Adaptive assessment and content recommendation in online
programming courses: On the use of Elo-rating

BOBAN VESIN, University of South-Eastern Norway and Norwegian University of Science and Technology
KATERINA MANGAROSKA, University of South-Eastern Norway and Norwegian University of Science

and Technology
KAMIL AKHUSEYINOGLU, University of Pittsburgh

MICHAIL GIANNAKOQOS, Norwegian University of Science and Technology

Online learning systems should support students preparedness for professional practice, by equipping them with the necessary
skills while keeping them engaged and active. In that regard, the development of online learning systems that support students’
development and engagement with programming is a challenging process. Early career computer science professionals are
required not only to understand and master numerous programming concepts, but to efficiently learn how to apply them
in different contexts. A prerequisite for an effective and engaging learning process is the existence of adaptive and flexible
learning environments that are beneficial for both, students and teachers. Students can benefit from personalized content
adapted to their individual goals, knowledge, and needs; while teachers can be relieved from the pressure to uniformly and
promptly evaluate hundreds of student assignments. This study proposes and puts into practice a method for evaluating
learning content difficulty and students’ knowledge proficiency utilizing a modified Elo-rating method. The proposed method
effectively pairs learning content difficulty with students’ proficiency, and creates personalized recommendations based on
the generated ratings. The method was implemented in a programming tutoring system and tested with interactive learning
content for object oriented-programming. By collecting quantitative and qualitative data from students who used the system
for one semester, the findings reveal that the proposed method can generate recommendations that are relevant to students
and has the potential to assist teachers in grading students by providing a more holistic understanding of their progress over
time.

CCS Concepts: « Social and professional topics — Student assessment; « Applied computing — E-learning.

Additional Key Words and Phrases: e-learning, personalisation, ranking students, programming, intelligent tutoring systems

1 INTRODUCTION

Many students taking computer science (CS) programs find programming very challenging, with a high percentage
either dropping out or performing poorly [87]. One reason for that is often the way programming is taught.
Given the fact that learning programming requires a certain degree of procedural knowledge competence,
learning programming needs practice and experience [11, 34, 84]. Unfortunately, teaching and learning content in
programming education is often heavy on declarative knowledge, focusing on the features and particularities of

Authors’ addresses: Boban Vesin, boban.vesin@usn.no, University of South-Eastern Norway, Raveien 215, Borre, Vestfold, Norway and
Norwegian University of Science and Technology, HAjgskoleringen 1, Trondheim, Norway; Katerina Mangaroska, katerina.mangaroska@
usn.no, University of South-Eastern Norway, Raveien 215, Borre, Vestfold, Norway and Norwegian University of Science and Technology,
HAygskoleringen 1, Trondheim, Norway; Kamil Akhuseyinoglu, kaa108@pitt.edu, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA,
USA; Michail Giannakos, michaelg@ntnu.no, Norwegian University of Science and Technology, HAjgskoleringen 1, Trondheim, Norway.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.

1946-6226/2022/2-ART $15.00

https://doi.org/10.1145/3511886

ACM Trans. Comput. Educ.

HTTPS://ORCID.ORG/0000-0002-6490-4311
https://orcid.org/0000-0002-6490-4311
https://doi.org/10.1145/3511886

2« Vesin, Mangaroska, Akhuseyinoglu and Giannakos

various programming languages [49], especially in cases when a new programming language is taught to students
with previous programming knowledge [85]. In this regard, novel teaching methods and proper utilization of
online environments and resources have the potential to support students’ engagement with programming [48].
During the last few years the increased availability of online learning resources has changed not only the way
students learn, but also how teachers organize and design learning activities [36]. It is theorized that adaptive
learning systems have the capacity to enhance the learning process by offering content and resources that match
students’ skills and needs [12, 71]. Thus, the demand for online learning resources widely accessible to students
with varying skills and backgrounds, has increased the need to accommodate students’ individual differences
and learning goals [83]. As a result, adaptive learning systems could tailor learning and assessment considering
students’ individuality, instead of providing one-size-fits-all materials.

In CS and software engineering education, programming is a central part of different study programs, which are
not necessarily connected with software development [56]. The increased number of students and the popularity
of programming courses have raised multiple challenges and opportunities in offering assessment and feedback
on programming assignments [61]. For example, introductory programming classes often have more than 500
students, which makes it difficult for instructors to provide timely, thorough, and uniform ‘assessment [82].
Moreover, instructors are required to check and correct numerous programming assignments that might have
similar mistakes; however, due to the volume of programming assignments that need to be graded and the number
of instructors involved in these courses, sometimes the same mistakes might be graded differently [88]. Hence,
in order to provide efficient and consistent assessment for every student, we argue that automated assessment
methods can be adapted and scaled to assist instructors in delivering timely, accurate, and uniform assessment
(43, 81]

Despite the great potential of adaptive assessment in programming education, its application does not come
without challenges [1]. In programming, every solution can be evaluated considering different aspects (e.g.,
efficiency of the solution, correct logic but syntactical mistakes, etc.) and, therefore, imposes additional complexity
during the assessment process. Moreover, standardized assessment methods fail to measure meaningful forms of
human competence, because teachers and learning systems rarely accommodate for learners’ diversity [1, 18].
Hence, since standardized Computer-Based Assessment (CBA) fails to accommodate the individuality of students,
Adaptive Computer-Based Assessment (ACBA) emerged as a solution for accurate and reliable estimation of
proficiency, progress, and reduction of testing time [54]. Consequently, our study attempts to explore how to
develop an efficient and scalable method for adaptive and automated assessment of programming assignments
utilizing unit testing and a ranking algorithm. To do so, we propose a novel implementation that leverages the
Elo-rating algorithm [77], that is originally developed for measuring player strength in chess tournaments [2].
Elo-rating has also found application in the context of educational research for measuring learners’ ability and
tasks’ difficulty [72, 77].

As a first step, we incorporated an adaptive assessment and recommendation module into ProTuS, a system
that has been successfully used for learning programming fundamentals [64]. The modified Elo-rating method
that we implemented estimates the difficulty of the learning content and students’ knowledge in ProTuS. Based
on the generated ratings, the system recommends the learning content based on current knowledge and skills
demonstrated by the students. In sum, the aim of the study was to explore how accurate and precise the Elo-rating
algorithm is for recommending learning content (e.g., coding exercises) and thus, how efficient and scalable the
proposed adaptive assessment module is.

Hence, our study addresses the following research questions:

RQ1: How effective is the Elo-rating algorithm for adaptive assessment in programming tasks?
RQ2: How does the proposed method (i.e., Elo-rating algorithm and unit testing) perform in a real-time adaptive
assessment process in programming tasks?

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 3

RQ3: How accurate are the recommendations of learning content based on the accumulated rankings?
RQ4: How students’ experienced the proposed method and the recognized benefits for programming education?

The following sections provide a brief overview of the available techniques for automated assessment in e-
learning and an overview of recommender systems in education. The proposed method for automatic assessment
in educational environments will be presented in Section 3, in which subsection 3.3 explains the recommendation
process based on the students’ estimated skills and task difficulty implemented in ProTuS. Section 4 presents the
study, while the results of the experiments performed are presented in Section 5. The discussion and conclusions
will be presented in the final section.

2 RELATED WORK

Adaptive learning systems address several interrelated issues with respect to adaptability, such aslearner modeling,
automatic assessment of students’ knowledge, and determining levels of educational content complexity [3].
Past research shows that adaptability in online learning systems is mainly explored through the development of
intelligent tutoring systems [91] or computerized adaptive testing [25]. Studies in the context of programming
education indicate the challenges and opportunities of adapting testing to support CS courses [1, 18]. For the
purpose of this study, we are looking into state-of-the-art adaptive assessment techniques and methods, as well
as the current recommender systems used in online education, with a particular emphasis on studies conducted
in programming education [1, 37].

2.1 Adaptive assessment in programming education

Assessment in technology-rich environments has attracted the interest of many educational technology re-
searchers; however, it remains an intriguing and open research issue [63]. On the one hand, it seems that there is
an increasing attentiveness to performance-based, formative assessment and learning systems that can effectively
support it. On the other hand, many researchers raise concerns about conceptualization and the quality of
assessment in these systems [28], as well as the challenges connected with programming education [1, 51].

The development and use of adaptive learning systems attempt to overcome the issue of heavy reliance
on summative assessment and the "one-size-fits-all" approach [39], by addressing students’ individual needs
and capacities through distinct levels of knowledge proficiency, personal learning goals, and different intrinsic
motivations that shape learning [4]. Adaptive learning systems provide students with individualized learning
content and assignments, while accounting for their current knowledge and skills [77].

Currently, there are many semi-automatic and fully automatic code writing assessment systems, focused
either on evaluation of students or on providing an adaptive feedback [17, 24]. The automatic assessment of
programming assignments has been studied over the years with various tools, and presented as case studies
(6, 15, 19, 57, 67, 68]. Many of the proposed solutions are based on code analysis and differential semantic analysis
techniques. However, the accuracy of the generated grades has rarely been evaluated [57]. This raises questions
about the quality of assessment these systems display, as well as the way in which assessment is conceptualized
and implemented in those systems [28].

2.2 Adaptive assessment methods and their application in programming education

To achieve adaptability, learning systems need to estimate students’ level of competence and the educational
content difficulty levels [77]. Past research investigated various methods that estimate the difficulty of the learning
content [33, 76, 92, 96]. Some of those methods include: proportion correct [29], learner’s feedback [40, 69],
expert rating [20], and the Elo-rating algorithm [77, 90, 96]. However, within the programming domain, adaptive
assessment methods are mostly related to item response theory (IRT) [38, 92], extensions of the Elo-rating
algorithm [2, 77, 79, 90, 96], the TrueSkill algorithm [55], or Bayesian networks [14, 44, 70].

ACM Trans. Comput. Educ.

4« Vesin, Mangaroska, Akhuseyinoglu and Giannakos

One of the most popular methods to obtain skills’ estimates is to use models from IRT. Basic IRT models have
been built on the assumption of a constant skill [75]. Another possibility is using specialised IRT models, such as
Bayesian knowledge tracing (BKT) [21] or performance factor analysis [73]. Despite their frequent use in the
field of intelligent tutoring systems [26], these models are complex to use due to calibration on large samples.
Moreover, frequent updates are computationally difficult to deal with when using IRT methods, since new skill
estimates have to be calculated for each student after a single response for a single task [75].

A promising alternative to the IRT models is the Elo-rating algorithm [35]. This was originally developed
for rating chess players, but lately, it has been used in education to overcome some of the gaps imposed by
IRT models [77]. For example, the Elo-rating algorithm relies entirely on quantitative evaluation of student’s
performance and it can model skills that change over time. Next, when a new item is added in the system, there
is no need to assign the correct initial item difficulty, as the system will learn and assign difficulty levels for
educational content, based on the correctness of the students’ answers [75]. Lastly, the Elo-rating algorithm can
provide an accurate estimation of the tasks’ difficulty with a small sample size, something that is not possible
with IRT models [77].

A systematic overview of different variants of the Elo-rating algorithm and their application in education
was presented in the work of [76]. The author compared the Elo-rating algorithm to alternative methods and
illustrated its application in education. In this study the author demonstrated that the Elo-rating algorithm is
computationally "cheap" and very simple to implement, and it is suitable for adaptive practices in educational
settings. It is also confirmed that the Elo-rating algorithm is sufficient for guiding adaptive behavior, but it needs
at least 100 students to get good estimates of item difficulty. In addition, the authors in [96] also confirmed that
the Elo-rating algorithm can provide reliable estimates with a sample size of 200-250 students. Finally, there were
attempts to combine IRT with Elo-rating to create an alternative model for adaptive item sequencing [2].

Several theoretical properties of the Elo-rating algorithm, such as stationarity of the mean, variance, and
distribution, have been evaluated in [10]. The authors argued that the Elo-rating algorithm as an educational
measurement provides correct parameter estimates. In addition, it offers many advantages mainly concerned
with its simplicity, flexibility, cheapness and ease of implementation, storing a single parameter for each student
and each item, as well as comparable performance to more complex models [76].

The proposed methods are mostly used to track and recommend exercises, where the outcome has a binary
value (solved, not solved). However, in the case of programming assignments, the evaluation results cannot be
simplified to a binary output, because every solution can be evaluated from different aspects (e.g., how efficient is
the solution, number of attempts to solve the problem, time spent to solve the problem, etc.). Consequently, our
study attempts to modify the existing Elo-rating algorithm and include additional parameters in the calculations
that are important in the context of programming education. In particular, we consider additional factors, such
as number of attempts and used time, rather than the solved or not solved status in an attempt to provide
adaptiveness and recommendations. The aim of the new algorithm is to provide a simple and efficient method
for automatic assessment of programming assignments. The calculated estimates are later used to recommend
coding exercises to students that accurately match their knowledge proficiency. The applied algorithm and details
about the recommendation process are presented in Section 3.

2.3 Recommender systems in education

Recommender Systems (RS) have been used in e-learning as solutions that consider students’ preferences and
proficiency, to adapt the learning resources in a way that complement students’ goals and needs [7, 31, 83]. RS
can support students to achieve a specific learning goal, provide annotation in context, or suggest a sequence of
learning resources or activities [65]. Many researchers have examined different recommender techniques and
their applicability to personal learning environments and have presented potential strategies for generating

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 5

learning content recommendations [58, 65]. Some of the techniques used include content-based filtering [74],
user-based collaborative filtering [42], item-based collaborative filtering, stereotypes or demographics-based
collaborative filtering, case-based reasoning, and attribute-based techniques [30].

Usage of contextual information in learning systems aims to improve the learning process [27]. Contextual
information combined with RS in the e-learning domain results in more accurate recommendations provided to
students [93]. In addition to contextual information, different types of feedback from users can also be used to
enhance the quality of the recommendations [99]. This includes explicit and implicit feedback, where explicit
feedback is a type of feedback that a user gives it intentionally (such as ratings) and implicit feedback is a type
of feedback that is collected without users noticing it (such as the amount of time they spent on an item, click
history, etc.). This feedback from users can be incorporated in either building separate user profiles or inferring
the general preferences of the majority [30, 93].

In sum, the anticipated benefits of RS within programming education are numerous, and thus, it is important
to investigate their benefits and undertake further research on how they tackle important challenges in the
field, such as pairing students with applicable learning content or providing adequate feedback [8, 51]. Other,
additional benefits of RS include enhanced reflection and improvements in the teaching process [16, 31], increase
in learning efficiency [98], and automatic assessment [89, 95]. Another important benefit that RS introduce to
students is exploratory learning [50], a process that encourages self-initiated, goal-oriented, and self-regulated
learning activities. This is an important skill that CS students need to develop, as autonomous learning is critical
for their future careers and professional development [66].

3 THE PROPOSED ADAPTIVE ASSESSMENT METHOD

The adaptive learning and assessment method, presented in this paper consists of three main stages (see Figure 1)
executed as repetitive cycles:

(1) Learning sessions. At this stage students can access and interact with the provided learning resources. They
can read about the basic programming concepts presented using text, video, and interactive examples.
Students can also engage in solving interactive challenges and coding exercises presented in the system as
learning activities that are aligned with the learning content. Since the system is adaptive, the students have
the opportunity to follow the generated recommendations, or they can simply select learning activities
that they find it useful, challenging, or interesting.

(2) Adaptive assessment. Before the assessment takes place, every student and all coding exercises are assigned
with initial rankings (student’s knowledge level and the exercise’s difficulty level, respectively), represented
using the same scale. As the students progress through the learning activities, the system updates their
ranking based on their individual performance. This way the assessment is adaptive and continuous because
the system evaluates every submitted activity (for example, an attempt to solve a coding exercise) and
recalculates students ratings based on their quantitative performance. At the same time, the difficulty level
of the learning content is also re-calculated after every attempt a student makes. In order to speed up the
item difficulty calibration process, all coding exercises were initially assigned with an estimated starting
score by the teacher. The details of the implemented algorithm are presented in the section 3.1.

(3) Recommendations of further learning activities. The system takes into account the students’ knowledge
ratings and the difficulty level of the content to further recommend coding exercises that match stu-
dents’ current proficiency. The student has an opportunity to choose whether she/he will follow the
recommendation or not. Details of the implemented recommendation process are presented in section 3.3.

Unlike many IRT models, where students’ rating is updated after every exercise based solely on the last action
of the user, the method presented in our study includes constant recalculation of student proficiency and content
difficulty levels after every submission, considering all previous submissions recalculated. In other words, when a

ACM Trans. Comput. Educ.

6 « Vesin, Mangaroska, Akhuseyinoglu and Giannakos

1. Learning sessions

Interactive learning content
- Examples

- Challenges

- Coding exercises

2. Adaptive assessment

Modified Elo rating
method

Student ratings Difficulty level
of content

. Recommendation

Content
recommendation

Fig..1. Learning process in the system

student submits an exercise, the system will rate the student considering the current level of the exercise difficulty
calculated not just for that particular exercise, but also recalculating it for all of the previous submitted exercises
with their most up-to date difficulty levels. This way, the system allows for more precise evaluation of students’
proficiency based on the most recent re-calibration of exercises difficulty level.

Furthermore, the presented method is able to take into account several parameters (e.g., the number of attempts,
the time used for solving a task, etc.). Thus, the most important innovation of the presented Elo-rating method is
the usage of multi-level estimates in open-ended programming tasks, without being limited to multiple-choice
questions or binary-evaluated tasks (correct-incorrect).

3.1 The implemented algorithm

Considering that the Elo-rating method was originally developed for rating chess players, its adaptation to the
field of education assumes that the student is the player and the content item (e.g., a coding exercise) is the
opponent. Furthermore, the Elo-ratings of the student and the content are represented by a number, which
increases or decreases depending on the students’ actions with the learning resources. The difference in the
ratings between a student and an item serves as a predictor of the outcome of the action. For example, the greater
the difference is, the expectancy level that the student will solve the exercise is higher.

When students sign in to use the system, they all start with the same initial ranking (i.e., 1300), and the basic
logic of the formula considers the changes in the students’ performance, thereby students gain points if they
perform above their expectancy level, and lose points if they perform below their expectancy level [10]. For

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 7

example, if a high-rated student successfully solves a less difficult exercise, then a few rating points will be
added to their current ranking. However, if a lower-rated student solves an exercise that is above their current
rank (i.e., a difficult exercise), the student will receive more ranking points. Consequently, a student who has an
underestimated initial rating should in the long run perform better than what the rating system predicts, and
thus, gain rating points until the ranking reflects their true knowledge. At the same time, the difficulty level of
the learning content is recalculated and adjusted based on the knowledge level of students who managed or
failed to solve the exercises. These two strategies allow the rating system to act as a self-correcting system.
The presented algorithm takes into account:

o the number of successful/failed attempts;
o the percentage/rate of successful unit tests;
e the time needed to solve an exercise.

The proposed method estimates the probability that a student i is able to solve the coding exercise j based on
its current rank and the difficulty of the coding exercise j. The ratings of the students and the difficulty of the
coding exercises are updated as follows:

Ri=Ri1 +K-(W-W) (1)
Dj = Dj—l +K - (We - W) (2)
Where:

o R; represents the new rating of a student after the event (i.e., solving the exercise).

e R;_; represents the pre-event rating of a student.

e Dj represents the new level of difficulty of a coding exercise j after the event.

e Dj_; represents the pre-event difficulty of the coding exercises.

e K represents the rating point value, i.e., a constant, specifying the sensitivity of the estimate where
K € {30, 20,15, 10}. The K-factor determines the 4AlJsensitivityAAl of how wins and losses impact the
rating. This value is gradually decreased as the student solves more exercises.

e W represents the result from solving the recommended exercise (i.e., the success rate), calculated by the
following formula:

A+ AT
W—(—2 AT,)(ald, ait;) ®)

— A, represents the number of successful attempts in solving a problem.

— A, represents the number of overall attempts to solve a problem.

- T, represents the number of performed unit tests.

— T, represents the number of correct unit tests.

—'a; represents a discrimination parameter. This parameter is used to adjust the time parameter discrimina-

tion, ensuring balanced influence of outlined time values.

- d; represents the time limit.

— t; represents the time a student needs to solve a problem i.
e Finally, W, represents the probability that the student will solve the exercise:

1

1+ 10(RH‘“"?ﬂ)

This method, implemented in the programming tutoring system, differs from other implementations of the
same algorithm. The difference is in formula (3) which calculates the success rate, W. The proposed method
calculates this value based on the ratio between the successful attempts, the overall attempts, the number of unit

W, = 4)

ACM Trans. Comput. Educ.

8 « Vesin, Mangaroska, Akhuseyinoglu and Giannakos

tests performed, and the number of correct unit tests. We argue that exercises which were solved correctly at the
first attempt can be labeled as "easier” for that particular student, compared to exercises that required multiple
solving attempts from the same student. We also argue that exercises which require a student to spend more time
(as registered in the log) reaching a solution can be labeled as "difficult" for that particular student. However,
these two properties cannot be considered as the sole indicators to distinguish the difficulty level of coding
exercises because students are allowed to repeat the assignments until they finally succeed. Hence, formula (3)
adds a response time (i.e., time to solve an exercise) in the calculation of the success rate. The authors argue the
importance of how quickly a student can understand the problem and break it down into parts. Programming
speed also shows the studentAAZs ability to think at a high level and that he/she is not overwhelmed with the
complexity of the problem. The system ensures that the student is actively engaged with the chosen content
by defining an idle timeout value which starts when the student begins solving a coding exercise. The current
session is terminated, and the student is logged out if no activity is detected for a specific length of time (i.e.,
180 seconds). When the session is terminated this way, the timeout value is subtracted from the overall session
duration. Although this method for handling the idle time might not be ideal, it does result in a more accurate
estimation of the session time.

Therefore, the answer receives a score based on the correctness of the solution and the response time for that
solution t; [52, 76]. With this rule, the stakes are higher when a student provides a quick response. The faster
response can result in a more significant increase of the student’s rating in the case of correct submission and a
more significant fall in the same rating if the student submits a wrong answer. If the response time is longer,
the score converges toward zero (i.e., for both correct and incorrect answers). However, the influence of the
time factor should be balanced (with the discrimination factor) to prevent extremely low values, which would
significantly decrease the final changes in rankings.

3.2 The learning content provided in the system

The learning content (i.e., resources) included in the system consists of four types of activities that support
individual work. Students can practice and learn programming through the following learning content:

(1) Explanations (ProTuS). ProTuS contains reading content (i.e., tutorials) on 15 topics that are aligned with the
curriculum presented in the course. However, these 15 topics are not the exhaustive list of topics that are
being taught in introductory programming courses [62]. The learning objective behind the reading content
was to offer students the opportunity to extend their Object-Oriented Programming (OOP) knowledge
on top of their existing knowledge in procedural programming (as students had already undertaken a CS
course in Python). Thus, we have developed content for 15 different topics in relation to basic concepts in
Python and Java, emphasizing on syntax comparison. An example is provided in Figure 2.

(2) Examples (MasteryGrids-PCLab). For each of the proposed topics in the system, there are established
examples, called Program Construction EXamples (PCEX) [45]. The idea is to support students in acquiring
program construction skills through a new type of smart and interactive content. Each PCEX content
starts with a worked-out example where it is explained how to write code for a particular problem. The
explanations are available for almost all lines in the examples and they focus on why students need to
write code in a certain way or why certain programming constructs are used in the code. The explanations
for the lines of code are hidden until a student clicks on the line of interest (Figure 3).

(3) Challenges (MasteryGrids-PCLab). Following the pedagogical reasoning that examples are more effective
when students utilize the knowledge gained immediately to solve a problem similar to the given example,
we decided to present a challenge after each example [22]. Therefore, students could try to solve one or
more challenges related to the example they had previously viewed in order to consolidate the knowledge
gained. Each challenge displays a problem similar to the code that the student had viewed in the example

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 9

Python's Boolean operators, and, or,and not have corresponding Java operators &&, [/ and /.

Logical Operators in Java Logical Operators in Python
boolean x = true; X = True

boolean y = false; y = False

// Output: x and y is false # Output: x and y is False
System.out.println(”"x and y is " + (X && y)); print('x and y is',x and y)
// Output: x or y is true # Output: x or y is True
System.out.println("x or y is " + (x || y)); print('x or y is',x or y)
// Output: not x is false # Output: not x is False
System.out.println("not x is " + !x); print('not x is',not x)

Negation is also formed differently between those two programming languages.

Operators in Java Operators in Python

l'(x>08 y>0)|]lz>0 w>0 not(x > @ andy > @) or z > @

Fig. 2. Syntax comparison in the system

with some blank lines that need to be filled in by dragging and dropping the pieces of code to the blank
fields [13]. Immediate feedback and hints are available for each challenge (Figure 4).

(4) Coding exercises (MasteryGrids-PCRS). This type of smart content require students to write code or complete
a given code to achieve a certain goal. The system that provided this content is known as the Programming
Course Resource System (PCRS) [78, 100], whose content server resides at the University of Toronto. Each
coding exercise have a problem description and a baseline code. When students submitted their code, the
code was tested against a set of unit tests developed for that particular problem and the student received
a prompt feedback on whether the written code has passed the tests or not. This automated feedback
highlights both syntax and run-time errors - for which specific cases and parameters those errors appeared.
The challenges and the coding exercises could be attempted multiple times (Figure 5).

The context of our study was focused primarily on the coding exercises, as this content is the only resource to
which we have access to make changes in the user modeling technique. This type of interactive content requires
students to complete a skeleton code, which after it is submitted, the code is instantly tested against a set of
previously developed unit tests. During this process, the system tracks all submissions, ratings from students’
feedback, and the time need it for students to solve a particular coding exercise. A faster response time in solving
an exercise is not an ideal indicator of student’s proficiency; however, we chose this method to calculate a more
accurate session time controlling for the idle time.

3.3 The applied recommendation process

The core of the recommendation process is based on the proposed Elo-rating method to estimate students’
knowledge and recommend coding exercises that match their current proficiency [63]. In every moment, students
receive three to five recommendations of coding exercises that the system has calculated to be the most suitable

ACM Trans. Comput. Educ.

10 « Vesin, Mangaroska, Akhuseyinoglu and Giannakos

‘ Example: Determining When to Buy a New Phone (Case 1)

Construct a program that determines whether it is time to buy a new phone based
on the inputs that it receives from the user. A new phone should be bought if the
phone breaks or the phone is at least 3 years old.

1 import java.util.Scanner;
2 public class JPhoneAgel {
3
4

public static void main(String[] args){
//Step 1: Read the user inputs

54 Scanner scan = new Scanner(System.in); @ We need to read and process the
A . values that the user enters. To read
6 System.out.println("Enter the phone age in years:"); ® .
i the input values from the user, we
7 int Al = . tInt(); s
0% phoneigss s) Sean.NEXEINEL) 0 need to define a Scanner object.
8 System.out.println("Enter whether the phone is broken (true or
false):"); @
9 boolean isBroken = scan.nextBoolean(); @ -REVIOUS

10 scan.close(); @
11 //Step 2: Write the boolean expression to determine whether it is R TION e

time to buy a new phone
12 boolean needPhone = isBroken || phoneAge >= 3; o
13 System.out.println(needPhone); O

Fig. 3. Display of an Example

for a particular student in relation to that student proficiency in programming (Figure 7). The recommendations
run between 3 to 5, depending on the skills a student demonstrates, the difficulty level of the exercise and the
process between the two sides once the student engages with the system. Then, it is up to the student to choose
between the recommended coding exercises or the other coding exercises that are not currently recommended
by the system, but are still displayed in ProTuS (Figure 6). Hence, when a student decides to undertake a more
complex coding exercise, that student could gain more ranking points for solving the exercise. However, if a
student decides to choose a less complex coding exercise (i.e., potentially less challenging), that student could
gain fewer ranking points. Thus, this adaptive strategy further determines the type of coding exercises that could
be recommended to students based on their current activities and knowledge proficiency.

4 METHODOLOGY

The main goal of this study was to put into practice the proposed adaptive assessment and content recommendation
module in the context of a programming course. In particular, we investigated the efficiency and the performance
of the proposed Elo-rating method in an introductory OOP course. We argue that analyzing the method’s strengths
and weaknesses could provide us with further guidelines on how to improve the ranking technique and the
recommendation process.

To tackle the four research questions (RQs) of this paper, we performed the following objectives.

(1) implement an adaptive assessment and content recommendation based on a modified Elo-rating method
(as described in section 3);

(2) conduct a semester long study to collect quantitative and qualitative data from students’ use and experience;
and

(3) perform data analyses to investigate how the proposed method performs in real-time and address the RQs.

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 11

16 class Animal {

£33 //Step 1.1: Declare the instance variable

12 private String name; Incorrect. Try Again!
13 //Step 1.2: Define the constructor to create an animal with the specified

name Your program output is

14 public Animal(String name) { different than the expected
15 this.name = name; output
16}

17 //Step 1.3: Define the method to give a voice to the animal

18 public void speak() {

——

19 System.out.println("My name is " + owner);

20 ¥

21 //Step 1.4: Define the toString method to get the string representation of
the Animal instance

22 public String toString() {

23 return " Name: " + name;

24} Drag a tile from here
25 //Step 1.5: Define the method to get the animal's name

26 public String getName() {

27 return name;
28 ¥
29) i
iSystem.out.println("My name is " |
30 //step 2: Extend the class Animal to define the class Dog H f
i+ name); :
31 class Dog extends Animal { s
32 //Step 2.1: Declare the instance variable fspeak(); E
33 private String owner;
34 //Step 2.2: Define the constructor to create a dog with the specified name ;'System.out.println("woof, E
and owner EWOOf! ")s ;
35 public Dog(String name, String owner) {

Fig. 4. Display of a Challenge

In this section, we describe the context of the study and the methodological details, such as the measurements
used and the performed analyses.

4.1 Context of the study

Before running the study, a prototype module for content recommendation was developed and integrated into
ProTuS$ - programming tutoring system’, which was hosted at a university’s server [94]. The system was available
throughout the whole semester to the students who wanted to use a tutoring system with smart content as
an additional learning resource to practice their programming skills. Thus, the students were asked to use this
module in-the-wild (i.e., whenever they feel the need to use it without being a mandatory part of the course
design), and after the end of the semester they were asked to fill out a survey regarding the learning outcomes
and the effectiveness of the implemented module.

4.2 Participants

CS students from two public European universities (University of South-Eastern Norway and Norwegian Uni-
versity of Science and Technology), undertaking an introductory course in OOP, were invited to participate in
the study and practice their programming skills in Java using ProTuS. The sample consisted of students without
previous experience in OOP (considering their study program curriculum). The students had already taken an
introductory (procedural) programming course in Python (i.e., CS1) in the previous semester, so we assumed that
they had already mastered the fundamentals of procedural programming.

1ProTus: https://protus.idi.ntnu.no/

ACM Trans. Comput. Educ.

12« Vesin, Mangaroska, Akhuseyinoglu and Giannakos
Determining when the three numbers are in order v
Given three integer variables, a, b, and c, write a boolean expression to determine if b is greater than
a, and c is greater than b. However, with the exception that if the boolean variable bOk is true, b does
not need to be greater than a. Store the result of this expression in a variable called result. Assume
that the initial value of the variables a, b, and c is already set to an integer and the initial value of the
variable bOk is already set to a boolean value.
E.g. 1:if the value of a is 1, the value of b is 2, the valy [suomi |
value of result will be true. X Your solution passed 4 out of 12 cases!
E.g. 2: if the value of a is 1, the value of b is 2, the valy
value of result will be false. Foedack Faseed
E.g. 3:if the value of a is 1, the value of b is 1, the valy e ouput el Code output: el ()
value of result will be true. Q
Y
[Expected output: true] [Code output: false] O
1| | boolean result; O
2 // TODO: add your code here [Expected output: true] [Code output: false] ‘
3 [Expected output: true] [Code output: false] O
4
Fig. 5. Display of a coding exercise
=

“ Java vs Python
Variables and Operations For Loops m Guidelines
Strings
Booleanbxpresslons xplanation Example: Challenges Coding exeréises
If-Else z o x
Htpsfprotus dintnunoprotus. X
While Loops B nipss B i
v U C 0 & protusidintnu nentket. v ¢ H © B & @
Obijects and Clazses) Recommended coding exercises
Nested Loops Finish exercise and close
These coding exercises are recommended for you by ProTus based®n your current rank
Arrays -—
Two-Dimensional Arrays . .
Exception handling Confident Confident Skillful Skillful
File processing
Arraylists Q \‘ ‘ % ArrayList 1 v
Inheritance) =
Complete the following method which takes a list of integers s a parameter and returs a new lst of
Java functions the integers, omitting any that are less than
For example:
Conditional statements 1 Calculating the ArrayLists 1 Two-Dimens|
Percentage of the. 2 noNeg(%J, K
noNeg([-3,
Correctly Answered e -
Other coding exercises . : G
1 ublic Arraylist<Integer> noNeg(Arraylist<Integer> nums) {
These coding exercisesyou have not solved yet 2 // TODO: Write your code here
Proficient Confident Confident Confident| &
— =Fa -Fa A ~ .
tatistics
9}
Current lesson:
EEES Inheritance 1 Fixing order of numbers ~ Smallest integer Symmetrical
MasteryGrids report provides you with
the up-to-date overview of your 5
progress and activities
Confident Confident Confident Confident Confident Confident Confident Confident
Mastery Grids report
- - - - - - - -

Fig. 6. User interface of the system

Overall, there were 701 students who used the system during the Fall 2019 and Fall 2020 semester. However,
one-time visit or very limited interaction with the system do not provide us with meaningful data required

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course

Difficulty
low high
Coding — — _— j—— j——
exercises — — — — —
AN J
Y
Recommended exercises
[
Students w
low Knowledge level high

Fig. 7. Recommendation of coding exercises

stages of the experiment

Implementation of the systems” modules E
Interactive content
Adaptive assessment

Recommendation

Collection of the interaction data

a—
Click-streams
@ o # Log files

JUnit tests
Generated rankings

Analysing the impact of proposed approach

Quality of recommendations
Effectiveness
Efficiency

Fig. 8. Stages of the experiment

to investigate how the proposed method performs in real-time. Therefore, the analyzed data sample included

only students who have solved more than 10 coding exercises (n=87). The study lasted one semester, with two
generations of students (31 students in 2019, and 56 students in 2020).

ACM Trans. Comput. Educ.

13

14« Vesin, Mangaroska, Akhuseyinoglu and Giannakos

4.3 Data collection

The following data were collected to evaluate the efficiency and effectiveness of the proposed method (i.e.,
Elo-rating algorithm combined with unit-tests):

o Students’ interaction data with ProTuS (e.g., browsing history, session logs, students’ clicks on any
element of the user interface, duration of actions, students’ selection of recommendations, etc.). These
records were used to analyze students’ activities and their response to the system recommendations.

e System-generated rankings of students, which were calculated based on the students’ interactions
with the learning resources (e.g., number of submission attempts, number of trials/errors with the coding
exercises, time to complete the coding exercises, number of submitted solutions, etc.).

e Survey data regarding the students’ learning outcomes and the effectiveness of the implemented module,
collected at the end of the semester (i.e., Fall 2020). The survey consisted of 8 questions, of which 5 were
open-ended questions and three were yes-no questions.

4.4 Measurements

To investigate how the proposed method performs in real-time, we introduced metrics to quantify the quality of
the recommendations, the effectiveness of the proposed method, and the efficiency of the modified Elo-rating
algorithm.

The quality of the recommendations measures the percentage of the generated correct recommendations
of coding exercises made by the tutoring system [86]. Thus, to measure the quality of the recommendations (i.e.,
RQ3), we used the standard precision and recall evaluation metrics [41, 42].

e Precision is defined as the percentage of recommended items that truly turn out to be relevant (i.e.,
consumed by the student).

o Recall is defined as the percentage of relevant (i.e., ground-truth positive) items that have been recom-
mended as positive.

These commonly used evaluation metrics are calculated as:

t
Precision = —~ (5)
tp + fp
t
Recall = —2 (6)
tp + fn

where:

e t, (true positive) represents the number of coding exercises recommended and started by the students.
e f, (false positive) represents the number of coding exercises recommended but not started by the students.
o f, (false negative) represents the number of coding exercises started by the students but not recommended.

Using precision and recall, we calculated the trade-off between the number of recommended exercises generated
by the system and the number of exercises undertaken by the students. In practice, the programming tutoring
system creates rankings of the coding exercises based on the implemented Elo-rating algorithm; hence, the top-k
coding exercises are always recommended to students. However, the students have the opportunity not to choose
the generated system recommendations, and therefore, we decided to look into students’ selection of exercises
when they choose not to follow the system recommendations. In particular, we were interested to see if the
students tend to select coding exercises that are close to their proficiency level or select exercises above/below
their current rating.

The Effectiveness of the proposed method is represented through the quality of the system generated grades
(i.e., RQ1). To evaluate the quality of the system generated grades, we compared those grades with the actual
grades (i.e., based on their final exam) students received at the end of the course. For example, the students

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 15

were assigned with the same initial ranking (i.e., 1300) and, after a series of assessments, their ratings roughly
fell in the [1100,1500] range (including outliers). These ratings represent a set of system generated rankings.
Students also received a course grade from their teachers because they have attended the university course in
OOP from which the students were recruited for the study. Students’ interactions with the tutoring system and
the outcome of the exercises submitted in that system were not considered in the students final course grades.

4.5 Data analysis

To answer the first RQ (i.e., Elo-rating effectiveness), we compared the grades that the tutoring system generated
for each student with the grades that the teacher assigned at the end of the course, by performing a paired sample
t-test [47]. The final grades assigned by the teacher were calculated based solely on the final exam. The course
grades were scaled to the [1100,1500] interval in order to be comparable to the system generated ratings (the
interval has been divided into six equally sized sub-intervals, each representing one grade of the grading scale
used at the university where the study took place). Hence, we performed a paired sample t-test [47] that depicts
if there is a statistically significant difference between the two means. Although with certain limitations, we
argue that this method is suitable due to the thoroughness and acceptability of the final grades assigned from the
teacher. Therefore, it has been used to measure the performance of a sample of students in two different activities
and analyze their differences. Hence, the null hypothesis states: "There is no significant difference between the
grades generated by the system and the final course grades assigned by the instructor".

When it comes to the second RQ (i.e., the efficiency of the proposed method (Elo-rating algorithm and unit
testing) in real-time adaptive assessment of programming tasks) we calculated how quickly the system can start
giving relevant personalized results. The Efficiency of the method is evaluated by analyzing the number of
calculation steps required (i.e., how many coding exercises a student needs to solve) for the system to generate
an accurate student ranking (i.e., RQ2). In other words, it represents the measure of how quickly the system can
start giving relevant personalized results. To evaluate the efficiency of the proposed algorithm for an automatic
and objective way of generating ratings, we studied the effect of the number of accessed and solved exercises
over the performance of the proposed algorithm.

To answer the third RQ and investigate the accuracy of provided content recommendations we used the
standard precision and recall evaluation metrics. Details about the measurments are provided in the section 4.4.

When it comes to the fourth RQ (i.e., studentsAAZ experience with the proposed method) we conducted a
thematic analysis of the qualitative data collected from students at the end of the study (Fall 2020 semester). In
particular, we applied an elicitation technique and conducted a thematic analysis on the survey data following
Braun and Clarke [9] six-step framework. Unlike many qualitative methodologies, this analysis is not tied to
a particular theoretical perspective [59]. Because the nature of the study was exploratory, so was the analysis;
thus, we used an inductive approach and looked for themes that emerged from the text [9]. The survey data was
divided between two researchers who coded the data individually. Later, the differences were settled, and we end
the process achieving a high inter-rater reliability (CohenaAZs k = 0.78). The analysis led to four themes and
eight unique codes (i.e., practice options, learner characteristics, assisted guidance, ITS benefits, personal choices,
individual needs, useful content, and current drawbacks). Most of the coded nodes are associated with one theme,
but some are associated with more than one theme.

5 RESULTS

The students who used the system and were included in our study (a total of 701 students registered into the
system), engaged in 4528 user-sessions with 6920 visited content (students’ visits to examples, challenges, or
coding exercises). A typical student spent circa 49 minutes within the system. A total of 1016 coding exercises
have been tried to solve. The detailed overview of the collected data is presented in Table 1.

ACM Trans. Comput. Educ.

16 « Vesin, Mangaroska, Akhuseyinoglu and Giannakos

Table 1. Users’ session details

Users’ session details

Overall number of systems’ users 701
Number of solved coding exercises 1016
Number of active users (solved more than 10 exercises) 87
Overall number of user sessions 4528
Average overall session time of a student 48mb54s
Number of visited content 6920
The number of students that responded to the survey 34

Table 2. Results of recommendation in ProTuS

Educational content Precision Recall Recommendation technique
Coding exercises 0.65 0.62 Elo-rating
Examples and challenges 0.64 0.63 Adaptive sequencing recommendations

Quality of the recommendations

Precision and recall have been used to evaluate the quality of the content recommendations (Table 2). The results
showed that the probability of the implemented Elo-based algorithm recommending relevant coding exercises was
0.62 (recall), and the probability that all of the recommended coding exercises were relevant was 0.65 (precision).

To further analyze the behavior of the students on an individual level, Precision and Recall were calculated for
each coding exercise (Figure 9) and student individually (Figure 10). As one can notice, the figures contain fewer
dots than the reported number of students and visited content, but this is due to the overlaps at some points in
the graph.

Analyzing the content in Figure 9, one can notice that majority of content lies above the 0.5 point mark of
precision, meaning that the algorithm returned substantially more relevant results than irrelevant ones. Looking
at the individual choices of students (Figure 10), one can observe that the students could be roughly divided into
two groups. The first group includes students who almost blindly followed the recommendations (recall is 1 or in
close proximity), although they were not instructed or asked to do so, but freely choose to solve the exercises
that match their proficiency level. The other group of students almost completely ignored the recommendations
and preferred to select coding exercises based on a topic or concepts they were struggling with during learning.

For the purpose of our study and as already mentioned in the data analysis section, we decided to look into the
students’ selection of coding exercises when they were not following the recommendations. Thus, we analyzed
the average difference between the current rank of every student and the difficulty of the chosen exercise. The
results are presented in Figure 11 and they describe how values for a single student are spread across the entire
range (the outliers have been removed).

It can be observed that 50% of the choices that students made fall into a small range of [-44,83], meaning that
overall, the students selected exercises similar to their own ratings. On average, they tended to select the exercises
slightly above their rank, which is indicated by the median of 8, showing the ambition to achieve better results.
However, their choices are spread along a wide range, so a significant number of students experimented with
exercises of high and low difficulty.

ACM Trans. Comput. Educ.

Effectiveness

Precision

Precision

Adaptive assessment and content recommendation in online programming course

Precision/Recall per content
1.0 o I . . s o
0.9 - -
0.8 :
0.7 T
0.6 .-t
0.5
0.4 - .
0.3 ’ .
0.2
0.1
0.0 S
00 01 02 03 04 05 06 07 08 09 10
Recall

Fig. 9. Precision/recall plot of the performed recommendations - per content

Precision/Recall per student

1 ¢ o coee oo
0.9 .
0.8 . .
0.7
0.6 . ’ -
0.5 o o o o o eoo
0.4 I
0.3 : :
0.2+
0.1
0 -

00 01 02 03 04 05 06 07 08 09 1.0

Recall

Fig. 10. Precision/recall plot of the performed recommendations - per student

A paired t-test was conducted in order to determine whether there is a significant difference between the grades
generated by the system (i.e., system rankings) and the grades that are given by the instructor. Table 3 displays
the descriptive statistics for these two sets of grades. We can see from the two means that the system generated
grades have a similar mean (mean = 1410.51) to the course grades (mean = 1408). Moreover, the standard deviation

ACM Trans. Comput. Educ.

18 « Vesin, Mangaroska, Akhuseyinoglu and Giannakos

250

200

150

100

50

Differences in rating

-50
er Whisker: 262.0

Upper Hinge 82.8

-100 Median 9.5

ower Hinge: -43.7

ower Whisker: -212.0 ‘

-150

-200

Fig. 11. Differences in the difficulty level of exercises and the current

Table 3. Descriptive statistics of two sets of grades

Mean N Standard deviation Standard error

Systems’ generated grades 1410.51 109 113 11
Course grades 1408 109 184.26 17.65

Table 4. Dependent t-test results

Mean ; 95% confidence interval t df p-value
Lower Upper

Pair: 2 sets of grades
(df$ELOrating and

df$Course.points) 2.1955 0.011 -37.58 41.97 0.1094 108 0.9131

shows that the grades given by the instructor have a higher deviation compared to the system grades, which are
very close to the mean.

The results of the performed paired t-test are presented in Table 4. One can notice that there is not a significant
difference between the grades generated by the system and the course grades assigned by the teacher, (t(108) =
2.1955, p = 0.91, r = 0.01), meaning that with 95% confidence we can keep the null hypothesis.

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 19

Efficiency
In order to test the efficiency of the proposed method, we investigated how many steps are needed for the
proposed algorithm to generate an accurate student rating. In practice, this means that we investigated how
many coding exercises a student needs to solve (or try to solve) in order to be ranked accurately. To increase the
accuracy of rank estimation, the analysis focused only on students who solved at least 10 coding exercises.
Figure 12 shows how the ratings of the most active students changed over time. The chart displays only students
who completed at least 10 exercises. The x-axis represents the number of coding exercises students solved, while
the y-axis presents their ranking in a particular moment. Thus, it can be observed that the biggest changes in
rating occurred after the first 6 to 7 solved exercises. After the seventh step, ratings only slightly converged
toward their final ratings. Based on that fact, it can be concluded that the requirement for the successful rating of
students with the proposed method requires no more than 7 steps; the optimum can be achieved in a maximum
of 10 iterations. If we compare our findings with findings reported in the past, we can say that the efficiency
of the proposed method does not lag behind other more popular methods used in digital assessment [2, 77, 97].
However, additional evaluations are needed to compare the efficiency of the proposed method with other popular
methods that are currently in use.

1650
1600
1550
1500
1450
1400
1350
1300
1250
1200

Students' ratings

0 1 2 3 4 5 6 7 8 9 10
Number of solved exercises

Fig. 12. Trends of students’ ratings

Themes from the thematic analysis

Theme'1: Supporting students’ empowerment, confidence and problem solving skills. When it comes to
learning with ITS, the majority of the students agreed that their voluntary exposure to the system throughout
the semester supported the learning outcomes of the OOP course (82.4% of 34 participants). The system offered
relevant content that allowed students to engage with "learning by doing" practices, with most the students
identifying this as the factor which led to actual learning, - "I learned more by actually coding and troubleshooting
errors rather than watching a two hour lecture”. Moreover, the proposed activity empowered students to achieve
actual learning outcomes by engaging to "trial and error" and "search for new knowledge" practices, especially
for the novices, who had to search online for particular concepts, terminology, or to understand the way tasks
are composed and worded; - "I had to do research to be able to solve some of the tasks, which in turn helped me to
improve my knowledge". Several students also said: - "[the system] helped me [to learn] by making me search for
new knowledge" and - "it [the tasks] made me think and research before answering [submitting the code]".

ACM Trans. Comput. Educ.

20 .« Vesin, Mangaroska, Akhuseyinoglu and Giannakos

In general, almost all students found the usage of the system helpful toward improving their proficiency and
some of their personal beliefs/feelings toward programming. Some students expressed that - "The immediate
feedback from the system when it tells you if your code works or not, gives you confidence to try different approaches”,
- "I got better at debugging and understanding logic how to approach different problems", as well as - "It helped me to
become more confident to write the correct syntax”. At the end, the main benefits from learning with ITS that the
students listed in the survey included: - "It’s [offers] short tasks with not too much [acceptable] complexity"; - "I
learn the things I actually need for the exam"; - "I can complete the tasks while being able to verify [immediately] the
result"; and - "the explanations [the automatic feedback I get] after I submit the code".

Theme 2: Complementary nature of adaptive assessment in programming education and the impor-
tance of a tailored "assessment trajectory”. This theme elicited from the participants views on the use of the
proposed adaptive assessment method as an additional content source in programming education. Students said
that there is a good alignment between the course outline and the adaptive assessment method of the system,
which is the reason they positively viewed and used the system as an additional resource to practice Java and
improve their skills. Another reason that adds toward their optimistic behavior for usage of adaptive assessment
in programming education was the possibility to choose content that one finds it interesting, relevant, or need
it at a particular moment during the learning process, with integrated automatic feedback (e.g., syntax errors,
run-time errors for specific cases and values). One student pointed out - "[this system] is not liner. It gives me
opportunity to jump to a topic I feel I need, where I can find various levels of difficulty for the same concept I study".

Approximately half of the students expressed a positive attitude regarding the "assessment trajectory” they
received from the system itself; - "I particularly enjoyed the guidance from easy to headache tasks". However,
although some students found the system helpful to - "gradually tackle more difficult [programming] problems”,
majority of the students (i.e., 64.7% of 34 participants) did not follow the path lined by the system for them.
Many students expressed their concerns regarding the recommendation process; in fact, 64.7% stated that the
system recommended tasks that did not meet their needs; - "I followed my own selection [of tasks] because the
recommendations were not aligned to my needs”, - "I did not find the recommendations useful or easy to tackle"; and -
"I followed my own path, because I know what I need". In addition, several students said that they used both ways,
the generated recommendations by the system and their own selection, and they used their own selection when
they could not understand or solve the recommended tasks.

Theme 3: The promise of the confluence of adaptive assessment with other advanced capabilities (e.g.,
gamification, adaptive navigation) to support programming education. Students communicated several
ideas about what they expect from adaptive assessment that can assist them to improve the way they learn.
First, they pointed out to the need for more gamification elements in the system; - "There is [already] a certain
gamification which makes learning fun in [Anonymous]. I would be even more motivated to use the system if directed
more heavily towards gamification". Second, students reported some issues with the user interface. They said:
- "The cold start in [Anonymous] is not easy"; - "Although it is frustrating [to use the system] at times, it actually
helped me learn. I just expect more intuitive interface"; and - "I often felt confused on where I was on the website, and
both the recommendations and the navigation felt like more of an obstacle rather than being helpful. When I found
the Master grids overview I completely stopped using all other methods of navigation. The [MasteryGrids] panel gives
a very intuitive way of seeing what I have and I have not done".

Theme 4: Offering "on the spot” support and feedback in programming education. Last, students posi-
tively expressed their attitude toward the immediate feedback (e.g., syntax errors, run-time errors for specific
cases and values) they received after submitting the written code; - "It helped me explore various approaches I had
in my mind and see how my code worked [based on each of those approaches]", which is something they expect
to be even more adapted in future; - "Well, I found that it was quite difficult to see what aspects of the code that

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 21

was wrong when I got errors. Like when i got 14/15 correct on one task, and it gave no message of what the last task
was, only a Sad emoji". In future versions of the system, it will be beneficial to improve the recommendation
process, i.e., align the generated recommended tasks with the students’ needs which currently the students find
it challenging; - "T expect the recommended path to be the best way to gain skills efficiently".

6 DISCUSSION AND CONCLUSION

Assessment is a key component of education as it helps students to reflect on their progress, be aware of the
knowledge gaps they have, and act as guidance where to focus to further enhance the development of their skills
[32, 37, 63]. Recent studies in programming education indicate that automatic assessment has the capacity to
successfully prepare (even sometimes better compared to demonstrators and lecturers) students for situations
where they have to write the code by themselves; thus, motivating the development of self-sufficiency [60].
Moreover, automatic digital assessment has the capacity to motivate and encourage students’ skills development
as it provides early and continuous feedback per activity (i.e., after every submitted exercise in a system) [37], as
well as to increase programming practice and decrease fraudulent behavior [5].

The ultimate goal is not only to automate the assessment of programming assignments, but to utilize com-
puterized adaptive practice in online or blended programming courses. Therefore, the aim of the study was to
explore how accurate and precise the Elo-rating algorithm is for recommending learning content (e.g., coding
exercises) and, thus, how efficient and scalable the proposed adaptive assessment module is. As a first step toward
automated assessment in introductory OOP programming courses, we explored how to develop a simple and
efficient method for adaptive and automatic assessment of programming assignments, leveraging smart and
open learning content [12], utilizing unit tests, and a state-of-the-art ranking algorithm (i.e., Elo-rating) [77].
With considerable caution and the respective contextual limitations, we want to report positive findings for the
feasibility and potential of using this modified Elo-rating method in recommending coding exercises.

Our findings show that the implemented modified Elo-rating algorithm returns substantially more relevant
recommendations than irrelevant ones (see Figure 4). Moreover, the Elo-rating method finds relevant coding
exercises for a particular student 65% of the time, and it is 62% precise in recommending the proportion that is
actually relevant for that particular student. The numbers might not appear very high, but our results are compa-
rable with results coming from the adaptive sequencing recommendation method [46] used for recommending
examples and challenges.

In addition, we observed two core groups of students, one who constantly followed and selected the recom-
mended exercises without being instructed or asked to do so, and another who were creating their own learning
paths. We argue that the group who selected the recommended coding exercises found this recommended learning
path comfortable enough to follow it throughout the learning experience, confirming that the reported values are
adequate as a proof of concept. On the other hand, the students from the second group who were creating their
own learning trajectory and did not select any of the recommended content resulted in a good matching of the
selected coding exercises with their competence level. In particular, the results presented in Figure 11 show that
those students were quite good at selecting coding exercises that were aligned with their rankings. They avoided
selecting exercises that were far beyond their knowledge competence levels, or were very easy for them to solve.
Therefore, the results indicate that some students are aware of their own expertise and possible knowledge
gaps, leading them to be confident in creating and choosing learning trajectories that keep them engaged and
inflow (i.e., "completely involved in something to the point of forgetting time, fatigue, and everything else but
the activity itself") [23, p.15], assisting them in progressing toward their own learning goals. For those two core
groups to be supported, future research in programming education can develop dedicated methods and system
functionalities that scaffold those two strategies and support students to select/receive better recommendations.

ACM Trans. Comput. Educ.

22 .« Vesin, Mangaroska, Akhuseyinoglu and Giannakos

Regarding the method’s effectiveness, we compared the ratings that the system generated with the grades
that the teacher assigned to the students at the end of the course. The dependent t-test showed that there is no
significant difference between the ratings generated from the system and students’ final grades. The discovered
and reported differences have their own limitations (e.g., the way those rankings were made, the time period
over which those rankings were influenced, the competences they are based on), for which we would welcome
further investigations in the proposed method, but also which inform our contemporary teaching and assessment
approaches (e.g., adequacy of exams and exercises to evaluate programming knowledge).

We also calculated the method’s efficiency by considering the number of steps required to generate an accurate
student rating. The number of steps was represented through the number of correctly solved and submitted
exercises, which in our case is seven steps. However, we have not compared the efficiency of our method to
another methods that are often used in adaptive RS, which is planned for the next study. We also want to
implement a method based on IRT and see if that method might give better results than the proposed modified
Elo-rating method.

Finally, we have analyzed the students’ quantitative insights on the use of the proposed adaptive assessment
method. The students indicated overall positive views and particularly highlighted four areas that the proposed
method was beneficial for them (as they came out from the thematic analysis of their responses). First, it
supported their confidence and problem-solving skills, and empowered them to sustain their efforts to solve
the problem and even seek external knowledge. They also said that the use of the system helped them to
achieve actual learning outcomes by engaging to "trial and error" and "search for new knowledge" practices.
Second, the adaptive assessment served as a complementary resource for them and they found the tailored
"assessment trajectory” helpful. Third, the students recognized the importance of coupling adaptive assessment
with gamification capabilities. They indicated the importance of intensifying the use of advanced capabilities (e.g.,
further gamification, navigation), indicating that this is likely to lead to increased motivation and engagement
with the content. The fourth benefit indicated from the students has to do with the system’s ability to provide
"on the spot" feedback and amplify their mental abilities and processes that are very useful in programming
education.

6.1 Limitations and future work

The findings of this paper support our initial proposition that adaptive assessment and content recommendation
have inherent benefits for learning programming, which would enable more capacity to support introductory
courses in CS education. Although our study presents some positive findings, it also indicates some shortcomings
and limitations that are worth mentioning. First, learning efficiency and effectiveness, and recommendation
accuracy may not be related. This is one of the evaluation challenges in RS that is still open. However, we have
not measured learning gain in this study, which is an interesting assumption that we want to explore in future.

Second, the participants of our study, although they represent an appropriate sample for our study (e.g., CS
students with basic procedural programming knowledge who are learning OOP), were of a limited number, and
the potential bias of the selection method (only the ones who engaged the most) might have produced slightly
different results than the needs of the typical CS student. Nevertheless, the results provide a valid proof of concept
and are reported with considerable caution, aiming to provide a springboard in CS education research that will
allow us to proceed to further studies.

Third, recommendation accuracy is not sufficient to infer satisfaction [80]. So even if the recommendations
generated by the recommender system are accurate, students may not be satisfied with the recommended learning
paths, even though we observed one group of students who had been following all of the recommendations
throughout the semester. Users’ satisfaction includes many psychological aspects and further studies with students

ACM Trans. Comput. Educ.

Adaptive assessment and content recommendation in online programming course « 23

are needed to empower productive conversations and embrace a human-centered perspective toward improving
the design of adaptive assessment "at-scale" [53].

The last limitation we would like to report is connected with the evaluation of the effectiveness of the proposed
adaptive assessment. We compared the effectiveness with students’ grades; however, students’ final grades might
be heavily affected by the content taught and focused on the teacher and the content provided in the learning
system. The learning system contains 15 topics that are aligned with the curriculum taught at the university,
but those 15 topics are not an exhaustive list of the topics the instructors teach in the OOP courses. Therefore,
it is likely that the teacher’s focus influenced the content used for the assessment of the course, and is slightly
different from the one the learning system uses.

6.2 Implications

In sum, the major implication for practice from our findings is that the modified Elo-rating method could
effectively pair educational content complexity with students’ proficiency, leading to recommending relevant
coding exercises. This might create a more engaging learning setting for students, as they would not feel
uncomfortably challenged or bored by the complexity of the exercises compared to their current knowledge.
Moreover, the idea behind our method is not to replace the instructors in grading students, but to assist them
in assessing programming assignments from large courses throughout the semester (e.g., to adapt and scale
the assessment process), so that the assigned grades at the end of the course are uniform representation of the
knowledge students’ have gained, and more accurate considering their effort throughout the semester, rather than
the exam at the end. Also, as reported in our findings, there are students who select and follow recommendations
as their learning path, which may lead to sustaining higher levels of engagement and performance, the two
critical components for successful learning. Finally, as programming is a subject that students mainly learn in
digital learning environments, a prerequisite for an effective and engaging learning process is the existence of
adaptive and flexible learning settings that can personalize and adapt learning content to individual learners.

REFERENCES

[1] Pedro Henriques Abreu, Daniel Castro Silva, and Anabela Gomes. 2018. Multiple-Choice Questions in Programming Courses: Can We
Use Them and Are Students Motivated by Them? ACM Transactions on Computing Education (TOCE) 19, 1 (2018), 1-16.

[2] Margit Antal. 2013. On the use of elo rating for adaptive assessment. Studia Universitatis Babes-Bolyai, Informatica 58, 1 (2013), 29-41.

[3] Lora Aroyo and Darina Dicheva. 2004. The new challenges for e-learning: The educational semantic web. Journal of Educational
Technology & Society 7, 4 (2004), 59-69.

[4] Jannicke M Baalsrud-Hauge, Ioana A Stanescu, Sylvester Arnab, Pablo Moreno Ger, Theodore Lim, Angel Serrano-Laguna, Petros
Lameras, Maurice Hendrix, Kristian Kiili, Manuel Ninaus, et al. 2015. Learning through analytics architecture to scaffold learning
experience through technology-based methods. International Journal of Serious Games 2, 1 (2015), 29-44.

[5] Jodo Paulo Barros, Luis Estevens, Rui Dias, Rui Pais, and Elisabete Soeiro. 2003. Using lab exams to ensure programming practice in an
introductory programming course. ACM SIGCSE Bulletin 35, 3 (2003), 16-20.

[6] Luciana Benotti, Mara Cecilia Martnez, and Fernando Schapachnik. 2017. A tool for introducing computer science with automatic
formative assessment. IEEE Transactions on Learning Technologies 11, 2 (2017), 179-192.

[7] Outmane Bourkoukou, Essaid El Bachari, and Mohamed El Adnani. 2017. A recommender model in e-learning environment. Arabian
Journal for Science and Engineering 42, 2 (2017), 607-617.

[8] Grant Braught, John MacCormick, and Tim Wahls. 2010. The benefits of pairing by ability. In Proceedings of the 41st ACM technical
symposium on Computer science education. 249-253.

[9] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3, 2 (2006), 77-101.

[10] Matthieu JS Brinkhuis and G Maris. 2009. Dynamic parameter estimation in student monitoring systems. Measurement and Research
Department Reports (Rep. No. 2009-1). Arnhem: Cito (2009).

[11] Erveson Bruno, Bruno Alexandre, Rafael Ferreira Mello, Taciana Pontual Falcdo, Boban Vesin, and Dragan Gasevi¢. 2021. Applications
of learning analytics in high schools: a Systematic Literature review. Frontiers in Artificial Intelligence (2021), 132.

[12] Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu
Sirkid, Sergey Sosnovsky, et al. 2014. Increasing adoption of smart learning content for computer science education. In Proceedings of

ACM Trans. Comput. Educ.

24 .« Vesin, Mangaroska, Akhuseyinoglu and Giannakos

the Working Group Reports of the 2014 on Innovation & Technology in Computer Science Education Conference. 31-57.

[13] Peter Brusilovsky, Sibel Somytirek, Julio Guerra, Roya Hosseini, Vladimir Zadorozhny, and Paula J Durlach. 2016. Open social student
modeling for personalized learning. IEEE Transactions on Emerging Topics in Computing 4, 3 (2016), 450-461.

[14] Cory J Butz, Shan Hua, and R Brien Maguire. 2006. A web-based bayesian intelligent tutoring system for computer programming. Web
Intelligence and Agent Systems: An International Journal 4, 1 (2006), 77-97.

[15] Dimitra I Chatzopoulou and Anastasios A Economides. 2010. Adaptive assessment of student’s knowledge in programming courses.
Journal of Computer Assisted Learning 26, 4 (2010), 258—-269.

[16] Wei Chen, Zhendong Niu, Xiangyu Zhao, and Yi Li. 2014. A hybrid recommendation algorithm adapted in e-learning environments.
World Wide Web 17, 2 (2014), 271-284.

[17] M Choy, S Lam, CK Poon, FL Wang, YT Yu, and L Yuen. 2007. Towards blended learning of computer programming supported by an
automated system. Blended Learning 9 (2007).

[18] Sanja Maravi¢ Cisar, Petar Cisar, and Robert Pinter. 2016. Evaluation of knowledge in Object Oriented Programming course with
computer adaptive tests. Computers & education 92 (2016), 142-160.

[19] Benjamin Clegg, Siobhan North, Phil McMinn, and Gordon Fraser. 2019. Simulating student mistakes to evaluate the fairness of
automated grading. In Proceedings of the 41st International Conference on Software Engineering: Software Engineering Education and
Training. IEEE Press, 121-125.

[20] Ricardo Conejo, Beatriz Barros, and Manuel F Bertoa. 2018. Automated assessment of complex programming tasks using SIETTE. IEEE
Transactions on Learning Technologies (2018).

[21] Albert T Corbett and John R Anderson. 1994. Knowledge tracing: Modeling the acquisition of procedural knowledge. User modeling
and user-adapted interaction 4, 4 (1994), 253-278.

[22] Kent J Crippen and Boyd L Earl. 2007. The impact of web-based worked examples and self-explanation on performance, problem
solving, and self-efficacy. Computers & Education 49, 3 (2007), 809-821.

[23] Mihaly Csikszentmihalyi, Sami Abuhamdeh, and Jeanne Nakamura. 2014. Flow. In Flow and the foundations of positive psychology.
Springer, 227-238.

[24] Ole Halvor Dahl and Olav Fykse. 2018. Combining Elo Rating and Collaborative Filtering to improve Learner Ability Estimation in an
e-learning Context. Master’s thesis. NTNU.

[25] Rafael Jaime De Ayala. 2013. The theory and practice of item response theory. Guilford Publications.

[26] Benjamin Deonovic, Michael Yudelson, Maria Bolsinova, Meirav Attali, and Gunter Maris. 2018. Learning meets assessment. Behav-
iormetrika 45, 2 (2018), 457-474.

[27] Michael Derntl and Karin Anna Hummel. 2005. Modeling context-aware e-learning scenarios. In Pervasive Computing and Communica-
tions Workshops, 2005. PerCom 2005 Workshops. Third IEEE International Conference on. IEEE, 337-342.

[28] KDiCerbo, V] Shute, and Yoon Jeon Kim. 2017. The Future of assessment in technology rich environments: Psychometric considerations.
Learning, design, and technology: An international compendium of theory, research, practice, and policy (2017), 1-21.

[29] Kenneth A Dodge, Roberta R Murphy, and Kathy Buchsbaum. 1984. The assessment of intention-cue detection skills in children:
Implications for developmental psychopathology. Child development (1984), 163-173.

[30] Hendrik Drachsler, Hans GK Hummel, and Rob Koper. 2008. Personal recommender systems for learners in lifelong learning networks:
the requirements, techniques and model. International Journal of Learning Technology 3, 4 (2008), 404-423.

[31] Pragya Dwivedi and Kamal K Bharadwaj. 2015. e-Learning recommender system for a group of learners based on the unified learner
profile approach. Expert Systems 32, 2 (2015), 264-276.

[32] Stephen H Edwards and Manuel A Perez-Quinones. 2008. Web-CAT: automatically grading programming assignments. In Proceedings
of the 13th annual conference on Innovation and technology in computer science education. 328-328.

[33] Tomés Effenberger, Jaroslav Cechék, and Radek Peldnek. 2019. Measuring Difficulty of Introductory Programming Tasks. In Proceedings
of the Sixth (2019) ACM Conference on Learning@ Scale. ACM, 28.

[34] Margaret Ellis, Clifford A Shaffer, and Stephen H Edwards. 2019. Approaches for coordinating eTextbooks, online programming
practice, automated grading, and more into one course. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. 126-132.

[35] Arpad E Elo. 1978. The rating of chessplayers, past and present. Arco Pub.

[36] Javier Escobar-Avila, Deborah Venuti, Massimiliano Di Penta, and Sonia Haiduc. 2019. A survey on online learning preferences for
computer science and programming. In Proceedings of the 41st International Conference on Software Engineering: Software Engineering
Education and Training. IEEE Press, 170-181.

[37] Nickolas Falkner, Rebecca Vivian, David Piper, and Katrina Falkner. 2014. Increasing the effectiveness of automated assessment by
increasing marking granularity and feedback units. In Proceedings of the 45th ACM technical symposium on Computer science education.
9-14.

[38] Michal Forisek. 2009. Using item response theory to rate (not only) programmers. Olympiads in Informatics 3 (2009), 3-16.

ACM Trans. Comput. Educ.

[39]
[40]

[41]

Adaptive assessment and content recommendation in online programming course « 25

Dragan Gasevi¢, Shane Dawson, Tim Rogers, and Danijela Gasevic. 2016. Learning analytics should not promote one size fits all: The
effects of instructional conditions in predicting academic success. The Internet and Higher Education 28 (2016), 68—84.

Aldo Gordillo. 2019. Effect of an Instructor-Centered Tool for Automatic Assessment of Programming Assignments on Students’
Perceptions and Performance. Sustainability 11, 20 (2019), 5568.

Asela Gunawardana and Guy Shani. 2009. A survey of accuracy evaluation metrics of recommendation tasks. Journal of Machine
Learning Research 10, Dec (2009), 2935-2962.

[42] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. 2004. Evaluating collaborative filtering recommender

[43]

[44]

[45]

[46]

[47]
(48]

[49]
[50]
[51]
[52]
(53]
[54]
[55]

[56]

[57]

systems. ACM Transactions on Information Systems (TOIS) 22, 1 (2004), 5-53.

Colin A Higgins, Geoffrey Gray, Pavlos Symeonidis, and Athanasios Tsintsifas. 2005. Automated assessment and experiences of
teaching programming. Journal on Educational Resources in Computing (JERIC) 5, 3 (2005), 5-es.

Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Moein Fathi, Shi-Jinn Horng, and Heuiseok Lim. 2016. Applying an online
game-based formative assessment in a flowchart-based intelligent tutoring system for improving problem-solving skills. Computers &
Education 94 (2016), 18-36.

Roya Hosseini, Kamil Akhuseyinoglu, Andrew Petersen, Christian D Schunn, and Peter Brusilovsky. 2018. PCEX: Interactive Program
Construction Examples for Learning Programming. In Proceedings of the 18th Koli Calling International Conference on Computing
Education Research. ACM, 5.

Roya Hosseini, I-Han Hsiao, Julio Guerra, and Peter Brusilovsky. 2015. What should i do next? adaptive sequencing in the context of
open social student modeling. In Design for teaching and learning in a networked world. Springer, 155-168.

Henry Hsu and Peter A Lachenbruch. 2007. Paired t test. Wiley encyclopedia of clinical trials (2007), 1-3.

Christopher David Hundhausen, Daniel M Olivares, and Adam S Carter. 2017. IDE-based learning analytics for computing education: a
process model, critical review, and research agenda. ACM Transactions on Computing Education (TOCE) 17, 3 (2017), 1-26.
Gwo-Haur Hwang, Beyin Chen, Ru-Shan Chen, Ting-Ting Wu, and Yu-Ling Lai:2019. Differences between studentsaAZ learning
behaviors and performances of adopting a competitive game-based item bank practice approach for learning procedural and declarative
knowledge. Interactive Learning Environments 27, 5-6 (2019), 740-753.

David H Jonassen. 1991. Hypertext as instructional design. Educational technology research and development 39, 1 (1991), 83-92.
Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature review of automated feedback generation for
programming exercises. ACM Transactions on Computing Education (TOCE) 19, 1 (2018), 1-43.

Sharon Klinkenberg, Marthe Straatemeier, and Han L] van der Maas. 2011. Computer adaptive practice of maths ability using a new
item response model for on the fly ability and difficulty estimation. Computers & Education 57, 2 (2011), 1813-1824.

Chinmay Kulkarni. 2019. Design Perspectives of Learning at Scale: Scaling Efficiency and Empowerment. In Proceedings of the Sixth
(2019) ACM Conference on Learning@ Scale. 1-11.

Fotis Lazarinis, Steve Green, and Elaine Pearson. 2010. Creating personalized assessments based on learner knowledge and objectives
in a hypermedia Web testing application. Computers & Education 55, 4 (2010), 1732-1743.

Youngjin Lee. 2019. Estimating student ability and problem difficulty using item response theory (IRT) and TrueSkill. Information
Discovery and Delivery 47, 2 (2019), 67-75.

Michael Leisner and Philipp Brune. 2019. Good-bye localhost: a cloud-based web IDE for teaching Java EE web development to
non-computer science majors. In Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings. IEEE
Press, 268-269.

Xiao Liu, Shuai Wang, Pei Wang, and Dinghao Wu. 2019. Automatic grading of programming assignments: an approach based on
formal semantics. In Proceedings of the 41st International Conference on Software Engineering: Software Engineering Education and
Training. IEEE Press, 126-137.

[58] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. 2015. Recommender system application developments: a

[59]
[60]
[61]
[62]
[63]

[64]

survey. Decision Support Systems 74 (2015), 12-32.

Moira Maguire and Brid Delahunt. 2017. Doing a thematic analysis: A practical, step-by-step guide for learning and teaching scholars.
All Ireland Journal of Higher Education 9, 3 (2017).

Phil Maguire, Rebecca Maguire, and Robert Kelly. 2017. Using automatic machine assessment to teach computer programming.
Computer Science Education 27, 3-4 (2017), 197-214.

Katerina Mangaroska, Roberto Martinez-Maldonado, Boban Vesin, and Dragan Gasevi¢. 2021. Challenges and opportunities of
multimodal data in human learning: The computer science students’ perspective. Journal of Computer Assisted Learning (2021).
Katerina Mangaroska, Boban Vesin, and Michail Giannakos. 2019. Cross-platform analytics: A step towards personalization and
adaptation in education. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge. ACM, 71-75.

Katerina Mangaroska, Boban Vesin, and Michail Giannakos. 2019. Elo-rating method: Towards adaptive assessment in e-learning. In
2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), Vol. 2161. IEEE, 380-382.

Katerina Mangaroska, Boban Vesin, Vassilis Kostakos, Peter Brusilovsky, and Michail N Giannakos. 2021. Architecting Analytics Across
Multiple E-Learning Systems to Enhance Learning Design. IEEE Transactions on Learning Technologies 14, 2 (2021), 173-188.

ACM Trans. Comput. Educ.

26 « Vesin, Mangaroska, Akhuseyinoglu and Giannakos

[65] Nikos Manouselis, Hendrik Drachsler, Riina Vuorikari, Hans Hummel, and Rob Koper. 2011. Recommender systems in technology
enhanced learning. In Recommender systems handbook. Springer, 387-415.

[66] Robert McCartney, Jonas Boustedt, Anna Eckerdal, Kate Sanders, Lynda Thomas, and Carol Zander. 2016. Why computing students
learn on their own: Motivation for self-directed learning of computing. ACM Transactions on Computing Education (TOCE) 16, 1 (2016),
1-18.

[67] Pablo Molins-Ruano, Carlos Gonzalez-Sacristan, F Diez, P Rodriguez, and GM Sacha. 2014. Adaptive Model for Computer-Assisted
Assessment in Programming Skills. arXiv preprint arXiv:1403.1465 (2014).

[68] Eerik Muuli, Kaspar Papli, Eno Tonisson, Marina Lepp, Tauno Palts, Reelika Suviste, Merilin Séde, and Piret Luik. 2017. Automatic
assessment of programming assignments using image recognition. In European Conference on Technology Enhanced Learning. Springer,
153-163.

[69] Pavol Navrat and Jozef Tvarozek. 2014. Online programming exercises for summative assessment in university courses. In Proceedings
of the 15th International Conference on Computer Systems and Technologies. ACM, 341-348.

[70] Mahfudzah Othman, Siti Hana Quzaima Alias, and Nur Fajrina Mohd Rashidi. 2016. Enhanced Collaborative E-learning for Programming
Using Open Learner Model. Computing Research & Innovation (CRINN), Vol. 1, November 2016 (2016), 64.

[71] Steven Oxman, William Wong, and D Innovations. 2014. White paper: Adaptive learning systems. Integrated Education Solutions (2014),
6-7.

[72] Maciej Pankiewicz. 2020. Measuring task difficulty for online learning environments where multiple attempts are allowed-the Elo
rating algorithm approach.. In EDM.

[73] Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. 2009. Performance Factors Analysis—A New Alternative to Knowledge Tracing.
Online Submission (2009).

[74] Michael J Pazzani and Daniel Billsus. 2007. Content-based recommendation systems. In The adaptive web. Springer, 325-341.

[75] Radek Pelanek. 2014. Application of time decay functions and the elo system in student modeling. In Educational Data Mining 2014.
Citeseer.

[76] Radek Pelanek. 2016. Applications of the Elo rating system in adaptive educational systems. Computers & Education 98 (2016), 169-179.

[77] Radek Pelnek, Jan Papousek, Jit{ Rihak, Vit Stanislav, and Juraj Niznan. 2017. Elo-based learner modeling for the adaptive practice of
facts. User Modeling and User-Adapted Interaction 27, 1 (2017), 89-118.

[78] Andrew Petersen. 2018. Programming Course Resource System (PCRS). https://mcs.utm.utoronto.ca/~pcrs/pcrs/

[79] Wolter Pieters, Sanne HG van der Ven, and Christian W Probst. 2012. A move in the security measurement stalemate: Elo-style ratings
to quantify vulnerability. In Proceedings of the 2012 New Security Paradigms Workshop. ACM, 1-14.

[80] Pearl Pu, Li Chen, and Rong Hu. 2012. Evaluating recommender systems from the user’s perspective: survey of the state of the art.
User Modeling and User-Adapted Interaction 22, 4-5 (2012), 317-355.

[81] Yigal Rosen, Ilia Rushkin, Andrew Ang, Colin Federicks, Dustin Tingley, and Mary Jean Blink. 2017. Designing adaptive assessments in
MOOC:s. In Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale. 233-236.

[82] Riku Saikkonen, Lauri Malmi, and Ari Korhonen. 2001. Fully automatic assessment of programming exercises. In ACM Sigcse Bulletin,
Vol. 33. ACM, 133-136.

[83] Avi Segal, Kobi Gal, Guy Shani, and Bracha Shapira. 2019. A difficulty ranking approach to personalization in E-learning. International
Journal of Human-Computer Studies 130 (2019), 261-272.

[84] Ruigqi Shen, Donghee Yvette Wohn, and Michael J Lee. 2019. Comparison of Learning Programming Between Interactive Computer
Tutors and Human Teachers. In Proceedings of the ACM Conference on Global Computing Education. 2-8.

[85] Nischal Shrestha.2018. Towards Supporting Knowledge Transfer of Programming Languages. In 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 275-276.

[86] Jiangbo Shu, Xiaoxuan Shen, Hai Liu, Baolin Yi, and Zhaoli Zhang. 2018. A content-based recommendation algorithm for learning
resources. Multimedia Systems 24, 2 (2018), 163-173.

[87] Andrew Simon, Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Amruth N Kumar, Linda Ott, James Paterson,
Michael James Scott, Judy Sheard, and Claudia Szabo. 2018. Introductory programming: a systematic literature review. In Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education. 55-106.

[88] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph Meinel. 2015. Towards practical programming exercises
and automated assessment in Massive Open Online Courses. In Teaching, Assessment, and Learning for Engineering (TALE), 2015 IEEE
International Conference on. IEEE, 23-30.

[89] Tiffany Ya Tang and Gordon McCalla. 2005. Smart recommendation for an evolving e-learning system: Architecture and experiment.
International Journal on elearning 4, 1 (2005), 105.

[90] Robert K Tsutakawa and Jane C Johnson. 1990. The effect of uncertainty of item parameter estimation on ability estimates. Psychometrika
55, 2 (1990), 371-390.

[91] Kurt Vanlehn. 2006. The behavior of tutoring systems. International journal of artificial intelligence in education 16, 3 (2006), 227-265.

ACM Trans. Comput. Educ.

https://mcs.utm.utoronto.ca/~pcrs/pcrs/

[92]

[93]

[94]
[95]
[96]
[97]
[98]

[99]

[100]

Adaptive assessment and content recommendation in online programming course « 27

Yehiry Lucelly Pulido Vega, Juan Carlos Guevara Bolaiios, Gloria Milena Fernandez Nieto, and Silvia Margatira Baldiris. 2012. Application
of item response theory (IRT) for the generation of adaptive assessments in an introductory course on object-oriented programming.
In Frontiers in Education Conference (FIE), 2012. IEEE, 1-4.

Katrien Verbert, Nikos Manouselis, Xavier Ochoa, Martin Wolpers, Hendrik Drachsler, Ivana Bosnic, and Erik Duval. 2012. Context-
aware recommender systems for learning: a survey and future challenges. IEEE Transactions on Learning Technologies 5, 4 (2012),
318-335.

Boban Vesin, Katerina Mangaroska, and Michail Giannakos. 2018. Learning in smart environments: user-centered design and analytics
of an adaptive learning system. Smart Learning Environments 5, 1 (2018), 1-21.

Tzu-Hua Wang. 2014. Developing an assessment-centered e-Learning system for improving student learning effectiveness. Computers
& Education 73 (2014), 189-203.

Kelly Wauters, Piet Desmet, and Wim Van Den Noortgate. 2012. Item difficulty estimation: An auspicious collaboration between data
and judgment. Computers & Education 58, 4 (2012), 1183-1193.

Kelly Wauters, Piet Desmet, and Wim Van Noortgate. 2010. Monitoring learners’ proficiency: weight adaptation in the elo rating
system. In Educational Data Mining 2011.

Dianshuang Wu, Jie Lu, and Guangquan Zhang. 2015. A fuzzy tree matching-based personalized e-learning recommender system.
IEEE Transactions on Fuzzy Systems 23, 6 (2015), 2412-2426.

Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan Gu, Brandon Norick, and Jiawei Han. 2013. Recommen-
dation in heterogeneous information networks with implicit user feedback. In Proceedings of the 7th ACM conference on Recommender
systems. ACM, 347-350.

Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. 2013. Facilitating code-writing in PI classes. In Proceeding
of the 44th ACM technical symposium on Computer science education. 585-590.

ACM Trans. Comput. Educ.

	Abstract
	1 Introduction
	2 Related work
	2.1 Adaptive assessment in programming education
	2.2 Adaptive assessment methods and their application in programming education
	2.3 Recommender systems in education

	3 The proposed adaptive assessment method
	3.1 The implemented algorithm
	3.2 The learning content provided in the system
	3.3 The applied recommendation process

	4 Methodology
	4.1 Context of the study
	4.2 Participants
	4.3 Data collection
	4.4 Measurements
	4.5 Data analysis

	5 Results
	6 Discussion and conclusion
	6.1 Limitations and future work
	6.2 Implications

	References

