization with an application to feedback control
of combustion. IEEE Transactions on Evolutionary Computation, 13(1), pp. 180–197, 2009.

[18] HANSEN N., AUGER A., ROS R., FINCK S., POSIK P. Comparing Results of 31 Algo-
rithms from the Black-Box Optimization Benchmarking BBOB-2009. Workshop Proceedings
of the GECCO Genetic and Evolutionary Computation Conference 2010, pp. 1689–1696,
2010.

[19] HANSEN N., ARNOLD D.V., AUGER A. Evolution Strategies. In: J. Kacprzyk and W.
Pedrycz, editors, Springer Handbook of Computational Intelligence, chapter 44, pp. 871–898.
Springer Berlin Heidelberg, 2015. ISBN 9783662435052.

[20] HANSEN N. Benchmarking a BI-population CMA-ES on the BBOB-2009 Function Testbed.
In: Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, GECCO ’09, pp. 2389–2396, 2009. ISBN
978-1-60558-505-5.

[21] HANSEN N., FINCK S., ROS R. COCO – COmparing Continuous Optimizers: The Docu-
mentation. Research Report RT-0409, INRIA, May 2011.

[22] IRUTHAYARAJAN M.W., BASKAR S. Evolutionary Algorithms Based Design of Multi-
variable PID Controller. Expert Syst. Appl., 36(5), pp. 9159–9167, July 2009. ISSN 0957-
4174.

343

http://dx.doi.org/10.1016/j.epsr.2004.04.004
https://pypi.python.org/pypi/cma
http://arxiv.org/abs/1604.00772
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1007/978-1-4020-6858-4_36
http://dx.doi.org/10.1007/978-1-4020-6858-4_36

Neural Network World 5/2019, 325–344

[23] IRUTHAYARAJAN M.W., BASKAR S. Covariance Matrix Adaptation Evolution Strategy
Based Design of Centralized PID Controller. Expert Syst. Appl., 37(8), pp. 5775–5781,
August 2010. ISSN 0957-4174.

[24] JASTREBSKI G.A., ARNOLD D.V. Improving evolution strategies through active covari-
ance matrix adaptation. In: IEEE Congress on Evolutionary Computation – CEC 2006, pp.
2814–2821, 2006.

[25] KENNEDY J., EBERHART R.C., SHI Y. Swarm Intelligence. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2001. ISBN 1-55860-595-9.

[26] KORANI W.M., DORRAH H.T., EMARA H.M. Bacterial foraging oriented by Particle
Swarm Optimization strategy for PID tuning. In: Computational Intelligence in Robotics
and Automation (CIRA), 2009 IEEE International Symposium on, pp. 445–450, Dec 2009.

[27] KWOK D.P., SHENG F. Genetic algorithm and simulated annealing for optimal robot arm
PID control. In: Evolutionary Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on, pp. 707–713. IEEE, 1994.

[28] MARLER R.T., ARORA J.S. Survey of multi-objective optimization methods for engineer-
ing. Structural and multidisciplinary optimization, 26(6), pp. 369–395, 2004.

[29] MONTAZERI-GH M., JAFARI S., ILKHANI M.R. Application of particle swarm optimiza-
tion in gas turbine engine fuel controller gain tuning. Engineering Optimization, vol. 44, pp.
225–240, 2012.

[30] OGATA K. Modern Control Engineering. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2nd edition, 1990. ISBN 0135891280.

[31] PETROV M., GANCHEV I., TANEVA A. Fuzzy PID control of nonlinear plants. Intelligent
Systems, 2002. Proceedings. 2002 First International IEEE Symposium, 1, pp. 30–35. IEEE,
2002.

[32] PRICE K., STORN R.M., LAMPINEN J.A. Differential Evolution: A Practical Approach
to Global Optimization. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN
3540209506.

[33] Ricardo Software. WAVE Manual, 2017.

[34] TANABE R., FUKUNAGA A. Success-History Based Parameter Adaptation for Differential
Evolution. IEEE CEC, 2013, pp. 71–78.

[35] TANABE R., FUKUNAGA A. Evaluating the performance of SHADE on CEC 2013 bench-
mark problems. IEEE CEC, 2013, pp. 1952–1959.

[36] TANABE R., FUKUNAGA A. Tuning Differential Evolution for Cheap, Medium, and
Expensive Computational Budgets. IEEE CEC, 2015, pp. 2018–2025.

[37] WAKASA Y., KANAGAWA S., TANAKA K., NISHIMURA Y. Pid controller tuning based
on the covariance matrix adaptation evolution strategy. IEEJ Transactions on Electronics,
Information and Systems, 130(5), pp. 737–742, 2010.

[38] ZIEGLER J.G., NICHOLS N.B. Optimum Setting for Automatic Controller. ASME trans-
action, 1942, pp. 759–768.

344

