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Abstract

This study reports on a classroom-based intervention that lasted eight lessons with the
particular focus of exploring whether and how specific activities, strategies, and questions may
promote an enquiring atmosphere in a mathematics classroom, i.e., a classroom environment
in which students feel safe to investigate new mathematical ideas in order to produce, share,
and test their conjectures in search for a proof. Although many researchers agree on the central
role that conjectures and proofs should play in all students’ mathematical experiences, many
students find it difficult to engage with conjecturing and proving. In this paper we argue that
the classroom atmosphere has a crucial influence in helping students to overcome these
difficulties and we focus our investigation on an English secondary mathematics classroom
taught by the first author. Students’ responses to questionnaires, prompts, tasks, and interview
questions were analysed in order to evaluate the impact of the intervention. The analysis
suggests that specific activities, strategies, and questions can be used by teachers to facilitate
an enquiring classroom atmosphere. However, for these to be effective, the teacher needs to
explicitly teach students how to listen, question, and ponder in order to give students the tools
to formulate conjectures and proofs.



1. Introduction

Johnston-Wilder and Mason (2005) state that mathematical thinking only arises when
conjectures or assertions to be justified are formulated. In other words, learners should be
encouraged to investigate problems, state their conjectures, and try to prove or refute them.
Moreover, Johnston-Wilder and Mason (2005, p. 243) suggest that “one of the most important
things that a school can contribute in the way of developing learners’ powers is to engender
an enquiring atmosphere” where students feel safe to share their mathematical ideas and
receive constructive feedback. Therefore, promoting students’ engagement in conjecturing
and proving activity, on the one hand, and developing an enquiring atmosphere, on the other
hand, are two sides of the same coin.

Although doing and learning mathematics within the discipline usually involves creating and
proving conjectures, it is not common to see the same practice in school mathematics
classrooms; the classroom practices of teacher-researchers such as Deborah Ball (Ball & Bass,
2000, 2003; Stylianides, 2007, 2016), Magdalene Lampert (Lampert, 1990, 1992, 2001), and
Vicky Zack (Reid, 2002; Zack, 1997) constitute notable exceptions. However, as pointed out
by Stylianides, Stylianides, and Weber (2017), in recent years there has been a growing interest
in introducing the activity of proving in primary and secondary schools.

Curriculum frameworks in different countries are now calling for an important role for
conjecturing and proving in the mathematical experiences of all students and as early as the
elementary school. Examples can be found in the United States, in the Common Core State
Standards (National Governors Association Center for Best Practices & Council of Chief State
School Officers [NGA & CCSSO], 2010) and the influential document of the Principles and
Standards for School Mathematics published in 2000 by the National Council of Teacher of
Mathematics (NCTM, 2000) and, in England, in the latest National Mathematics Curriculum
(Department for Education, 2013). For example, one of the three core aims that the National
Mathematics Curriculum in England sets for students of all ages relates to proof: “[Students
should] reason mathematically by following a line of enquiry, conjecturing relationships and
generalisations, and developing an argument, justification or proof using mathematical
language” (Department for Education, 2013, p. 3). A similar statement was also included in
the Principles and Standards (NCTM, 2000) powerfully stating that, if learners should learn to
conjecture, formulate mathematical arguments and respond to others’ comments, then it is
crucial to create an environment that encourages these activities. In such a learning
environment, students should feel safe to share their ideas and believe that their thinking is
listened to and valued. Differences should be appreciated and learners should respect others’
thoughts and be able to critically analyse them (Ball & Bass, 2003).

Being aware of the central role that teachers play in creating quality classroom environment
(Yackel & Cobb, 1996; Stylianides, 2016), we designed an intervention that was implemented
by the first author in a Year 9 classroom (13-14 year-olds) in a secondary comprehensive
school in England. The particular focus of the intervention was to explore whether and how
specific activities, strategies, and questions may promote an enquiring atmosphere in a
mathematics classroom, whereby with enquiring atmosphere we refer to a classroom



environment in which students feel safe to investigate new mathematical ideas in order to
produce, share, and test their conjectures in search for a proof.

In brief, the intervention, which lasted over eight lessons, focused on teaching learners to listen,
question, and ponder. The activities included the ‘three before me’ (3B4ME) strategy to
encourage independence, and think-pair-share activities valuing the state of being stuck in the
problem solving process. In relation to strategies, pupils were encouraged to write some
examples to conjecture, to explicitly state their conjectures, and to use different representations
(algebraic, verbal, pictorial) to write proofs. Eight types of oral questions were gradually
introduced in the lessons as well as two types of written questions (general statements and
collections of examples).

2. Literature review

In the first part of this section we will clarify the meaning we will attribute to ‘conjecture’ and
‘proof” and we will focus on the processes involved in the proving activity. In the second part
we will focus on the classroom atmosphere that can support this activity and we will reflect
on the role of the teacher in promoting an enquiring atmosphere. Finally, we will concentrate
on the role that specific questioning can play in supporting learners in conjecturing and
producing proofs.

2.1 The proving activity

2.1.1 Conjectures

A conjecture is a mathematical statement whose truth seems plausible but is still uncertain. In
other words, it is a “reasoned hypothesis about a general mathematical relation based on
incomplete evidence” (Stylianides, 2008, p. 11). This definition highlights two important
aspects of a conjecture.

First, a conjecture needs to be reasoned and plausible, and arbitrary guesses cannot be
considered as conjectures. Indeed, a conjecture should be sustained by preliminary work,
which can derive from different ways of reasoning (e.g. pattern observing, deducing by
analogy) and should suggest the possible truth of the statement (Fischbein, 1987).

Second, the notion of ‘hypothesis’ highlights the uncertainty of the conjecture because its truth
or falsity still has to be showed. However, as Reid (2002) points out, different people may
judge the correctness of a statement in different ways. In other words, someone can still have
doubts on the truth of a statement while others could have already accepted it as true. This
tension can be useful in a classroom in order to emphasise the importance of producing a proof
or a counter-example to confirm or reject a conjecture. As Mason, Burton, and Stacey (1982)
suggest, learners should be encouraged not to believe their conjectures but to be ready to test
them and, if necessary, modify them.



2.1.2  Proofs

In the mathematics education research literature different meanings are attributed to the notion
of proof (Reid, 2005). Therefore, it is important for us to clarify the meaning that we will
attribute to proof in this study.

While Rav (1999, p. 13) defines proof as the way that mathematicians use to “verify that a
proposed solution to a problem is indeed a solution”, Harel and Sowder (1998) highlight the
subjectivity that a proof holds by stating that a proof is what shows truth to a person or a
community. In addition to showing the validity of a mathematical argument, according to
Hersh (1993) a proof should convince and explain. A proof should explain why a mathematical
statement is always true using facts and reasonings understandable to the readers. Moreover,
a proof should convince yourself, a friend, and a sceptic (Mason et al., 1982). If convincing
yourself is often an easy task, convincing a friend should imply to justify every step of the
argument. However, the last phase involves convincing a person who would doubt every
assumption forcing who produced the proof to use an appropriate mathematical language and
correct mathematical statements. In other words, a proof should avoid “requir[ing] the reader
to make a leap of faith” (Stylianides & Stylianides, 2009a, p. 243).

The previous ideas are considered in Stylianides’ (2007) definition of proof, which is the one
we will use in this work. We also note that, following Stylianides (2007), we will use the term
proving to refer to the activity in search for a proof. Below we report Stylianides’ definition
of proof in its entirety for clarity and completeness.

Proof is a mathematical argument, a connected sequence of assertions for or against a
mathematical claim, with the following characteristics:

1. It uses statements accepted by the classroom community (set of accepted
statements) that are true and available without further justification;

2. It employs forms of reasoning (modes of argumentation) that are valid and
known to, or within the conceptual reach of, the classroom community; and

3. It is communicated with forms of expression (modes of argument

representation) that are appropriate and known to, or within the conceptual
reach of, the classroom community.
(Stylianides, 2007, p. 291, italics in original)

As Stylianides (2007) explains, the definition aims to achieve a defensible balance between
disciplinary norms and practices, on the one hand, and accessibility of the mathematical ideas
by the members of a classroom community, on the other hand. Regarding the latter, a proof
should involve definitions and notions known by the classroom community, it should use
modes of argumentation that are understandable by learners, and it can utilise a variety of
representations (such as verbal, pictorial, algebraic) that are accessible to the students in a
classroom.

Regarding the third point, during some lessons on proofs with prospective teachers, Perks and
Prestage (1995) found that general arguments using words or diagrams were not accepted as
proofs. On the other hand, in a study on algebraic proofs with 14- and 15-year old students,



learners preferred proofs using everyday language and pictures rather than algebra (Healy &
Hoyles, 2000). A reason behind this preference was that the first proofs were clearer in
explaining the truth of a statement, but students were reluctant to use them because they
perceived algebra to be the preferred mode of representation by their teacher. Therefore, it
seems important to give pupils the opportunity to access and use different representations
without believing that “mathematical truth is determined [only] when the answer is ratified by
the teacher” (Lampert, 1990, p. 32, emphasis in original).

2.1.3  The proving activity

In school mathematics proofs are often presented as formal processes not connected with other
mathematical activities and the activity of searching for a proof mainly focuses on the end
product, which is the proof itself (Stylianides, 2008). However, this presentation obscures the
investigative and empirical aspects that are usually employed by mathematicians when they
investigate a mathematical phenomenon. Therefore, following Stylianides (2008) and
Stylianides and Ball (2008), we will consider the proving activity in a broader way.

In addition to the formulation of proof or non-proof arguments, our consideration will include
other processes that precede them and also play an important role in promoting an enquiring
atmosphere (Mason et al., 1982; Reid & Knipping, 2010). The processes (also referred to as
‘phases’) we will consider are the following:

e Specialising and specialising back
e Generalising
o Pattern observing
o Conjecturing
e Providing support to mathematical claims
o Providing proofs
o Providing non-proof arguments
e Evaluating

During the proving activity these processes may occur in different orders, different repetitions,
or may not necessarily occur at all (Cafiadas & Castro, 2005). We discuss each of these
processes in the following paragraphs.

During the initial attempts to investigate a question (e.g. What do you notice when you add
two odd numbers? Can you explain why it works?), a good practice could be to try some
examples in order to get a better understanding of the statement. Mason (1999) refers to this
process as specialising, which is “looking at particular cases of a general statement” (p. x). In
the previous example, it would be trying some sums of odd numbers. Another instance of
specialising can occur when some cases are tested after making a conjecture. This process can
be called specialising back, which corresponds to the testing process explained by Reid (2002,
p. 14) as “a specialisation and a comparison” to confirm or refute the conjecture. Although the
specialising activity can be helpful to gather some data on the problem, Mason and Pimm
(1984) state that this is not the main purpose of the activity when a proof is searched. Another
aim of producing a collection of examples should be to try to see the general through the
particular, trying to determine the general features that the different examples have in common.



Once some common features are observed and abstracted from particular examples, the
generalising process begins (Mason, 1999). In this phase it is possible to distinguish between
at least two different processes. First, after presenting several examples it can happen that a
pattern is observed or there could be just a sense of it. This is when the generalising process
starts and it can be described as pattern observing (or ‘identifying a pattern’ in Stylianides’
[2008] framework), although in the literature there is not a standard term to describe this stage
(Reid & Knipping, 2010). However, as Bills and Rowland (1999) point out, a challenge in
generalising from patterns is to encourage learners to make structural generalisations rather
than empirical generalisations. In other words, it is fundamental that the generalisation arises
from an understanding of the structure that underpins the examples rather than from an
empirical regularity observed in the examples. Moreover, in their study with a group of pre-
service elementary teachers, Zazkis and Liljedahl (2002) notice that although most of the
teachers were able to identify a pattern not all of them were able to generalise it.

The second process under ‘generalising’ is conjecturing, which can be described as the phase
of “sensing or guessing that something might be true and investigating its truth” (Mason et al.,
1982, p. 64). Although this process is related to the pattern observing one, the two processes
present some differences. As Stylianides (2008) points out, a conjecture is stated with doubts
about its truth while stating a pattern does not necessarily imply doubts about it. Moreover,
conjecturing has a broader domain than pattern observing: while the latter refers to the specific
observed cases, the former refers to general cases (Reid, 2002).

The relevance of the conjecturing activity is highlighted by Mason’s (1999, p. 8) assertion that
“mathematical thinking is best supported by adopting a conjecturing attitude”. However, as
Polya (1965) suggested, it is fundamental to remind learners to conjecture, but not to believe
their conjectures. While the exploration involved in the activities before and during
conjecturing often leads to discoveries, only a proof can confirm the result. Nevertheless, the
literature suggests that many students believe that a collection of examples is sufficient to
show the truth of an argument (for a review, see Harel & Sowder, 2007) and therefore it
becomes worthwhile to deepen the knowledge of the activities that can be involved after
conjecturing.

The aim of the process that can follow the conjecturing activity is to show the truth of the
conjecture and can involve the formulation of proofs or non-proof arguments. Stylianides
(2008) captures proofs and non-proof arguments under the broader process of providing
support to mathematical claims. A mathematical argument can be considered a proof if it
satisfies the conditions analysed in the previous section, while it will be a non-proof argument
if it falls short in meeting some of the criteria for proof. For example, generalisations founded
on checking some possible cases or on the use of other mathematical facts that are not yet
considered true by the classroom community have to be considered non-proof arguments. In
order to help students to realise the limitations of empirical arguments, it can be helpful to
introduce tasks that present a plausible pattern for the first cases which finally fails (Stylianides
& Stylianides, 2009b). Moreover, as we will discuss in Section 4.2.2.3 we found useful in this
intervention to discuss the task ‘odd + odd = even’ with students in order to emphasise the



necessity of only using statements already accepted as true by the classroom community (in
this example, ‘even + even = even’).

Finally, the last process we will discuss is one that has been considered by Stylianides and
Stylianides (2009a). It consists of asking learners to evaluate their produced mathematical
argument, stating whether they consider it to be a proof or not. At the end of their study with
39 prospective teachers, the authors found that the percentages of teachers who produced an
empirical argument and claimed it constituted a proof dropped from 10% to 3%. Thus, it can
be useful for a teacher to ask students to evaluate their own arguments in order to be able to
distinguish between learners who have an empirical conception of proofs and those who are
aware of the limitations of empirical arguments but, for different reasons, may not be able to
produce proofs (for further discussion of this issue, see Stylianides & Stylianides, in press).

To sum up, several processes may be involved while conjecturing and proving: writing some
examples or specific examples (specialising or specialising back), looking for a pattern
(pattern observing), formulating a conjecture (conjecturing), showing the validity of the
conjecture (providing support to mathematical claims), and assessing the produced
mathematical argument (evaluating). Being aware of these processes can be helpful for
teachers that would like to engage learners in the proving activity and promote an enquiring
atmosphere in their classrooms.

2.2 Enguiring atmosphere

In this section we will describe what classroom atmosphere may support the proving activity,
discussing how an enquiring atmosphere might look like and what factors may contribute to
its development. An enquiring atmosphere is one in which learners produce, share, and test
their conjectures looking for a proof. In such an atmosphere it is worthwhile to receive
suggestions in order to modify or support each other’s conjectures (Love & Mason, 1992). In
other words, constructive feedback can help learners to ponder on their conjecture and
consequently reformulate or try to prove it. The importance of promoting such an atmosphere
is related to “the social importance of developing a caring, listening, yet challenging way of
interacting” with other people (Johnston-Wilder & Mason, 2005, p. 243).

Developing an enquiring atmosphere is not easy and some sets of norms can be established in
the classroom to facilitate it. Yackel and Cobb (1996) distinguish between social norms and
sociomathematical norms. Social norms are norms that can be valid in any classroom, such as
expecting students to explain their solutions and reasoning. Sociomathematical norms are
norms strictly related to mathematics classrooms, such as deciding what explanations can be
considered mathematically acceptable. In any case, classroom environments are often very
different and can be influenced by factors that cannot be generalised, such as the relationship
between the teacher and learners or the relationship between peers (Mason & Johnston-Wilder,
2006). However, some common features that may facilitate an enquiring atmosphere can be
identified as we discuss below.

In an enquiring atmosphere “pupils are encouraged not to take assertions as facts, but to
investigate matters for themselves” (Love & Mason, 1992, p. 39). This is a crucial point but
also, according to our experience, one of the most difficult ones to achieve. Indeed, students



frequently depend on the teacher’s hints in order to solve a task or to check a solution. In
Lampert’s words (1990, p. 32) “in school the truth is given in the teacher’s explanations and
the answer book”. However, the first author has always been interested in offering her students
the opportunity of doing mathematics rather than applying mathematics, which is part of what
motivated the investigation reported in this paper. An investigative approach is usually
fundamental in doing mathematics, involving conscious guesses followed by zig-zag
reasonings that can eventually lead to a proof or refutation going through examples and
counter-examples (Lakatos, 1976). Therefore, an essential feature of an enquiring atmosphere
seems to be increasing students’ autonomy in solving and checking a mathematical problem,
emphasising in students the belief that, “in mathematics the authority lies within mathematics,
not with individual people” (Johnston-Wilder & Mason, 2005, p. 238) and, in particular, not
with the teacher.

A strategy that can be useful in order to encourage students not to think of the teacher as the
first source of authority is the 3B4MFE (three before me) strategy (Smith, 2010). The ‘3B’
stands for brain, book, and buddy. These are the three steps that students should go through
before asking the teacher for help. First, they should use their brain, which means thinking of
what they know in order to attempt to solve the problem. Second, they should use their
notebook in order to look for concepts, examples, or strategies already studied. Third, students
should discuss their ideas and doubts with a friend (the buddy) in order to work on the task
together. The third stage emphasises the richness of working in a classroom community,
valuing each other’s opinions and ideas.

Another important feature of an enquiring atmosphere is to encourage pupils to share their
conjectures even if they are half-formed ideas (Gilderdale, 2007). Indeed, sharing conjectures
is valuable at least for two reasons. First, saying the conjecture aloud or trying to write it on a
piece of paper encourages the student to look at the conjecture from a distance helping to clear
the mind, to clarify one’s thoughts, and to start evaluating it (Mason, 1999). This practice
allows learners to personally reflect on their mathematical conjectures and methods. Second,
sharing a conjecture with peers, either in pairs or in whole class discussions, allows learners
to receive feedback from each other on their ideas (Lampert, 1990), granting the students some
ownership of their learning. The first author has found the latter practice invaluable for several
reasons. First, it encourages learners to value others’ mathematical ideas reinforcing a
respectful classroom culture. Second, it makes students use an appropriate language to make
their conjectures understandable to others. Third, it stimulates learners both to reflect on others’
conjectures and on the feedback on their own conjectures. In both cases learners are required
to ponder and question others’ mathematical comments. According to Lampert (2001, p. 66),
“by reflecting on whether their own assertions and those of their classmates were reasonable”
learners have the opportunity to turn “over ideas and procedures in their minds” along with
practising mathematical concepts and rules with a highest chance of remembering them.

However, it has to be noted that formulating and offering conjectures implies taking a risk
(Mason & Johnston-Wilder, 2004). This risk involves being open to considering possible
adjustments and revisions, being willing to admit that a conclusion is wrong and to change it,
and being ready to question one’s own mathematical ideas in order to convince others of their



validity. According to Polya (1954, pp. 7-8), these are three ‘moral qualities’ required to do
mathematics and part of the “inductive attitude [which] aims at adapting our beliefs to our
experience as efficiently as possible”. Therefore, in an enquiring atmosphere any sensible
conjecture should be praised, regardless of its correctness, in order to stress the value of taking
the risk of sharing a mathematical idea and getting feedback on it (Mason, 2002b). As
suggested by Lampert (1990), conjectures can then be collected on the whiteboard together
with the names of the students who offered them and the class can be invited to test them and
comment on them. In this way, the responsibility of verifying the correctness of the conjecture
is again given to the learners and does not feed the belief that the teacher is “the [only] source
of right answers” (Ollerton & Watson, 2001, p. 90).

Related to encouraging learners to share conjectures and to value risk-taking, another
ingredient that can contribute to developing an enquiring atmosphere is praising students for
changing their mind (Mason, 2002b). Indeed, pupils may need to modify or change their
previous conjectures after listening to others’ suggestions or ideas. As Johnston-Wider and
Mason (2005, p. 243) argued, “if modifying conjectures is valued and praised, then
mathematical thinking is much more likely to flourish”. However, Fischbein (1987) points out
that, although pupils may be rationally aware that their original conjecture was wrong, they
are often reluctant to replace it with a more acceptable one because initial intuitions are usually
strong. Therefore, it may be useful to explicitly tell pupils that they might find it difficult and
annoying to change a wrong conjecture but that it is how responsible mathematicians work
and how learning is more likely to take place (Yackel & Hanna, 2003).

In the process of establishing a safe environment for learners to review their mathematical
statements and to comment on one another’s statements, the zig-zag path between attempts to
prove conjectures and subsequent refinements or refutations should be valued (Zack, 1997) as
well as the status of being ‘stuck’ (Mason et al., 1982). The first author has often heard students
saying: ‘Miss, I am stuck. What should I do now?’, expressing a sense of frustration and
powerlessness. However, learners should be made aware that being stuck “is an honourable
and positive state, from which much can be learned” (Mason et al., 1982, p. 49). Therefore,
establishing a classroom awareness of the possibility not to know how to solve a problem and
the opportunity to try to cope with these moments without giving up or necessarily depending
on the teacher’s help appears to be another feature of an enquiring atmosphere. In an enquiring
atmosphere struggling with a problem should be valued and praised, and pupils should be
fostered to express their doubts out loud encouraging them to help each other (Mason, 2002b).
In this way, “learning becomes more efficient as well as more satisfying” (Mason, 2002b, p.
257). Nevertheless, although it is critical to recognise being stuck as a possible state while
solving mathematical problems, it is also important for learners to develop strategies to get
unstuck. According to Mason (1999), the best strategy to get unstuck is to specialise, by
writing some examples in order to have a better sense of what the problem states. Another
useful strategy is to explicitly write what is known and what is asked in order to start to get a
sense of possible relationships between the question and its solution. Finally, pupils should be
encouraged to clearly state when they get unstuck in order to emphasise the sense of pleasure
of the AHA! moments (Mason et al., 1982) and to be able to possibly re-use the strategies that
helped them to get unstuck in other tasks.



According to Mason (2002b), another essential feature that may contribute to developing an
enquiring atmosphere is to adopt a conjecturing stance by the teachers themselves, trying to
investigate problems and considering what students propose as a conjecture. Adopting a
conjecturing stance requires that teachers produce conjectures on a mathematical task and
subsequent refutations or proofs (Bieda, 2010). In other words, it requires that teachers
actually do mathematics themselves and reflect on the pleasure of discovering new
mathematical results but also the difficulty of coping with moments of struggle. This attitude
may help teachers “to recognise how essential confidence is and to create a supportive
environment” (Mason et al., 1982, p. 152) where students can feel safe to express their
mathematical ideas. In addition to this, Stein et al. (2008) suggest not only to solve a
mathematical task but to anticipate likely student solutions to it. In their words, “teachers need
to devise and work through as many different solution strategies as they can” (Stein et al.,
2008, p. 323). In this way, teachers will be better prepared to respond to students’ solutions.
However, it has to be considered that this teacher activity would be time consuming for
teachers and can also have some negative aspects. Although on the one hand a detailed plan
can support teachers in adapting their lessons to learners’ needs more easily, on the other hand
Love and Mason (1992) point out that a too detailed planning can be counter-productive.
Indeed, students’ freedom in investigating a task and in producing conjectures may be
influenced by the teacher’s prior investigations that are in the teacher’s mind.

In the interest of supporting a learning environment where learners can formulate conjectures
and proofs, teachers’ knowledge of proof is important for promoting the proving activity
effectively (Bieda, 2010). In a study with secondary mathematics teachers, Knuth (2002a)
found that, although teachers recognised various roles of proof in mathematics, they did not
consider proof as a tool to promote mathematical understanding. Therefore, many of the
teachers believed that proofs were not suitable for secondary students. However, Schoenfeld
(1994, p. 76) states that proofs cannot be separated from mathematics because they are “an
essential component of doing, communicating, and recording mathematics”. In order to
emphasise the role of proofs in learning mathematics, it is essential that teachers are aware of
the difference between proofs and empirical arguments (Stylianides & Stylianides, 2009b;
Stylianides et al., 2017). In their study with 101 American elementary school teachers, Martin
and Harel (1989) found out that 68% of them believed that an empirical justification qualified
as a proof. On the other hand, most of the secondary teachers involved in Knuth’s (2002b)
study did not accept empirical arguments as proofs for themselves, but they accepted them as
proofs from their students. However, as Harel and Sowder (2007) warn, a dangerous
consequence of this practice is that students may be led to believe that a collection of examples
constitutes a proof.

Consequently, teachers’ understanding of proof is essential in order to create a classroom
atmosphere where, on the one hand, examples are valued to get a sense of a mathematical
problem and formulate conjectures but, on the other hand, proofs are required in order to prove
the truth of the statement. In Schoenfeld’s words (1994, p. 76):

If students grew up in a mathematical culture where discourse, thinking things through,
and convincing were important parts of the engagement with mathematics, then proofs
would be seen as a natural part of their mathematics.
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To sum up, several factors may contribute to promoting an enquiring atmosphere in a
mathematics classroom as summarised in Table 1. Learners should be encouraged not to
depend on the teacher, but to investigate mathematical ideas by themselves and share ideas
with their classmates. Their engagement in conjecturing should be praised, even if the
conjectures are incomplete or incorrect, and the status of being stuck should be valued as a
possible stage to learn. Teachers could facilitate such an environment by also adopting a
conjecturing stance themselves, having a solid knowledge of what a proof is and anticipating
possible strategies and solutions that their students may use. However, as Mason (2014) points
out, these ideas are not universal, because the relationship between teachers and students
influence much of what happens in a classroom.

Increase students’ autonomy — ‘three before me’ (3B4ME)

Encourage students to share conjectures even if not complete

Encourage students to give feedback on others’ conjectures

Value risk-taking in sharing conjectures

Value reformulating conjectures

Value the status of being stuck

Teachers themselves adopt a conjecturing stance

Anticipate possible student strategies

Table 1. Factors that may promote an enquiring atmosphere

2.3 Questioning

In this section, we will discuss some aspects of questioning that can contribute to developing
an enquiring atmosphere and may support pupils’ conjecturing and proving activity. In the
implementation of our study, we were particularly interested in encouraging learners to pose
questions to themselves while doing mathematics as well as to pose questions to others while
offering conjectures. The importance of questioning in an enquiring atmosphere has been
emphasised by Mason et al. (1982) who considered it a fundamental component that can create
such an atmosphere. Next, we will consider three aspects of questioning that can support a
conjecturing attitude in learners.

Firstly, as discussed in the previous section, a key feature of an enquiring atmosphere is giving
the initiative and responsibility of solving a task to students while decreasing their dependency
on the teacher. This aspect highlights the importance of questioning learners and encouraging
them to query their assumptions rather than giving them answers (Boekaerts, 1997). However,
as Lampert (1990) points out, teachers often respond to students’ doubts by telling them what
they have to do and therefore students may develop the “view of mathematics as a bag of tricks
that have to be discovered or revealed” (Mason et al. 1982, p. 115). On the contrary, Mason et
al. (1982) suggest posing questions with the aim of supporting learners to focus their attention
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appropriately, prompting them to reason by themselves and developing their mathematical
thinking.

Accordingly, the purpose of teachers’ questioning becomes crucial in order to support an
enquiring atmosphere in the classroom. Teachers should be genuinely interested in what
learners are thinking and why they are thinking it (Mason, 2002b). Instead of asking a question
to expect a correct answer, which a teacher usually already knows, Watson and Mason (1998)
suggest to genuinely enquire into learners’ methods and ways of thinking. In order to
emphasise the importance of making conjectures, teachers can query students and reason with
them rather than focusing on getting quick right answers from students. To facilitate this,
students’ strategies can be displayed on the board and discussed.

Secondly, another aspect of questioning that can influence an enquiring atmosphere is
providing students with thinking time. Questions are most effective when an immediate
answer is not required by the teacher but students are encouraged to reflect on it (Ainley, 1987;
Mercer & Dawes, 2008; DfES, 2004; Ingram & Elliott, 2016). However, in a study with
elementary science teachers on wait time, Rowe (1974) found that the average time was 0.9
seconds which prevented most students taking part in the classroom discussion. On the other
hand, increasing the wait time highlights once again the emphasis on learners’ thinking rather
than on the right answer itself. In other words, “the aim is not for discrete right answers to be
celebrated, but for a discussion of the ideas to be explored” (Black et al, 2003, p. 39). Therefore,
as discussed in the previous section, the state of being stuck should be valued as an opportunity
for students to pose questions to themselves and to others as well as to discuss ideas with
classmates. Thinking time is also fundamental to encouraging learners to talk to each other
and share their doubts (Mason, 2002b).

Thirdly, another aspect of questioning which is related to the development of an enquiring
atmosphere is the type of generic questions asked by teachers and students to support a
conjecturing stance. In order to encourage learners to reflect on their mathematical reasoning,
Schoenfeld (1985) proposes the following three questions:

e What exactly are you doing?
e Why are you doing it?
e How does it help you?

In addition to these questions, Kramarski and Revach (2009) suggest other questions that may
be asked to check learners’ arguments:

e Is the solution reasonable?
e Can I solve the task differently?

However, if students depend on the teacher’s questions in order to investigate a task or get
unstuck their dependency on the teacher would be strengthened rather than decreased.
Therefore, in an enquiring atmosphere teachers should not be the only questioners and it would
be fundamental to work with students on their questioning skills. Students should be able to
ask good questions both to themselves and to their peers when they try to convince a friend or
a sceptic on the validity of their arguments. As we will explain in detail later, Mason (2002b)
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and Hodgen and Wiliam (2006) formulated a useful list of generic questions that can be used
in class in order to “enculturat[e] learners into using specific questions themselves” (Mason,
2002b, p. 252). In an enquiring atmosphere learners should be encouraged to ask questions at
least for the following three reasons: (1) Being able to identify useful questions can help them
to formulate conjectures and proofs or to get unstuck; (2) Students who know the answer to a
question can be stimulated to question the others and to prompt them rather than giving them
the answer; and (3) Learners should feel safe to question and challenge others’ conjectures
because, in this way, questioning can be used as a vehicle “to elicit student understanding and
promote shared learning” (Black et al., 2003, p. 39).

To summarise, in this section we discussed three aspects of questioning that can support a
conjecturing attitude in learners. Those aspects are posing questions to students rather than
telling them right answers, increasing teachers’ wait time, and formulating generic questions
on the processes used to solve tasks or to formulate conjectures with the aim to reflect on
students’ mathematical thinking.

3. Methodology

Although the importance of questioning to create an enquiring atmosphere has been
emphasised in the literature (Mason et al., 1982), little research has investigated how to
promote an enquiring atmosphere in the classroom through the use of oral and written
questions. We were also interested in researching what teaching practices may promote such
an atmosphere, especially in relation to helping students engage in conjecturing and proving.
Specifically, in this paper we aim to address to the following Research Questions (RQs):

e RQI: What are Year 9 students’ beliefs about the atmosphere in their mathematics
classroom?

e RQ2: What teaching practices can facilitate an enquiring atmosphere in a mathematics
classroom?

e RQ3: What types of oral questions and written questions (general statement or list of
examples) may support learners in making conjectures and producing proofs?
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3.1 Action research method

The action research method (Elliott, 1978; Stringer, 2008) was adopted in this study. Although
there are several definitions for action research (Cohen, Manion, & Morrison, 2011), a
common attribute is the cyclical approach to the study. In particular, the research is constituted
by several cycles and each cycle is divided into different phases, which can include the
identification of an issue, the plan of the intervention, the implementation of it and the
evaluation of the action. The reflection on a cycle will inform the following cycle, creating a
“feedback loop in which initial findings generate possibilities for change” (Denscombe, 2010,
p. 126) to be implemented later in the research. This school-based research included three
cycles as shown in Figure 1.

_/> Future work
/ Consolidate norms &

Review the intervention

Deliver lessons,

- 3 - Evaluate the impact
questionnaires and CYCLE?3 of the intervention

prompts

Plan lessons,

questionnaires and

prompts
Evaluate activities,
strategies and
questions

Deliver the lessons Introduce activities,

CYCLE 2 strategies and
— questions

Plan lessons to
promote a conjecturing

atmosphere

Evaluate

students’ prior
knowledge and

beliefs

Collect students’ Identify

questionnaire CYCLE 1 students’ prior
and prompts

knowledge and
beliefs

Plan
questionnaires

and prompts

Figure 1. Action research cycles

The results and reflections of each cycle informed the following one. Cycle 1 focused on
identifying learners’ beliefs about their mathematics classroom atmosphere (addressing RQ1)
and their prior knowledge of producing conjectures and proofs (which will not be discussed
in this article due to space limitations). Cycle 2 focused on consolidating existing and
introducing new practices to support an enquiring atmosphere (addressing RQ2 and RQ3).
Cycle 3 focused on conducting and evaluating the intervention (addressing RQ1-RQ3).
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3.2 Participants and piloting

The intervention focussed on the first author’s Year 9 class (13-14 year-olds) composed by 31
students, 13 girls and 18 boys. Their English National Curriculum attainment levels were in
the highest band (between 7c and 8a). The first author collaborated with other teachers in the
mathematics department anticipating possible students’ answers with them and sharing the
results of the intervention. In particular, one teacher taught some lessons planned by the first
author to a Year 10 class (14-15 year-olds) with a similar attainment level as the Year 9 class.
The lessons and resources were discussed with the collaborating teacher and she taught the
lessons before the first author taught the same lessons to the Year 9 class. This organisation
was useful and served as a piloting of the lessons/resources to discuss strengths and identify
problems prior to implementing them with the research group.

3.3 Data sources

In each research cycle we used a variety of research instruments in order to address the three
research questions and to provide a means of triangulation. Table 2 displays the desired
outcomes for the researchers and for the students following the intervention, the links with the
curriculum, and the research questions addressed. The lessons were spread out over five
months, from January to May.
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Cycle | Lesson Curriculum | Research instruments | Desired outcomes for the Desired outcomes for the | RQ
links researcher students addressed
1. Questionnaire | Algebra Questionnaire. To investigate task formulation. | To express their ideas about | RQ1
& Prompts Prompts. To find out students’ beliefs classroom atmosphere. RQ3
about classroom atmosphere. To start working on proof
tasks.
2. Introduction | Algebra Researcher’s journal. To share conjecture and proof To understand the RQ2
1 Whiteboard pictures. definitions. difference between
To reject empirical arguments conjectures and proofs.
and introduce different proof To understand that
representations. examples do not constitute
To check if/how students a proof.
conjecture. To start using the 3B4ME
strategy.
3. Consecutive | Number and | Students’ written work. | To introduce strategies and To use examples to RQ2
sums Algebra Researcher’s journal. questions to support conjecture. RQ3
Whiteboard pictures. conjecturing. To state their conjecture
5 4. Unit fractions | Number and | Students’ written work. | To encourage independence and | explicitly. RQ2
Algebra Researcher’s journal. conjecturing stance. To use questions to support
5. Think of two | Algebra Students’ written work. | To investigate task formulation. | conjecturing. RQ2
numbers Researcher’s journal. To use the 3B4ME strategy.
Audio recording.
6. Number tasks | Number and | Students’ written work. | To reinforce strategies and To choose strategies and RQ2
Algebra Researcher’s journal. questions to support questions that support them | RQ3
3 Video recording. conjecturing. in conjecturing.
7. Enlargements | Shape, space | Students’ written work. | To reinforce independence and | To work independently. RQ2

and measures

Researcher’s journal.

conjecturing stance.

To share conjectures.
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Audio recording.

To investigate task formulation.

8. Questionnaire
& Prompts

Algebra

Questionnaire.
Prompts.
Interviews.

To evaluate students’ beliefs
about classroom atmosphere.
To evaluate knowledge on
conjectures and proofs.

To evaluate impact of strategies
and questions.

To investigate task formulation.

To express their ideas about
classroom atmosphere.

To work on proof tasks.

To be aware of strategies
and questions that support
them in conjecturing.

RQI
RQ2
RQ3

Table 2. Research cycles, instruments, desired outcomes, and research questions
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In the rest of this section we will describe the rationale and analysis of the research instruments
used in the study.

3.3.1 Questionnaire (see ()

The questionnaire was completed at the beginning and at the end of the intervention with only
some minor modifications as described below. The questionnaire was designed for three main
desired outcomes: finding out pupils’ opinions on sharing mathematical ideas and their
perceptions of their classroom atmosphere; analysing pupils’ knowledge of formulating
conjectures and proofs (not discussed in this article); and evaluating whether a general
statement or a collection of examples was more helpful to conjecturing and proving. A
comparison between the results of the two implementations of the questionnaire contributed
to evaluating those outcomes for the Year 9 class.

Question 1 was designed in order to collect information on the first aim. The nine statements
to be evaluated were organised around four main themes. First, we were interested in students’
opinions on sharing mathematical ideas. In particular, if they found it selpful even if they were
wrong, if they felt safe to share them, if they felt that their ideas were valued in class. Indeed,
“the children need to know that (...) their contributions are taken into account” (Mathematical
Association, 1992, p. 29) in order to feel confident to share their ideas. Second, we were
interested in finding out the role of the teacher and of the students considered ‘smart’ at
mathematics. We were aware of the importance “to reduce the dependency on the teacher (...)
as judge of correctness and source of ideas” (Love & Mason, 1992, p. 36) and of the
importance of being confident in disagreeing with the students considered ‘smart’ at
mathematics in order for everyone to take part in conjecturing (Lampert, 2001). Third, the
statement ‘I feel safe to say that I am stuck in my maths lessons’ was based on the awareness
that learners should be encouraged to consider this stage as a valuable step for learning and to
reflect on it in order “to know what to do when they don’t know what to do” (Claxton, 1999,
p. 70). Finally, the last two statements (‘I know what a proof/conjecture is’) were designed to
check whether learners knew the meaning of the two terms although we were aware that they
could have had different conceptions of them.

Questions 2 and 3 were designed to meet the other two desired outcomes of the questionnaire.
Students had to assess the truth of two mathematical tasks, construct a proof and then evaluate
their own construction stating whether they had produced a proof or not. The two mathematical
tasks presented two different formulations: a general statement (e.g. “When you add two odd
numbers, the answer is always even’) and a list of examples (e.g. ‘3+7 =10, 5+11 =16, 15+3
= 18... What do you notice?’). The version of the questionnaire used at the end of the
intervention used different (but similar) tasks for Questions 2 and 3.

Finally, Question 4 asked the students to state which of the two formulations in Questions 2
and 3 they found more helpful in order to express their mathematical ideas and to explain their
thinking. This question was designed to investigate whether the way a written question is
formulated could influence students’ conjecturing stance and therefore play a role in
developing an enquiring atmosphere in the classroom.
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3.3.2 Prompts

Following Shilling-Traina and Stylianides’ (2013) approach, three prompts were given to the
Year 9 students in order to gather information on their beliefs about some aspects of the
classroom atmosphere in their mathematics lessons. The prompts were given at the beginning
and at the end of the intervention and were completed during a mathematics lesson. Table 3
presents the prompts used, the time of administration, and the corresponding research

questions.
Prompts Time of administration | Corresponding RQ
1. Do you feel safe to express your Beginning and end of | RQ1
o : 0 : .

mathematical ideas during the lessons? the intervention RQI, RQ2

Why or why not?

2. Do you think that it is important and | Beginning and end of | RQ1

x;fu{)l to share your mathematical ideas? | the intervention RQI, RQ2

y’

3. Please rate how useful the following | End of the intervention | RQ2, RQ3
activities were in order to make a | only
conjecture and write a proof by
placing a check mark in the
appropriate box (1 = not useful at all,
5 = very useful).

Note: See Appendix B for the activities.

Table 3. Prompts, time of administration, and corresponding research questions

Prompts 1 and 2 were a reformulation of two statements presented in Question 1 of the
questionnaire (see Appendix A) in order to gather more information on students’ views. The
two aspects in the statements were identified as key features in order to establish a classroom
atmosphere where students would express their conjectures and mathematical ideas (Lampert,
2001). A comparison of the responses at the beginning and at the end of the intervention
provided an insight into students’ beliefs about some aspects of the classroom atmosphere and
helped to analyse a possible impact of the intervention. Finally, Prompt 3 was submitted only
at the end of the intervention and it helped to explore RQ2 and RQ3 by analysing the activities,
strategies, and oral questions that received the highest scores in supporting learners in
formulating conjectures and proofs. The effect of the written questions was evaluated through
the analysis of students’ responses to Question 4 of the questionnaire, as explained in Section
3.3.L

Regarding the analysis of the prompts, the learners’ responses to Prompts 1 and 2 often
presented common beliefs about sharing mathematical ideas. Therefore, multiple codes were
created in order to collect participants’ responses (Table 4 and Table 5) and the frequencies
were recorded in order to compare the students’ responses at the beginning and at the end of
the intervention.



19

Do you feel safe to express your mathematical ideas during
the lessons? Why or why not?

Negative 1 (NEGI): Fear of getting the answer wrong

Negative 2 (NEG2): Fear of others’ opinions

Neutral (NEU): Express ideas only if asked

Positive 1 (P1): Help yourself and others

Positive 2 (P2): Not worried by others’ opinions

Table 4. Prompt 1 codes

Do you think that it is important and useful to share your
mathematical ideas? Why?

LM: Learn from mistakes

LT: Learn different methods and techniques

H: Help yourself and others to understand

U: Let the teacher know about your understanding

N: Not important or not useful

Table 5. Prompt 2 codes

In the total frequencies, a single view scored one mark while two different views in the same
response scored half of a mark each in order to value every person equally. Figure 2 and Figure
3 show a sample response to Prompt 1 and Prompt 2 and the codes used to analyse it.

If I have a mathematical idea I am ok to express it (P2), because I know that
if it is wrong it does not matter, I will learn (P1).

Two views: P2, P1

Figure 2. Sample response to Prompt 1 and coding

If someone else shares, then maybe it will help you (H) or if they get it wrong
you could explain to them how it is wrong (LM). Also if I share my idea it
is the same for me.

Two views: H, LM

Figure 3. Sample response to Prompt 2 and coding
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Responses to Prompt 3 were recorded and the frequencies analysed in order to evaluate
students’ views on the impact of different activities, strategies, and oral questions in the
processes of conjecturing and proving.

3.3.3 Interviews (see Appendix C for the questions)

Semi-structured interviews were conducted during Cycle 3 with six students (four girls and
two boys) selected from the Year 9 class. Pupils were selected and paired according to their
answers to Prompt 1 and to Question 2 of the questionnaire at the beginning of the intervention.
The six students were divided into three groups as summarised in Table 6: group 1 was
characterised by negative beliefs (NEG1) in Prompt 1 and correctly evaluated non-proof
arguments as non-proofs; group 2 was characterised by positive beliefs (P1 and P2) and
incorrectly considered non-proof arguments as proofs; and group 3 was characterised by
positive beliefs (P2) and correctly evaluated arguments they produced as proofs. The three
groups were chosen as they represented the majority of the views of the Year 9 class.

Responses to Prompt 1 | Responses to Question 2
(at the beginning of the | (at the beginning of the project)
project)
Group 1 Amy NEGI Non-proofs evaluated as non-proofs
Billie NEGI Non-proofs evaluated as non-proofs
Group 2 Carl P2 Non-proofs evaluated as proofs
David Pl Non-proofs evaluated as proofs
Group 3 Eva P2 Proofs evaluated as proofs
Fiona P2 Proofs evaluated as proofs

Table 6. The three groups of students who participated in the interviews (all names are
pseudonyms)

The interviews were guided by the list of questions in Appendix C but also explored new
themes related to the research that emerged during the interviews as a result of pupils’
responses. The questions were divided into two sets: enquiring atmosphere and formulating
conjectures and proofs in order to better address the research questions. The questions in the
first set allowed us to better understand pupils’ beliefs about the classroom atmosphere and
any changes from the beginning of the study. The questions in the second set allowed us to
investigate to more depth students’ strategies to formulate conjectures and proofs and to
examine possible changes since the beginning of the intervention.

3.3.4 Tasks (see Appendix D)

Two task formulations were used in the research in order to investigate which one (if any)
would better support learners in formulating conjectures and proofs (see Question 4 in
Appendix A). In the first formulation a general statement was presented that had to be
evaluated and proved (e.g. “When you add two odd numbers, the answer is always even’ — see
Question 2 in Appendix A). Among the processes discussed in Section 2.1.3, we expected
‘specialising and specialising back’, ‘conjecturing’, and ‘generalising’ involved when proving
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a task formulated as general statement. We anticipated learners to specialise the statement in
order to conjecture whether the statement was true or false. However, we were expecting that
some students would have considered their examples as an acceptable proof (Coe & Ruthven,
1994; Healy & Hoyles, 2000; Stylianides & Stylianides, 2009b).

In the second formulation a collection of examples was presented and learners were asked if
they noticed a pattern and then to generalise it (e.g. ‘3+7 =10, 5+11 = 16, 15+3 = 18... What
do you notice?’ — see Question 3 in Appendix A). Therefore, in contrast to the first task where
the property to be proved was stated, in the second task learners had to find it and justify it. In
Brown and Coles’ (2000, p. 153) study, it was found that looking for “sameness led to the
question ‘Why?’ of proof'(...) and difference led to further exploration of structure”. Therefore,
since the ability of finding similarities and differences seems to be at the basis of specialising
and generalising (Mason & Johnston-Wilder, 2004), we were particularly interested in seeing
whether this task formulation would have encouraged learners to conjecture and generalise.
We expected that the processes involved when proving a task formulated as list of examples
were ‘pattern observing’, ‘conjecturing’, and ‘generalising’ (see Section 2.1.3 for further
details about these processes).

The complete tasks are collected in Appendix D while the schedule of the lessons was already
presented in Table 2. Task b in lesson 3, the ‘True or False?’ task in lesson 4, and task 1 in
lesson 6 are examples of the general statement formulation. On the other hand, task a in lesson
3, the ‘Charlie’s conjecture’ task in lesson 4, the ‘Think of two numbers’ task in lesson 5, task
2 in lesson 6, and the task in lesson 7 are examples of the other formulation.

3.3.5 Other

The first author completed a journal when she reflected on relevant ideas to the research and
as soon as possible after every lesson. The analysis of these journal entries was useful to inform
the planning during the project and to obtain evidence of the classroom atmosphere during the
evaluation of the research.

The students’ written work during the lessons was also analysed in order to evaluate possible
changes in conjecturing and proving during the study and the usefulness of the strategies and
questions introduced. Moreover, whiteboard pictures were used as evidence of activities and
strategies introduced. Finally, the transcripts from audio or video recorded lessons (lessons 5,
6, and 7) were analysed in order to discuss possible changes in formulating conjectures and
proofs by learners and the possible use of strategies and questions introduced.

4. Results and discussion

In this section we will present our findings. When we discuss the students’ work, we will often
focus on the six students we chose for the interviews. Section 4 is organised into two themes
that are related to the research questions.

Firstly, Section 4.1 discusses the participants’ beliefs about their mathematics classroom
atmosphere, both the initial beliefs and changes that took place during the intervention. The
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discussion in Section 4.1 will help directly address RQ1 but also will partly address RQ2 by
connecting the changes in the learners’ beliefs with teaching practices used in the intervention.

Secondly, Section 4.2 will focus on the specific teaching practices that we introduced in the
intervention to promote an enquiring classroom atmosphere. In particular we will discuss
activities, strategies, and oral and written questions as summarised in Table 7. The practices
will be evaluated using different research instruments, providing also a means of triangulation.
This section will directly address RQ2 and RQ3.

Short description

Activities e 3B4ME

e Valuing being stuck

e Think — pair — share

e Think — post-it — share
e Think — stand — share

Teaching strategies e Write some examples

e Write your conjecture explicitly
e Use pictures to find a proof

e Use words to find a proof

e Use algebra to find a proof

Oral questions e Can I find an example?

e What do [ know?

e What do I want?

e Will it always work or happen?
e Am I convinced?

Written questions e General statement
e List of examples

Table 7. A summary of the practices used in the intervention

4.1 Students’ beliefs about the classroom atmosphere

As we mentioned earlier, this discussion of the findings on the students’ beliefs about their
mathematics classroom atmosphere will help directly address RQ1 and indirectly RQ2. We
will concentrate on changes during the intervention by evaluating responses to questionnaires,
prompts, and interviews. A comparison between the Year 9 responses to Question 1 (see
Questionnaire in Appendix A) at the beginning and at the end of the intervention indicates
some positive percentage increases as shown in Figure 4.



23

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Start End Start End Start End Start End Start  End Start End Start End Start End Start End

Itis helpful to | feel safe to Students’ Students Only the | would never: | feel safe to | know what | know what
discuss ideas express my mathematical comment on teacher can disagree with say that | am a proof is a conjecture

in Maths mathematical ideas are classmates’ say whether a'smart’ stuck in my is
even if they ideas in my considered mathematical students’ studenton a Maths

are not Maths important in ideas in my mathematical mathematical lessons

correct lessons my Maths Maths ideas are idea

lessons lessons correct or
wrong.

B Strongly disagree M Disagree M Neither agree nor disagree W Agree M Strongly agree

Figure 4. Year 9 students’ responses to the different items of Question 1 at the beginning
and at the end of the project (see Questionnaire in Appendix A)

Year 9 students’ responses to Question 1 shows that the percentage of students who agreed or
strongly agreed with the first three statements in Question 1 of the questionnaire increased
slightly from the beginning to the end of the intervention: those who found helpful to discuss
their mathematical ideas increased from 73% to 82%, those who felt safe to share them
increased from 74% to 79%, and those who perceived their ideas valued increased from 90%
to 93%. Interestingly, the percentage of students who stated that classmates commented on
each other’s mathematical ideas considerably increased (from 47% to 65%), as well as the
percentage of those who thought that the teacher was not the only person able to judge the
correctness of a mathematical statement (from 50% to 72%). Although Lampert (2001) states
that a teacher’s intervention on the interactions between students considered ‘smart’ and ‘less
smart’ at mathematics by their peers is probably required in order to establish an enquiring
classroom atmosphere, this did not seem necessary by the Year 9 students. Nevertheless, a
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slight increase in the percentage of students who felt confident to disagree with those
considered ‘smart’ can be seen from the beginning to the end of the intervention (63% versus
79%, respectively) as well as of those who felt safe to say that they were stuck (77% versus
82%, respectively).

The students’ responses to the prompts gave an even better insight into learners’ beliefs about
the classroom atmosphere. Indeed, open questions usually allow to understand pupils’ ideas
better than close questions (Lankshear & Knobel, 2004).

The responses to Prompt 1 helped to highlight some beliefs that the Year 9 students had about
feeling safe to share their mathematical ideas in the classroom (Figure 5). At the beginning of
the intervention, 34% of the students were worried of getting the answer wrong and 15% were
worried of others’ opinions. Therefore, we realised that the first author had to focus on the
classroom environment as Lampert (2001, p. 71) describes: she had to provide a safe
environment for pupils “to reconsider their assertions, but also for them to comment on one
another’s assertions”. The change in students’ beliefs was interesting: the percentage of
students who was worried about getting the answer wrong dropped from 34% to 18%, and the
fear of others’ opinions disappeared. In contrast, the positive answers (‘Not worried about
others’ opinions’ and ‘Help yourself and others’) increased from 41% to 77% showing that
the students felt safer to share their ideas.

Prompt 1: Do you feel safe to express your mathematical ideas during the
lessons? Why or why not?

100%
60%
I

m Not worried about others'
opinions

m Help yourself and others

Express ideas only if asked

| Fear of others' opinions
20%

H Fear of getting the answer
0,
0% wrong

Beginning of the project End of the project

Figure 5. Students’ responses to Prompt 1 at the beginning and at the end of the project

The responses to Prompt 2 helped to identify reasons for the usefulness of sharing
mathematical ideas (Figure 6). While the percentage of students who thought that it was
important to inform the teacher of their understanding decreased by 15%, the percentage of
students who recognised the importance of learning from mistakes increased by 20%. At the
end of the intervention 7% of the students stated that it was not important or not useful to share
their ideas.
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Prompt 2: Do you think that it is important and useful to share
your mathematical ideas? Why?

100%

80% m Not important or not useful
0

H Let the teacher know your

60% understanding

Help yourself and others to

40% understand
(]

M Learn different methods and

techniques

20% .
B Learn from mistakes

0%

Beginning of the project End of the project

Figure 6. Students’ responses to Prompt 2 at the beginning and at the end of the project

We infer that the changes in students’ beliefs at the beginning and end of the intervention, as
those were expressed in students’ responses to Prompts 1 and 2, were influenced by the
practices introduced in the research and described in detail in Section 4.2. In particular, as
Yackel and Cobb (1996) mention, valuing their ideas and different conjectures encouraged
them to appreciate different methods and ways of solving mathematical tasks. In the interview
at the end of Cycle 3 David admitted:

David: It’s nice like... tell other people how to work it out.

Related to this, Figure 5 and Figure 6 show that sharing ideas in order to help themselves and
others as well as respecting others were valued by learners. Both of these behaviours had
already appeared in the literature (Mason, 2002b; Lampert, 2001) as fundamental factors that
promote an enquiring atmosphere. Their importance was also supported by the interview data.
For example, Carl’s response below illustrates students feeling safe to share their ideas
(Prompt 1) and helping themselves and others by sharing their ideas (Prompt 2).

Carl: Last year people... like if you got a question wrong they could just be ‘Aha, aha
you got it wrong’ but this year we’ve learnt how to not be so horrible to other
people and help them instead of laughing at them.

4.2 Teaching practices to facilitate an enquiring atmosphere

4.2.1 Activities

From the analysis of the results of the questionnaire at the beginning of the intervention (Figure
4) and the first author’s reflections on her teaching, we considered that the teacher needed to
work with her students on the following as starting points in developing an enquiring
atmosphere in her classroom: (1) the students needed to decrease their dependency on the
teacher’s support, (2) the students needed to value the status of being stuck, and (3) the students
needed to feel comfortable to share their ideas. It seemed to us that working on these three
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points would have also encouraged students to listen to each other. This was recorded in the
teacher’s journal:

The atmosphere in the class is relaxed and it is a pleasure to teach this class. This is a good
starting point! However, they could have a more ‘mathematical involvement’ in the lessons:

1. They depend on me when they are stuck,
2. They can apply their knowledge, but they seem lost when they have to formulate new ideas.

4.2.1.1 3B4ME strategy

Regarding the first point about the need for the students to rely less on the teacher, the 3B4ME
strategy (Smith, 2010) was introduced during Cycle 1 and the poster in Figure 7 was posted
on the wall.

Figure 7. Poster with the ‘three before me’ strategy

As Lampert (2001) points out, simply stating this rule and sticking it to the wall would have
not implied that this activity would have happened. During the first part of Cycle 2 the first
author often had to remind learners to look in their notebooks and discuss their ideas with a
friend before asking her in order to promote a classroom culture where pupils could share their
ideas without expecting a teacher’s comment. Bagnato and Meltzer (2010) highlight that
learners’ attitude to self-monitor requires time to be internalised and that their work depends
on the evaluation of their progress and the consequent direction or redirection of their effort.
However, reflecting on lesson 5, the first author wrote in her journal:

Now that I am thinking about it, today nobody asked me for help! They seemed to have
strategies to cope with the problem (write some examples, discuss with people around them) and
the pair work went really well. I even had a chance to test a new conjecture!

During the interviews in Cycle 3, pupils themselves were able to identify different stages to
go through before speaking to the teacher.

Fiona: I look back in my book maybe and then I can ask someone next to me and then I
would put my hand up.

Billie: I sometimes check back in my book to see if we have done anything kind
of similar before and if that isn’t I usually ask Lauren and then ask you.
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4.2.1.2 Valuing the status of being stuck

The second starting point in developing an enquiring atmosphere in the Year 9 classroom,
which was about valuing the status of being stuck, was connected to the 3B4ME strategy.
Although we wanted to provide learners with some strategies before asking for help, we felt it
was also necessary to value the status of being stuck itself without the students considering it
to be a failure. Two main aims were: (1) to make clear that “everyone gets stuck” and getting
stuck “cannot be avoided, and it should not be hidden” (Mason et al., 1982, p. 49); and (2) to
encourage students to identify key steps that could help them to become unstuck. In lesson 3
the teacher decided to explicitly talk about being stuck as a possible learning moment. The
poster in Figure 8 was posted on the wall and the teacher referred back to an episode that had
occurred at the beginning of the year when the teacher herself got stuck and unstuck on a
problem. Indeed, as suggested by Mason (2014), seeing the teacher getting stuck and then
unstuck can encourage pupils to become aware of ways to manage to get unstuck and use these
by themselves.

Are you stuck? %
Excellent!

You’'re going to learn!!!

@

Figure 8. Poster about getting stuck

Referring back to Figure 4, we can see that, although 77% of the students already stated to feel
safe in saying that they were stuck in Cycle 1, the percentage increased to 82% at the end of
Cycle 3. More interestingly, the percentages of students who thought that the teacher is not
the only person who can state the correctness of an answer increased from 50% to 72%. This
idea was also raised in the interviews with students:

Carl: When I am stuck I usually ask the people around me so... Whoever I sit next
to and sometimes they will have the answer and if they don’t know it then I
ask the teacher but people around me mostly help me.

4.2.1.3 ‘Think -...- share’ activities

Regarding the third starting point in developing an enquiring atmosphere in the Year 9
classroom, three activities were used in the lessons in order to encourage learners to share their
mathematical ideas:

1. Think — pair — share: students ponder on a task, talk with the person next to them and then
share their ideas with the whole class (if necessary, the teacher will record the solutions
on the whiteboard).



28

2. Think — post-it — share: students ponder on a task, write their ideas/solutions on a post-it
and stick it on the board to then discuss them.

3. Think — stand — share: students ponder on a task and then share their ideas/solutions with
the whole class (students will record the solutions on the whiteboard).

Examples of the second and third activities are presented in Figure 9 and Figure 10.

Figure 9. Think — post-it — share (lesson 2) Figure 10. Think — stand — share (lesson 3)

Figure 11 presents data from students’ responses to Prompt 3 (see Appendix B). The figure
shows that the think-pair-share activity (without standing or using post-its) was perceived by
students as the most useful from the three in terms of sharing their mathematical ideas.

Activity: Think - pair - share | not useful at all
H not useful
Activity: Think - post-it - share
H neutral
Activity: Think - stand - share m useful
| | | | | | m very useful

0% 20% 40% 60% 80%  100%

Figure 11. Students’ responses to Prompt 3 at the end of the project (activities)

In the think-pair-share activity learners were given time to think through their ideas, share
them with their partners, and then discuss them with the class. They appreciated when the
activity involved sharing the ideas with a partner for different reasons as illustrated in the
following interview excerpts.

Billie: [...] make sure more confidently that you are right if you both got the same
answer and if you don’t then you can work together to work out what it is.

Amy: You could work together so then if you had an idea you could develop it with
each other.
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These student views reinforce the point of Sfard et al. (1998) on the importance of talking in
pairs and providing reflective time in order to encourage learners to rephrase their ideas, to
value them, and to contribute to create a supportive classroom environment.

Three points were always taken into consideration while the activities in Figure 11 were
introduced. The first point was that, once students’ conjectures or proofs had been written on
the board, students were often asked to write their names next to them. As Lampert (1990)
points out, writing students’ names indicates that the ideas belong to the learners who
formulated them and help pupils to question them rather than the teacher. However, in lesson
3 the teacher recorded the following in her journal:

Alex conjectured that the sum of three consecutive numbers is a multiple of three and he proved
it using pictures. Great! But I had to ask him more than once to record his proof on the board
[blue picture at the bottom of Figure 10], it seemed like he felt ashamed...

Related to this, Healy and Hoyles (2000) found out that, although students in their study
preferred proofs using everyday language, they tended to produce proofs using algebra
because they were more likely to receive a better grade. Being aware of this, as we will explain
in the following section, we explicitly introduced the use of different representations as a
helpful strategy to prove a conjecture. In this regard, it is worth noting that Alex included his
pictorial proof in the final group poster on conjectures and proofs at the end of Cycle 3 (Figure
12).

Figure 12. Alex’s pictorial proof in the final poster about proofs (lesson 8)

The second point that was taken into consideration while the three activities were introduced
was that, before writing students’ mathematical ideas on the board, the teacher circulated in
the classroom looking for ideas that would have been interesting to share and discuss
according to the lesson objectives. Therefore, monitoring learners’ responses allowed her to
get a sense of the learning going on in the class and “to identify the mathematical learning
potential of particular strategies and representations used by students” (Stein et al., 2008, p.
326). In this monitoring phase, it was invaluable the anticipating work she had done with the
mathematics teachers in the department meetings in order to anticipate possible students’
answers. Thus, collaborative planning should be considered as an integrated part of the
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suggestion of Stein et al. (2008) to anticipate possible learners’ solutions since a richer
collection of solutions can be created.

The third point that was taken into consideration while the three activities were introduced
related to making purposeful choices about the order of presentation of students’ conjectures
and proofs in order to draw on pupils’ ideas and encourage them to take part in the discussions.
Indeed, according to Cobb, Wood, and Yackel (1993), it is the responsibility of the teacher to
orchestrate pupils’ ideas and to guide a mathematical dialogue between them. If necessary,
pupils were encouraged to change their conjectures stressing the idea that changing the line of
enquiry was not a failure. As an example, we present below the conversation between Max
and the teacher on the effect of an enlargement for the area of the enlarged shape.

Max: If it’s sf [scale factor] 2, your basic shape goes into it four times. So for every basic
shape... every sf will always times two. For example sf 2 means that it goes into
it four times, if it was 3 that would go into it six times.

Teacher: Ok, have you tried sf 3 and 4?

Max: No, I am gonna try.

Teacher: Ok!

After 9 minutes.

Max: Miss, [ was incorrect. [ have a second conjecture now...
Teacher: Ok good, tell me!

Max: My second conjecture is that whatever sf is, if you times it by itself and so you
square it, it tells you how many shapes go into it. You don’t times it by 2 but by
itself.

4.2.2 Strategies

In order to facilitate an enquiring atmosphere and support learners in conjecturing and proving,
we introduced specific strategies that students could use while formulating conjectures and
proofs as discussed in section 2.1.3. In brief, in this research we introduced three strategies at
the beginning of Cycle 2: writing some examples, writing the conjecture explicitly, and using
different ways to represent a proof (using words, algebra, or pictures).

The new strategies were well received and embedded in learners’ mathematical work by the
end of Cycle 3 as indicated by both looking at the work in students’ notebooks and talking to
them. Carl’s answer to the question ‘What is your approach when you attempt a proving task?’
at the end of Cycle 3 was representative.

Carl: First I try to see... to find a pattern, I look at some examples and write them down,
I try to find a conjecture and if I did I write it down and I try some examples with
that conjecture and at the end I’ll try to prove it.
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In Figure 13 we present the Year 9 students’ evaluation of the strategies at the end of Cycle 3.
As we can see in the figure, the students found most useful the strategies of writing some
examples and using algebra to find a proof. The least useful strategy seemed to be the one
about using pictures to find a proof. Next, we are going to discuss each strategy separately,
explaining how each strategy was introduced and applied in the work of the class and
connecting the discussion to the literature.

Strategy: Write some examples [ I

Strategy: Write your conjecture _ ® not useful at all
explicitly L ]
H not useful
Strategy: Use pictures to find a proof [ NGB [ ral
neutra

Strategy: Use words to find a proof [l [ m useful
m very useful
Strategy: Use algebra to find a proof [ e

0% 20%  40% 60% 80%  100%

Figure 13. Students’ responses to Prompt 3 at the end of the project (strategies)
4.2.2.1 Write some examples

The first strategy was suggesting learners to write some examples when they had to attempt a
proof task. We introduced it for two main reasons. The first reason was that specialising should
help students to get a sense of the problem and try to discover patterns. In this regard, Reid
(2002) noticed that all students in his study observed patterns before attempting to conjecture
and prove. Therefore, we decided to explicitly teach this strategy and the high percentage of
Year 9 students who found writing examples useful to formulate conjectures and proofs (82%;
see Figure 13) reinforced its usefulness. Two extracts from Amy’s notebook, written in lessons
3 and 6 (Figure 14 and Figure 15, respectively), indicated that the strategy was well received
and embedded in her mathematical work.
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Figure 14. Amy’s work on ‘What do you notice when you add 3 consecutive numbers?’
(lesson 3)

Figure 15. Amy’s work on ‘The sum of 3 and an odd number squared is always a multiple
of 4’ (lesson 6)

At the end of every lesson learners were often asked to evaluate what strategy had been helpful.
Amy’s comment in lesson 6 provides evidence of the importance of specialising in order to
get some ideas on the task before starting to conjecture and prove.

Amy: I found examples before I thought about the conjecture and proof so I had some
ideas before I started. I found this strategy very useful and easier to work with.
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In other words, this strategy helps to experience the ‘getting started’ and ‘getting involved’
states described by Mason et al. (1982). However, confirming the findings of Alcock and Inglis
(2008), the students used the examples not only to get started but also to test their conjectures
using crucial experiments or to produce counterexamples.

The second reason for introducing writing some examples was to emphasise that producing
examples and observing patterns were strategies to support the development of arguments but
did not constitute a proof. From the reviewed literature (Harel & Sowder, 2007; Stylianides &
Stylianides 2009), we were aware that learners may think that empirical arguments are proofs.
As Stylianides (2007) points out, teachers have the responsibility to help learners to realise the
limitations of empirical arguments and to appreciate the role of proof to validate identified
patterns. Because of this prior research, we considered that explicitly introducing the use of
examples as a tool to look for conjectures and proofs can help remind learners of the limitations
of empirical arguments. The interviews confirmed that the students’ awareness of this strategy
supported them in looking for a proof as illustrated by Fiona’s interview excerpt below.

Fiona: If you use examples then you can see a pattern that take you to the proof more
easily.

4.2.2.2 Write the conjecture explicitly

The second strategy was suggesting learners to write conjectures down as soon as they
formulated one. As Love and Mason (1992) suggest, making note of conjectures is useful
because conjectures are often transitory intuitions. Recording conjectures is worthwhile
because it makes possible going back to them and it allows the students to free up their mind
in order to reason them through. As shown in Figure 13, nearly 60% of Year 9 students valued
this strategy in order to support them in conjecturing and proving. Billie explained why the
strategy helped her in the interview at the end of Cycle 3.

Billie: I think it helps ‘cause you know what direction you’re trying [to go] in. So you
know what you’re focusing on and it makes a bit easier to work out.

Billie’s assertion can be seen being put into practice in Amy’s poster in lesson 8 at the end of
the project (Figure 16). Amy was investigating the link between the perimeter of an enlarged
shape and the original one. She clearly stated her conjecture and then wrote a proof being
aware of the direction she should have taken.
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Figure 16. Amy’s poster (lesson 8)

Writing conjectures down appeared to help students explicitly stating their idea when the task
was investigative and a pattern had to be identified (e.g. the ‘enlargement task’ in Figure 16).
However, when the general statement was already stated conjectures consisted in an initial
evaluation of the statement correctness or a reformulation of the statement in learners’ words
(Figure 17).

Figure 17. Posters produced by a group of students in lesson 8

Finally, writing the conjectures supported learners in revisiting their assumptions and
rewriting them if necessary. David’s work (Figure 18) shows that he reformulated his
conjecture twice before stating the final one that led him to a proof (although his proof is not
complete). As suggested by Lampert (2001), the teacher in our study deliberately taught her
students to revise their conjectures when necessary, to reframe them or to modify them,
emphasising to students it was perfectly acceptable for them to change their line of exploration.
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T

Figure 18. David’s work on the effect of an enlargement on the area (lesson 7)
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4.2.2.3 Different proof representations

The third strategy consisted of using three different representations to write proofs: using
words, pictures, or algebra. Stylianides’ (2007) definition of proof takes into consideration the
importance of different representations that should be accessible or in the range of accessibility
of the classroom community. The teacher recorded in her research journal the proofs that she
shared with the students in lesson 3 using different representations:

Statement: The sum of two odd numbers is an even number.
Words
1st odd number =  even +1

2nd odd number = another even + 1

1st odd + 2nd odd = even +2 =FEVEN

(assuming that we Rnow that even + even = even)

Pictures

eobdeolesles.. .. sels00iee

Algebra

2n +1 +

2k +1

2n+2k+2=2n+k+1)
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Students were then encouraged to use the representation they preferred in order to formulate
a proof for particular conjectures, such as ‘When you add 3 consecutive numbers, if the first
and third numbers are even, then the answer is odd’. Students produced proofs using different
representations, which were collected on the board at the end of lesson 3 (Figure 19).

Figure 19. Students’ proofs showing different representations (lesson 3)

The students’ answers to Prompt 3 (Figure 13) show that almost 90% of the students in the
class preferred algebraic proofs, 65% found proofs with words useful, and 41% stated that
pictures were helpful to produce proofs. We would have expected a higher percentage of
preferences for the pictorial proof and a lower percentage for the algebraic one. However, after
a reflection on the results we were able to highlight two points. First, the Year 9 class was a
high-attaining class and students had good algebraic skills. Therefore, it seemed that, as soon
as students grasped how to use algebra to express generality during Cycle 2, they used it as “a
succinct manipulative language in which to express and reason about generality” (Mason,
2002a, p. 119). Second, although the teacher intentionally did not associate proofs with the
use of algebra, it seemed like learners valued more an algebraic proof than the others as shown
by the following interview excerpts.

Carl: I prefer doing pictures first and then trying, working out with algebra.

Amy: I couldn’t really work out the algebra, like I knew what it was but trying to put
into algebra was really confusing so words helped a little bit in my head and then
trying to translate it was hard.

Similar tendencies in the use of multiple representations have been previously identified by
Amit and Fried (2005). Learners tend to start their work on a proving task by creating their
own representations to support them to understand and attempt the task. Once they do that,
their effort is to use more standard representations (such as algebraic representations) that may
receive a higher grade or may be more appreciated by their teacher.

4.2.3 Questions

In addition to the activities and strategies discussed above, another focus of the research
consisted of introducing specific questions to support learners in formulating conjectures and
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proofs and hence to promote an enquiring atmosphere. These were both oral questions, asked
by the teacher and the students, and written questions, presented in the tasks. The selection of
questions was introduced in Cycle 2 keeping in mind that, if different types of questions are
used, students “are likely to pick up a sense of the subject as a richly embroidered fabric”
(Watson & Mason, 1998, p. 34).

4.2.3.1 Oral questions

We identified eight questions and divided them into those to be asked before conjecturing and
those to be asked after conjecturing or proving (Table 8). As suggested by Mason (2002b), we
selected a few questions as a focus for particular lessons before introducing new ones.

Before conjecturing After conjecturing/proving
Lesson 3 - Can I find an example? Lesson 3 - Will it always work or happen?
Lesson 3 — Can I simplify the problem first? Lesson 4 — Is it a conjecture, a fact or what?
Lesson 4 - What do I know? Lesson 4 - Am I convinced?
Lesson 4 - What do I want? Lesson 5 - What helped me get unstuck?

Table 8. Oral questions

When the questions were introduced, some posters were posted on the wall in order to make
the students more familiar with them. However, in Cycle 3 the posters were removed in order
not to make pupils dependent on them (Mason, 2002b). The teacher repeatedly used these
questions in Cycle 2 and she referred to them indirectly in Cycle 3 by asking ‘What questions
do you think could help you?’ or “What could you think about?’. At the end of the lessons
pupils were often asked to evaluate the questions they had used. The students were also asked
to express their views about the usefulness of each of the eight questions in Prompt 3 at the
end of the project. Their responses are summarised in Figure 20.

Question: 'Can | find an example?'
Question: 'Can | simplify the problem first?"'

Question: 'What do | know? | B not useful at all

Question: 'What do | want?' | M not useful

Question: 'Will it always work or happen?' neutral

m useful
Question: 'Is it a conjecture, a fact or what?'

| m very useful
Question: 'Am | convinced?'

Question: 'What helped me get unstuck?'

0% 20% 40% 60% 80% 100%

Figure 20. Students’ responses to Prompt 3 at the end of the project (questions)
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Regarding the questions to be asked before conjecturing, 82% of the students found ‘Can I
find an example?’ useful to conjecture. This is consistent with the high percentage of students
who found useful the ‘Writing some examples’ strategy (see Figure 13). On the other hand,
‘Can I simplify the problem first?” was considered not useful by 27% of the students possibly
because the tasks were often subdivided in smaller tasks (Appendix D). Finally, the other two
questions, ‘What do I know?’ and ‘What do I want?” were well received by learners (only 18%
did not find the second one useful). The following excerpt from an interview at the end of the
intervention offers one reason for why learners found the ‘What do I want?’ question useful.

Amy: ‘What do you want to find out? What are you trying prove?’ helps because
sometimes you can go off and think... actually this is not what I am doing so
thinking of that helps a lot.

Regarding the questions to be asked after conjecturing or proving, ‘Will it always work or
happen?’ was considered useful or very useful by 97% of the students, whereas ‘Is it a
conjecture, a fact or what?’ received less support (28% of the students considered it ‘useful’
or ‘very useful’). The rationale for these two questions was to support learners in
distinguishing between conjectures and proofs and, therefore, between something that seemed
true and something that had been proven to be always true. In the interview Billie explained
that the first question was helpful because, if she was unsure of something, it reminded her to
try differently. The first question supported pupils in reminding them that a proof has to
“always, always be true, without having to try every single number” (Stylianides & Ball, 2008,
p. 325) or example.

Another notable finding from Figure 20 is that the question ‘Am I convinced?’ was negatively
rated only by 6% of the students. According to Mason et al. (1982) a proof should convince
not only oneself, but also a friend and a sceptic. When in lesson 2 most of the Year 9 students
were convinced that the sum of two odd numbers was an even number because it worked with
some examples, the teacher had to play the role of the sceptic. Challenging their assertion by
asking ‘Why must the answer be even?” emphasised that “there are reasons not just facts, that
statements can be justified, not just asserted” (Mason, 2001, p. 36).

In conclusion, the oral questions that were perceived more useful by learners in order to
support them in conjecturing and proving were ‘Can I find an example?’ and ‘Will it always
work or happen?’. These questions were asked both by the teacher and the students to
themselves and to others and contributed to promote an enquiring atmosphere in the Year 9
class. Martino and Maher (1999) emphasise the importance of teacher questioning to
encourage learners to justify and generalise. On the other hand, it is also fundamental that
learners use the questions themselves in order to support an enquiring atmosphere.
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4.2.3.2 Written questions

As we explained in Section 3.3.4, the tasks used in this research (see Appendix D) presented
two different formulations: a general statement to be evaluated or a list of examples to be
generalised. In Cycle 2, in a meeting of the mathematics teachers in the school where the
intervention took place, five mathematics teachers were asked to solve the two tasks in Figure
21.

2A.

What do you notice? Can you generalise?

3A. Is the following statement true or false?
When you add any 2 odd numbers, your answer is always even.

TRUE FALSE

3B. How can you prove it?

Figure 21. Tasks for teachers

The teachers were asked which task was more helpful to express their mathematical ideas and
which one they thought would have been more helpful for their students. Their answers are
reported in Table 9.

Helpful for teachers Helpful for students
General statement 3 1
List of examples 2 4

Table 9. Teachers’ answers on the tasks in Figure 21

Interestingly, most teachers thought that a list of examples would help learners to conjecture
and prove more than a general statement. They explained their thinking in the following ways:

Teacher 1: It will get them trying out numbers first, then generalising before embarking
on proof.

Teacher 2: They won’t be so tied to proving what the teacher wants.

Similarly, Morselli (2006) highlighted the crucial role that examples play in conjecturing and
proving especially in order to find out a pattern to be generalised. Therefore, we were initially
struck by the answers that the Year 9 students gave to Question 4 in the questionnaire at the
beginning of the project about which task was more helpful to express their mathematical ideas
(Figure 22). As we can see in the figure, nearly 60% of the students preferred the general
statement to the list of examples.
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Question 4: Which of the two tasks you found more helpful in
order to express some ideas and write them down?

100%

— T

80%

m Other
60% H None

Both

40%

m List of examples
20% M General statement

0%

Beginning of the project End of the project

Figure 22. Students’ responses to Question 4 at the beginning and at the end of the project
(Questionnaire in Appendix A)

However, after the intervention the two formulations were rated almost equally by students,
which might reflect the fact that the intervention included both kinds of tasks as can be seen
in Appendix D. More precisely, although a third of the class still found the general statement
more helpful to express their ideas, 40% of the students preferred the list of examples (as
opposed to 25% at the beginning of the intervention). Some students’ opinions about the two
formulations can be found in the extracts from the interviews at the end of Cycle 3.

Billie: I think the general statement is easier because it is a bit already there for you.

Carl: The general statement is easier but I now prefer the example one because it is a bit
more difficult... like you have to think about it first and not just straight away go
ahead.

David: [referring to the list of examples] you get to know more about it and you can do
harder questions with it.

At the beginning of the intervention, the general statement was often considered by students
easier than the list of examples because it clearly stated what they had to prove. On the other
hand, as the students above explained at the end of the intervention, the list of examples was
more challenging and they were able to create their own questions. In other words, it gave
them a better chance of feeling the “sense of pleasure and satisfaction of having had an idea”
(Mason et al, 1982, p. 51). Furthermore, the fact that the list of examples allowed learners to
formulate their own conjectures helped to promote an enquiring atmosphere in the classroom.

Figure 22 shows that, at the end of the intervention, 96% of students found at least one of the
two tasks helpful to express their ideas. This was an improvement from the beginning of the
project when the corresponding percentage was 86%.

In conclusion, both types of tasks seemed useful to promote an enquiring atmosphere. The
general statement supported leaners in expressing what they were trying to discover and was
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a helpful reference to formulate a proof. On the other hand, the list of examples stimulated
learners to pose their mathematical questions, to formulate their conjectures and investigate
them. Therefore, it would be worthwhile to engage leaners in investigating tasks formulated
in both ways in order to cultivate a conjecturing and enquiring atmosphere that supports pupils
in “seeing connections and modifying intuitions as a result of specialising, generalizing and
convincing” (Mason, 1999, p. 58).

S. Concluding remarks

In this paper we reported on a classroom-based intervention that lasted eight lessons with the
particular focus of exploring whether and how specific activities, strategies, and questions may
promote an enquiring atmosphere in a mathematics classroom, i.e., a classroom environment
in which students feel safe to investigate new mathematical ideas in order to produce, share,
and test their conjectures in search for a proof. Although many researchers and curriculum
frameworks in different countries agree on the central role that conjectures and proofs should
play in all students’ mathematical experiences (e.g., Department for Education, 2013; NGA &
CCSSO, 2010), many students find it difficult to engage with conjecturing and proving. In this
paper we argued that the classroom atmosphere has a crucial influence in helping students to
overcome these difficulties and we focused our investigation on an English secondary
mathematics classroom taught by the first author. Students’ responses to questionnaires,
prompts, tasks, and interview questions were analysed in order to evaluate the impact of the
intervention. Although we have used a wide range of data sources to triangulate our claims in
the paper, we acknowledge that students’ self-reports have certain limitations in helping us
understand the impact of the intervention.

Next, we will revisit the three research questions we investigated in this study (see section 3).
In doing so, we will also consider implications of the study for teaching and possible directions
for future research.

The first research question helped us to identify students’ beliefs about their mathematics
classroom atmosphere, which can influence learners’ conjecturing and proving activities.
Although students’ answers to the closed questions in the initial questionnaire seemed mostly
positive, their replies to the open questions revealed that half of the students in our study were
worried to share their mathematical ideas due to a fear of making mistakes or of others’
opinions. Therefore, the status of being stuck was explicitly emphasised in the intervention as
a positive status to learn from and to change direction if necessary (Mason et al., 1982);
moreover, following Sfard et al. (1998), apposite time was set for learners to discuss their
ideas in pairs before sharing with the whole class. These strategies contributed to creating a
safe classroom atmosphere in which students felt safe to offer their conjectures, discuss, and
modify them. It has to be acknowledged, though, that the rather positive views of the students
at the start of the intervention might be explained by the fact that the first author had already
worked with the Year 9 class for a few months before the start of the intervention and, thus,
even unconsciously, some ideas of this study might had already been promoted in the class’s
earlier work.
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The second and third research questions allowed us to investigate teaching practices and
questions that may promote an enquiring atmosphere. The ‘three before me’ (3B4ME) strategy
was used in order to promote independence. This strategy, together with the think-pair-share
activity, appeared to contribute significantly to the development of a fundamental aspect of an
enquiring atmosphere: everybody in the classroom became responsible to listen to others’
ideas, question, and ponder on them. Moreover, three other strategies were introduced. First,
learners were encouraged to write some examples in order to attack a proving task. This
strategy was perceived as the most useful by learners in order to express their mathematical
ideas because it stimulated them to formulate conjectures and it supported them in producing
proofs. Second, pupils were invited to write their conjectures explicitly in order to learn to
better express their ideas mathematically. Third, the use of different proof representations was
an important factor to facilitate a classroom environment where learners were encouraged to
express their conjectures and prove them using their preferred representations. These strategies
contributed to promoting an enquiring atmosphere in the particular classroom where the
intervention took place. An important question for future research to consider is whether the
same strategies could turn out to be equally useful for other teachers in promoting an enquiring
atmosphere in their own classrooms. Might it be that other features of the first author’s
classroom practice supported those strategies in her Year 9 classroom that could make the
strategies less helpful in a classroom context where those features are absent?

Regarding the questions we used in the intervention, the oral questions ‘Can I find an example?’
and ‘Will it always work or happen?’ were perceived by students to be the most helpful. These
questions supported learners in the specialising and generalising phases of the proving activity
(Reid, 2002). About the written questions, at the beginning of the intervention the majority of
the students stated that a formulation with a general statement (e.g. “When you add two odd
numbers, the answer is always even’) was preferable to a list of examples (e.g. ‘3+7 = 10,
5+11=16, 15+3 =18... What do you notice?’) because it clearly states what they had to prove.
However, at the end of the study, the two formulations were equally valued by the students.
The list of examples often contributed to formulating different conjectures and therefore to
promoting an enquiring atmosphere. Future research can explore students’ views about the
two formulations in different classroom environments. It is possible that the views expressed
by the Year 9 students in our study were influenced by the overall focus of the teacher on the
activities of conjecturing and proving. Given that such a focus is not typical of school
mathematics classroom practice (Stylianides et al., 2017), it may be that students in classrooms
where conjecturing and proving receive less attention will express different preferences about
the two formulations.

In conclusion, our analysis suggested that specific activities, strategies, and questions can be
used by teachers in order to facilitate an enquiring classroom atmosphere. However, for these
to effective, the teacher needs to explicitly teach students how to listen, question, and ponder
in order to give students the tools to formulate conjectures and proofs. In an enquiring
atmosphere students should be taught to /isten to each other, using activities that set time for
learners to discuss and listen to the peers’ mathematical ideas; students should be taught to
question their ideas and those of others, introducing learners to sets of questions they can use
and modelling the use of those questions by the teacher; and students should be taught to
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ponder, encouraging independent work and offering strategies they can use to tackle a task.
Overall, our study was successful in promoting an enquiring atmosphere, it developed from
existing literature on the proving activity and classroom atmosphere, and contributed new
knowledge on factors that may promote an enquiring atmosphere. Being aware of how the
relationship between teachers and students can influence the classroom atmosphere, it would
be valuable to implement the research with other teachers and their students, keeping in mind
that creating such atmosphere “is a highly complex undertaking that requires explicit effort on
the part of the teacher” (Yackel & Hanna, 2003, p. 234).
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Appendix A. Questionnaire

This appendix contains the questionnaire used during the research. It was submitted at the

beginning and at the end of the intervention with different (but similar) tasks for Questions 2

and 3.

Questionnaire

1. Please rate how strongly you agree or disagree with each of the following statements by
placing a check mark in the appropriate box.

neither
strongly  disagree agree agree strongly
disagree ' hor agree
disagree
Itis helpful to discuss ideas in maths 0 O O O O
even if they are not correct
? feel 'safe to express my mathematical O O O O O
ideas in my maths lessons
Students’ mathematical ideas are
considered important in my maths O O O O O
lessons
Students ' cor‘nmenj[ on classmates’ O O O O O
mathematical ideas in my maths lessons
Only the teacher can say whether
students’ mathematical ideas are correct O O O O O
or wrong
I would never disagre'e w%th a ‘smart’ O O O O O
student on a mathematical idea
I feel safe to say that I am stuck in my O O O O O

maths lessons

I know what a proofis

I know what a conjecture is

2A.  Is the following statement true or false?

When you add any 2 odd numbers, your answer is always even.

TRUE

FALSE
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2B.  How can you prove it?

2C. Do you think that you have produced a proof in 2B?
YES NO
Why?

3A'

What do you notice? Can you generalise?

Hint: you are adding consecutive numbers, i.e. numbers which are one after another.

3B.  Ifyou generalised, how can you prove it?
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3C. Do you think that you have produced a proof in 3B?
YES NO

Why?

4. In question 2 above, you were given a task in which you had a general statement and you
had to decide if it was always true or false.
In question 3 above, you were given a task in which you had some examples, you had to
identify a pattern and to decide if it was always true or false.

Which of the two tasks you found more helpful in order to express some ideas and write them
down?

The first task
The second task
Both of them
None of them
Other

O O O O O

Explain your answer.
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Appendix B. Activities in prompt 3

This appendix contains the activities presented in Prompt 3 at the end of the research to the

Year 9 class.

Please rate how useful the following activities were in order to make a conjecture and write a
proof by placing a check mark in the appropriate box (1 = not useful at all, 5 = very useful).

1 2 3 4 5
Activity: Think — pair - share O O O O O
Activity: Think — post-it - share O O O O O
Activity: Think — stand - share O O O O O
Strategy: Write some examples O O O O O
Strategy: Write your conjecture explicitly O O O O O
Strategy: Use pictures to find a proof O O O O O
Strategy: Use words to find a proof O O O O O
Strategy: Use algebra to find a proof O O O O O
Question: ‘Can I find an example?’ O O O O O
g;:[:is)‘fion: ‘Can I simplify the problem 0 O O O O
Question: ‘What do I know?’ O O O O O
Question: ‘What do I want?’
1?;)?;?;: ‘Will it always work or O O O O O
Svlﬁzf;i’on: ‘Is it a conjecture, a fact or O O O O 0
Question: ‘Am I convinced?’
Question: ‘What helped me get unstuck?”’




54

Appendix C. Interview questions

This appendix contains a list of questions asked during the interviews in Cycle 3.

Set A — Enquiring atmosphere

e How would you describe the atmosphere in your maths classroom?

e How do you feel about sharing your ideas on a task and your conjectures on how to solve
a problem?

e Do you think that there are ‘smart’ students at maths in your class? Would you disagree
with them?

Set B — Formulating conjectures and proofs

e What is your approach when you attempt a proving task?
e What do you usually do when you do not know how to solve a task or you are stuck?
e What task formulation do you prefer? Why?
e In another class, a teacher wants to present proving tasks to her/his students. Have you got
any suggestions to give her/his students (useful strategies, presentation, time, resources)?
o After showing tasks presented in the questionnaires and/or other tasks solved in class:
» How did you find these tasks?
» How would you describe what you did? How do you know that you have/have
not found a proof?
» Did you use any particular strategies to attempt/solve it?
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Appendix D. Tasks

This appendix contains the tasks used in Lessons 3, 4, 5, 6, and 7.

Lesson 3 (consecutive sums)

The task was inspired by the ‘Summing consecutive numbers’ task from the NRICH website
(https://nrich.maths.org/summingconsecutive).

Your task

a) What is the same and what is different? Can you
generalise?

.@

b) The sum of four consecutive numbers cannot be
divided by four. Investigate!

c) Investigate the sums of five consecutive
numbers and make your own conjecture.

Lesson 4 (unit fractions)

The task was adapted from the ‘Keep it simple’ task from the NRICH website
(https://nrich.maths.org/keepitsimple).

True or false?

Unit fractions can be written as the
sum of two different unit fractions.

g
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Charlie's conjecture

For example

-
-
=

Charlie thought he'd spotted a rule and made up some more examples.

11 .1
2 10 " 20
11,1
3 4 12
11,1
3 7 21
11,1
4 5 20

Are all his examples correct?
What do you notice about the sums that are correct?
Find some other correct examples..

How would you explain to Charlie how to generate lots of correct examples?

Lesson 5 (think of two numbers)

The task was adapted from the ‘Think of two numbers’ task from the NRICH website
(https://nrich.maths.org/thinkoftwonumbers).

Think of Two Numbers rifler)

Specialists in rich mathematics

Think of two whole numbers under 10
Take one of them and add 1
Multiply by 5
Add 1 again
Double your answer
Subtract 1

Add your second number O
Add 2 O

o

Double Again
Subtract 8 Try with different numbers until you
Halve this number and tell me your answer see how it works and then you'll
be ready to amaze your friends!

From your answer | can work out

both your numbers very quickly. Thousands more problems can be found on
How? the NRICH Maths website:

http://nrich.maths.org

Lesson 6 (number tasks)

The tasks are grouped by difficulty: red (basic), amber (medium), green (difficult). The tasks
were adapted from Mason (1999).
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RED TASK 1

Write down a general description of all numbers which are seven more than the square of a number
which is itself one more than a number divisible by four.

Is it always, sometimes or never true that they are all divisible by eight?
RED TASK 2

3412=4=4x1

3432=12=4x3

3+452=28=4x7

34+472=52=4 x13

3492=84=14 x21

What do you notice? Can you generalise?

AMBER TASK 1

Write down a general description of all numbers which are eleven more than the square of a number
which is itself one more than a number divisible by six.

Is it always, sometimes or never true that they are all divisible by twelve?

AMBER TASK 2
22><2—2+2
3 3
32><3—3+3
8 8
42 x —4+4
15 15

What do you notice? Can you generalise?

GREEN TASK 1

The sum of the cubes of the first N integers is the square of the sum of those integers.
Is it always, sometimes or never true?

GREEN TASK 2

42 =16
342 = 1156
3342 = 111556

What do you notice? Can you generalise?
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Lesson 7 (enlargements)

The task was adapted from the ‘Growing rectangles’ task from the NRICH website
(https://nrich.maths.org/6923).

Your task

* What happens to the area of a rectangle if you enlarge it
by a scale factor of 2? Or 37 Or 4 ...?

+ What happens to the area of a rectangle if you enlarge it
by a fractional scale factor?

+ What happens to the area of a rectangle if you enlarge it
by a scale factor of k?

» Explain and justify any conclusions you come to.
Do they apply to plane shapes other than rectangles?

* Now explore what happens to the surface area and
volume of different cuboids when they are enlarged by
different scale factors.

Explain and justify any conclusions you come to.



