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Online learning systems should support students preparedness for professional practice, by equipping them with the necessary
skills while keeping them engaged and active. In that regard, the development of online learning systems that support students’
development and engagement with programming is a challenging process. Early career computer science professionals are
required not only to understand and master numerous programming concepts, but to eiciently learn how to apply them
in diferent contexts. A prerequisite for an efective and engaging learning process is the existence of adaptive and lexible
learning environments that are beneicial for both, students and teachers. Students can beneit from personalized content
adapted to their individual goals, knowledge, and needs; while teachers can be relieved from the pressure to uniformly and
promptly evaluate hundreds of student assignments. This study proposes and puts into practice a method for evaluating
learning content diiculty and students’ knowledge proiciency utilizing a modiied Elo-rating method. The proposed method
efectively pairs learning content diiculty with students’ proiciency, and creates personalized recommendations based on
the generated ratings. The method was implemented in a programming tutoring system and tested with interactive learning
content for object oriented-programming. By collecting quantitative and qualitative data from students who used the system
for one semester, the indings reveal that the proposed method can generate recommendations that are relevant to students
and has the potential to assist teachers in grading students by providing a more holistic understanding of their progress over
time.

CCS Concepts: · Social and professional topics→ Student assessment; · Applied computing→ E-learning.

Additional Key Words and Phrases: e-learning, personalisation, ranking students, programming, intelligent tutoring systems

1 INTRODUCTION

Many students taking computer science (CS) programs ind programming very challenging, with a high percentage
either dropping out or performing poorly [87]. One reason for that is often the way programming is taught.
Given the fact that learning programming requires a certain degree of procedural knowledge competence,
learning programming needs practice and experience [11, 34, 84]. Unfortunately, teaching and learning content in
programming education is often heavy on declarative knowledge, focusing on the features and particularities of
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various programming languages [49], especially in cases when a new programming language is taught to students
with previous programming knowledge [85]. In this regard, novel teaching methods and proper utilization of
online environments and resources have the potential to support students’ engagement with programming [48].
During the last few years the increased availability of online learning resources has changed not only the way
students learn, but also how teachers organize and design learning activities [36]. It is theorized that adaptive
learning systems have the capacity to enhance the learning process by ofering content and resources that match
students’ skills and needs [12, 71]. Thus, the demand for online learning resources widely accessible to students
with varying skills and backgrounds, has increased the need to accommodate students’ individual diferences
and learning goals [83]. As a result, adaptive learning systems could tailor learning and assessment considering
students’ individuality, instead of providing one-size-its-all materials.

In CS and software engineering education, programming is a central part of diferent study programs, which are
not necessarily connected with software development [56]. The increased number of students and the popularity
of programming courses have raised multiple challenges and opportunities in ofering assessment and feedback
on programming assignments [61]. For example, introductory programming classes often have more than 500
students, which makes it diicult for instructors to provide timely, thorough, and uniform assessment [82].
Moreover, instructors are required to check and correct numerous programming assignments that might have
similar mistakes; however, due to the volume of programming assignments that need to be graded and the number
of instructors involved in these courses, sometimes the same mistakes might be graded diferently [88]. Hence,
in order to provide eicient and consistent assessment for every student, we argue that automated assessment
methods can be adapted and scaled to assist instructors in delivering timely, accurate, and uniform assessment
[43, 81]
Despite the great potential of adaptive assessment in programming education, its application does not come

without challenges [1]. In programming, every solution can be evaluated considering diferent aspects (e.g.,
eiciency of the solution, correct logic but syntactical mistakes, etc.) and, therefore, imposes additional complexity
during the assessment process. Moreover, standardized assessment methods fail to measure meaningful forms of
human competence, because teachers and learning systems rarely accommodate for learners’ diversity [1, 18].
Hence, since standardized Computer-Based Assessment (CBA) fails to accommodate the individuality of students,
Adaptive Computer-Based Assessment (ACBA) emerged as a solution for accurate and reliable estimation of
proiciency, progress, and reduction of testing time [54]. Consequently, our study attempts to explore how to
develop an eicient and scalable method for adaptive and automated assessment of programming assignments
utilizing unit testing and a ranking algorithm. To do so, we propose a novel implementation that leverages the
Elo-rating algorithm [77], that is originally developed for measuring player strength in chess tournaments [2].
Elo-rating has also found application in the context of educational research for measuring learners’ ability and
tasks’ diiculty [72, 77].
As a irst step, we incorporated an adaptive assessment and recommendation module into ProTuS, a system

that has been successfully used for learning programming fundamentals [64]. The modiied Elo-rating method
that we implemented estimates the diiculty of the learning content and students’ knowledge in ProTuS. Based
on the generated ratings, the system recommends the learning content based on current knowledge and skills
demonstrated by the students. In sum, the aim of the study was to explore how accurate and precise the Elo-rating
algorithm is for recommending learning content (e.g., coding exercises) and thus, how eicient and scalable the
proposed adaptive assessment module is.

Hence, our study addresses the following research questions:

RQ1: How efective is the Elo-rating algorithm for adaptive assessment in programming tasks?

RQ2: How does the proposed method (i.e., Elo-rating algorithm and unit testing) perform in a real-time adaptive

assessment process in programming tasks?
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RQ3: How accurate are the recommendations of learning content based on the accumulated rankings?

RQ4: How students’ experienced the proposed method and the recognized beneits for programming education?

The following sections provide a brief overview of the available techniques for automated assessment in e-
learning and an overview of recommender systems in education. The proposed method for automatic assessment
in educational environments will be presented in Section 3, in which subsection 3.3 explains the recommendation
process based on the students’ estimated skills and task diiculty implemented in ProTuS. Section 4 presents the
study, while the results of the experiments performed are presented in Section 5. The discussion and conclusions
will be presented in the inal section.

2 RELATED WORK

Adaptive learning systems address several interrelated issues with respect to adaptability, such as learner modeling,
automatic assessment of students’ knowledge, and determining levels of educational content complexity [3].
Past research shows that adaptability in online learning systems is mainly explored through the development of
intelligent tutoring systems [91] or computerized adaptive testing [25]. Studies in the context of programming
education indicate the challenges and opportunities of adapting testing to support CS courses [1, 18]. For the
purpose of this study, we are looking into state-of-the-art adaptive assessment techniques and methods, as well
as the current recommender systems used in online education, with a particular emphasis on studies conducted
in programming education [1, 37].

2.1 Adaptive assessment in programming education

Assessment in technology-rich environments has attracted the interest of many educational technology re-
searchers; however, it remains an intriguing and open research issue [63]. On the one hand, it seems that there is
an increasing attentiveness to performance-based, formative assessment and learning systems that can efectively
support it. On the other hand, many researchers raise concerns about conceptualization and the quality of
assessment in these systems [28], as well as the challenges connected with programming education [1, 51].
The development and use of adaptive learning systems attempt to overcome the issue of heavy reliance

on summative assessment and the "one-size-its-all" approach [39], by addressing students’ individual needs
and capacities through distinct levels of knowledge proiciency, personal learning goals, and diferent intrinsic
motivations that shape learning [4]. Adaptive learning systems provide students with individualized learning
content and assignments, while accounting for their current knowledge and skills [77].
Currently, there are many semi-automatic and fully automatic code writing assessment systems, focused

either on evaluation of students or on providing an adaptive feedback [17, 24]. The automatic assessment of
programming assignments has been studied over the years with various tools, and presented as case studies
[6, 15, 19, 57, 67, 68]. Many of the proposed solutions are based on code analysis and diferential semantic analysis
techniques. However, the accuracy of the generated grades has rarely been evaluated [57]. This raises questions
about the quality of assessment these systems display, as well as the way in which assessment is conceptualized
and implemented in those systems [28].

2.2 Adaptive assessment methods and their application in programming education

To achieve adaptability, learning systems need to estimate students’ level of competence and the educational
content diiculty levels [77]. Past research investigated various methods that estimate the diiculty of the learning
content [33, 76, 92, 96]. Some of those methods include: proportion correct [29], learner’s feedback [40, 69],
expert rating [20], and the Elo-rating algorithm [77, 90, 96]. However, within the programming domain, adaptive
assessment methods are mostly related to item response theory (IRT) [38, 92], extensions of the Elo-rating
algorithm [2, 77, 79, 90, 96], the TrueSkill algorithm [55], or Bayesian networks [14, 44, 70].
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One of the most popular methods to obtain skills’ estimates is to use models from IRT. Basic IRT models have
been built on the assumption of a constant skill [75]. Another possibility is using specialised IRT models, such as
Bayesian knowledge tracing (BKT) [21] or performance factor analysis [73]. Despite their frequent use in the
ield of intelligent tutoring systems [26], these models are complex to use due to calibration on large samples.
Moreover, frequent updates are computationally diicult to deal with when using IRT methods, since new skill
estimates have to be calculated for each student after a single response for a single task [75].
A promising alternative to the IRT models is the Elo-rating algorithm [35]. This was originally developed

for rating chess players, but lately, it has been used in education to overcome some of the gaps imposed by
IRT models [77]. For example, the Elo-rating algorithm relies entirely on quantitative evaluation of student’s
performance and it can model skills that change over time. Next, when a new item is added in the system, there
is no need to assign the correct initial item diiculty, as the system will learn and assign diiculty levels for
educational content, based on the correctness of the students’ answers [75]. Lastly, the Elo-rating algorithm can
provide an accurate estimation of the tasks’ diiculty with a small sample size, something that is not possible
with IRT models [77].

A systematic overview of diferent variants of the Elo-rating algorithm and their application in education
was presented in the work of [76]. The author compared the Elo-rating algorithm to alternative methods and
illustrated its application in education. In this study the author demonstrated that the Elo-rating algorithm is
computationally "cheap" and very simple to implement, and it is suitable for adaptive practices in educational
settings. It is also conirmed that the Elo-rating algorithm is suicient for guiding adaptive behavior, but it needs
at least 100 students to get good estimates of item diiculty. In addition, the authors in [96] also conirmed that
the Elo-rating algorithm can provide reliable estimates with a sample size of 200-250 students. Finally, there were
attempts to combine IRT with Elo-rating to create an alternative model for adaptive item sequencing [2].
Several theoretical properties of the Elo-rating algorithm, such as stationarity of the mean, variance, and

distribution, have been evaluated in [10]. The authors argued that the Elo-rating algorithm as an educational
measurement provides correct parameter estimates. In addition, it ofers many advantages mainly concerned
with its simplicity, lexibility, cheapness and ease of implementation, storing a single parameter for each student
and each item, as well as comparable performance to more complex models [76].
The proposed methods are mostly used to track and recommend exercises, where the outcome has a binary

value (solved, not solved). However, in the case of programming assignments, the evaluation results cannot be
simpliied to a binary output, because every solution can be evaluated from diferent aspects (e.g., how eicient is
the solution, number of attempts to solve the problem, time spent to solve the problem, etc.). Consequently, our
study attempts to modify the existing Elo-rating algorithm and include additional parameters in the calculations
that are important in the context of programming education. In particular, we consider additional factors, such
as number of attempts and used time, rather than the solved or not solved status in an attempt to provide
adaptiveness and recommendations. The aim of the new algorithm is to provide a simple and eicient method
for automatic assessment of programming assignments. The calculated estimates are later used to recommend
coding exercises to students that accurately match their knowledge proiciency. The applied algorithm and details
about the recommendation process are presented in Section 3.

2.3 Recommender systems in education

Recommender Systems (RS) have been used in e-learning as solutions that consider students’ preferences and
proiciency, to adapt the learning resources in a way that complement students’ goals and needs [7, 31, 83]. RS
can support students to achieve a speciic learning goal, provide annotation in context, or suggest a sequence of
learning resources or activities [65]. Many researchers have examined diferent recommender techniques and
their applicability to personal learning environments and have presented potential strategies for generating
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learning content recommendations [58, 65]. Some of the techniques used include content-based iltering [74],
user-based collaborative iltering [42], item-based collaborative iltering, stereotypes or demographics-based
collaborative iltering, case-based reasoning, and attribute-based techniques [30].
Usage of contextual information in learning systems aims to improve the learning process [27]. Contextual

information combined with RS in the e-learning domain results in more accurate recommendations provided to
students [93]. In addition to contextual information, diferent types of feedback from users can also be used to
enhance the quality of the recommendations [99]. This includes explicit and implicit feedback, where explicit
feedback is a type of feedback that a user gives it intentionally (such as ratings) and implicit feedback is a type
of feedback that is collected without users noticing it (such as the amount of time they spent on an item, click
history, etc.). This feedback from users can be incorporated in either building separate user proiles or inferring
the general preferences of the majority [30, 93].

In sum, the anticipated beneits of RS within programming education are numerous, and thus, it is important
to investigate their beneits and undertake further research on how they tackle important challenges in the
ield, such as pairing students with applicable learning content or providing adequate feedback [8, 51]. Other,
additional beneits of RS include enhanced relection and improvements in the teaching process [16, 31], increase
in learning eiciency [98], and automatic assessment [89, 95]. Another important beneit that RS introduce to
students is exploratory learning [50], a process that encourages self-initiated, goal-oriented, and self-regulated
learning activities. This is an important skill that CS students need to develop, as autonomous learning is critical
for their future careers and professional development [66].

3 THE PROPOSED ADAPTIVE ASSESSMENT METHOD

The adaptive learning and assessment method, presented in this paper consists of three main stages (see Figure 1)
executed as repetitive cycles:

(1) Learning sessions. At this stage students can access and interact with the provided learning resources. They
can read about the basic programming concepts presented using text, video, and interactive examples.
Students can also engage in solving interactive challenges and coding exercises presented in the system as
learning activities that are aligned with the learning content. Since the system is adaptive, the students have
the opportunity to follow the generated recommendations, or they can simply select learning activities
that they ind it useful, challenging, or interesting.

(2) Adaptive assessment. Before the assessment takes place, every student and all coding exercises are assigned
with initial rankings (student’s knowledge level and the exercise’s diiculty level, respectively), represented
using the same scale. As the students progress through the learning activities, the system updates their
ranking based on their individual performance. This way the assessment is adaptive and continuous because
the system evaluates every submitted activity (for example, an attempt to solve a coding exercise) and
recalculates students ratings based on their quantitative performance. At the same time, the diiculty level

of the learning content is also re-calculated after every attempt a student makes. In order to speed up the
item diiculty calibration process, all coding exercises were initially assigned with an estimated starting
score by the teacher. The details of the implemented algorithm are presented in the section 3.1.

(3) Recommendations of further learning activities. The system takes into account the students’ knowledge
ratings and the diiculty level of the content to further recommend coding exercises that match stu-
dents’ current proiciency. The student has an opportunity to choose whether she/he will follow the
recommendation or not. Details of the implemented recommendation process are presented in section 3.3.

Unlike many IRT models, where students’ rating is updated after every exercise based solely on the last action
of the user, the method presented in our study includes constant recalculation of student proiciency and content
diiculty levels after every submission, considering all previous submissions recalculated. In other words, when a
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Fig. 1. Learning process in the system

student submits an exercise, the system will rate the student considering the current level of the exercise diiculty
calculated not just for that particular exercise, but also recalculating it for all of the previous submitted exercises
with their most up-to date diiculty levels. This way, the system allows for more precise evaluation of students’
proiciency based on the most recent re-calibration of exercises diiculty level.

Furthermore, the presented method is able to take into account several parameters (e.g., the number of attempts,
the time used for solving a task, etc.). Thus, the most important innovation of the presented Elo-rating method is
the usage of multi-level estimates in open-ended programming tasks, without being limited to multiple-choice
questions or binary-evaluated tasks (correct-incorrect).

3.1 The implemented algorithm

Considering that the Elo-rating method was originally developed for rating chess players, its adaptation to the
ield of education assumes that the student is the player and the content item (e.g., a coding exercise) is the
opponent. Furthermore, the Elo-ratings of the student and the content are represented by a number, which
increases or decreases depending on the students’ actions with the learning resources. The diference in the
ratings between a student and an item serves as a predictor of the outcome of the action. For example, the greater
the diference is, the expectancy level that the student will solve the exercise is higher.

When students sign in to use the system, they all start with the same initial ranking (i.e., 1300), and the basic
logic of the formula considers the changes in the students’ performance, thereby students gain points if they
perform above their expectancy level, and lose points if they perform below their expectancy level [10]. For
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example, if a high-rated student successfully solves a less diicult exercise, then a few rating points will be
added to their current ranking. However, if a lower-rated student solves an exercise that is above their current
rank (i.e., a diicult exercise), the student will receive more ranking points. Consequently, a student who has an
underestimated initial rating should in the long run perform better than what the rating system predicts, and
thus, gain rating points until the ranking relects their true knowledge. At the same time, the diiculty level of
the learning content is recalculated and adjusted based on the knowledge level of students who managed or
failed to solve the exercises. These two strategies allow the rating system to act as a self-correcting system.

The presented algorithm takes into account:

• the number of successful/failed attempts;
• the percentage/rate of successful unit tests;
• the time needed to solve an exercise.

The proposed method estimates the probability that a student i is able to solve the coding exercise j based on
its current rank and the diiculty of the coding exercise j. The ratings of the students and the diiculty of the
coding exercises are updated as follows:

Ri = Ri−1 + K · (W −We ) (1)

D j = D j−1 + K · (We −W ) (2)

Where:

• Ri represents the new rating of a student after the event (i.e., solving the exercise).
• Ri−1 represents the pre-event rating of a student.
• D j represents the new level of diiculty of a coding exercise j after the event.
• D j−1 represents the pre-event diiculty of the coding exercises.
• K represents the rating point value, i.e., a constant, specifying the sensitivity of the estimate where
K ∈ {30, 20, 15, 10}. The K-factor determines the âĂĲsensitivityâĂİ of how wins and losses impact the
rating. This value is gradually decreased as the student solves more exercises.
• W represents the result from solving the recommended exercise (i.e., the success rate), calculated by the
following formula:

W =

(

(As +Ao )Tc

2AoTp

)

(aidi − aiti ) (3)

ś As represents the number of successful attempts in solving a problem.
ś Ao represents the number of overall attempts to solve a problem.
ś Tp represents the number of performed unit tests.
ś Tc represents the number of correct unit tests.
ś ai represents a discrimination parameter. This parameter is used to adjust the time parameter discrimina-
tion, ensuring balanced inluence of outlined time values.

ś di represents the time limit.
ś ti represents the time a student needs to solve a problem i.
• Finally,We represents the probability that the student will solve the exercise:

We =
1

1 + 10

(

Ri−1−Dj−1
400

) (4)

This method, implemented in the programming tutoring system, difers from other implementations of the
same algorithm. The diference is in formula (3) which calculates the success rate, W. The proposed method
calculates this value based on the ratio between the successful attempts, the overall attempts, the number of unit
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tests performed, and the number of correct unit tests. We argue that exercises which were solved correctly at the
irst attempt can be labeled as "easier" for that particular student, compared to exercises that required multiple
solving attempts from the same student. We also argue that exercises which require a student to spend more time
(as registered in the log) reaching a solution can be labeled as "diicult" for that particular student. However,
these two properties cannot be considered as the sole indicators to distinguish the diiculty level of coding
exercises because students are allowed to repeat the assignments until they inally succeed. Hence, formula (3)
adds a response time (i.e., time to solve an exercise) in the calculation of the success rate. The authors argue the
importance of how quickly a student can understand the problem and break it down into parts. Programming
speed also shows the studentâĂŹs ability to think at a high level and that he/she is not overwhelmed with the
complexity of the problem. The system ensures that the student is actively engaged with the chosen content
by deining an idle timeout value which starts when the student begins solving a coding exercise. The current
session is terminated, and the student is logged out if no activity is detected for a speciic length of time (i.e.,
180 seconds). When the session is terminated this way, the timeout value is subtracted from the overall session
duration. Although this method for handling the idle time might not be ideal, it does result in a more accurate
estimation of the session time.

Therefore, the answer receives a score based on the correctness of the solution and the response time for that
solution ti [52, 76]. With this rule, the stakes are higher when a student provides a quick response. The faster
response can result in a more signiicant increase of the student’s rating in the case of correct submission and a
more signiicant fall in the same rating if the student submits a wrong answer. If the response time is longer,
the score converges toward zero (i.e., for both correct and incorrect answers). However, the inluence of the
time factor should be balanced (with the discrimination factor) to prevent extremely low values, which would
signiicantly decrease the inal changes in rankings.

3.2 The learning content provided in the system

The learning content (i.e., resources) included in the system consists of four types of activities that support
individual work. Students can practice and learn programming through the following learning content:

(1) Explanations (ProTuS). ProTuS contains reading content (i.e., tutorials) on 15 topics that are aligned with the
curriculum presented in the course. However, these 15 topics are not the exhaustive list of topics that are
being taught in introductory programming courses [62]. The learning objective behind the reading content
was to ofer students the opportunity to extend their Object-Oriented Programming (OOP) knowledge
on top of their existing knowledge in procedural programming (as students had already undertaken a CS
course in Python). Thus, we have developed content for 15 diferent topics in relation to basic concepts in
Python and Java, emphasizing on syntax comparison. An example is provided in Figure 2.

(2) Examples (MasteryGrids-PCLab). For each of the proposed topics in the system, there are established
examples, called Program Construction EXamples (PCEX) [45]. The idea is to support students in acquiring
program construction skills through a new type of smart and interactive content. Each PCEX content
starts with a worked-out example where it is explained how to write code for a particular problem. The
explanations are available for almost all lines in the examples and they focus on why students need to
write code in a certain way or why certain programming constructs are used in the code. The explanations
for the lines of code are hidden until a student clicks on the line of interest (Figure 3).

(3) Challenges (MasteryGrids-PCLab). Following the pedagogical reasoning that examples are more efective
when students utilize the knowledge gained immediately to solve a problem similar to the given example,
we decided to present a challenge after each example [22]. Therefore, students could try to solve one or
more challenges related to the example they had previously viewed in order to consolidate the knowledge
gained. Each challenge displays a problem similar to the code that the student had viewed in the example
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Fig. 2. Syntax comparison in the system

with some blank lines that need to be illed in by dragging and dropping the pieces of code to the blank
ields [13]. Immediate feedback and hints are available for each challenge (Figure 4).

(4) Coding exercises (MasteryGrids-PCRS). This type of smart content require students to write code or complete
a given code to achieve a certain goal. The system that provided this content is known as the Programming
Course Resource System (PCRS) [78, 100], whose content server resides at the University of Toronto. Each
coding exercise have a problem description and a baseline code. When students submitted their code, the
code was tested against a set of unit tests developed for that particular problem and the student received
a prompt feedback on whether the written code has passed the tests or not. This automated feedback
highlights both syntax and run-time errors - for which speciic cases and parameters those errors appeared.
The challenges and the coding exercises could be attempted multiple times (Figure 5).

The context of our study was focused primarily on the coding exercises, as this content is the only resource to
which we have access to make changes in the user modeling technique. This type of interactive content requires
students to complete a skeleton code, which after it is submitted, the code is instantly tested against a set of
previously developed unit tests. During this process, the system tracks all submissions, ratings from students’
feedback, and the time need it for students to solve a particular coding exercise. A faster response time in solving
an exercise is not an ideal indicator of student’s proiciency; however, we chose this method to calculate a more
accurate session time controlling for the idle time.

3.3 The applied recommendation process

The core of the recommendation process is based on the proposed Elo-rating method to estimate students’
knowledge and recommend coding exercises that match their current proiciency [63]. In every moment, students
receive three to ive recommendations of coding exercises that the system has calculated to be the most suitable
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Fig. 3. Display of an Example

for a particular student in relation to that student proiciency in programming (Figure 7). The recommendations
run between 3 to 5, depending on the skills a student demonstrates, the diiculty level of the exercise and the
process between the two sides once the student engages with the system. Then, it is up to the student to choose
between the recommended coding exercises or the other coding exercises that are not currently recommended
by the system, but are still displayed in ProTuS (Figure 6). Hence, when a student decides to undertake a more
complex coding exercise, that student could gain more ranking points for solving the exercise. However, if a
student decides to choose a less complex coding exercise (i.e., potentially less challenging), that student could
gain fewer ranking points. Thus, this adaptive strategy further determines the type of coding exercises that could
be recommended to students based on their current activities and knowledge proiciency.

4 METHODOLOGY

Themain goal of this studywas to put into practice the proposed adaptive assessment and content recommendation
module in the context of a programming course. In particular, we investigated the eiciency and the performance
of the proposed Elo-rating method in an introductory OOP course. We argue that analyzing the method’s strengths
and weaknesses could provide us with further guidelines on how to improve the ranking technique and the
recommendation process.

To tackle the four research questions (RQs) of this paper, we performed the following objectives.

(1) implement an adaptive assessment and content recommendation based on a modiied Elo-rating method
(as described in section 3);

(2) conduct a semester long study to collect quantitative and qualitative data from students’ use and experience;
and

(3) perform data analyses to investigate how the proposed method performs in real-time and address the RQs.
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Fig. 4. Display of a Challenge

In this section, we describe the context of the study and the methodological details, such as the measurements
used and the performed analyses.

4.1 Context of the study

Before running the study, a prototype module for content recommendation was developed and integrated into
ProTuS - programming tutoring system1, which was hosted at a university’s server [94]. The system was available
throughout the whole semester to the students who wanted to use a tutoring system with smart content as
an additional learning resource to practice their programming skills. Thus, the students were asked to use this
module in-the-wild (i.e., whenever they feel the need to use it without being a mandatory part of the course
design), and after the end of the semester they were asked to ill out a survey regarding the learning outcomes
and the efectiveness of the implemented module.

4.2 Participants

CS students from two public European universities (University of South-Eastern Norway and Norwegian Uni-
versity of Science and Technology), undertaking an introductory course in OOP, were invited to participate in
the study and practice their programming skills in Java using ProTuS. The sample consisted of students without
previous experience in OOP (considering their study program curriculum). The students had already taken an
introductory (procedural) programming course in Python (i.e., CS1) in the previous semester, so we assumed that
they had already mastered the fundamentals of procedural programming.

1ProTuS: https://protus.idi.ntnu.no/
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Fig. 5. Display of a coding exercise

Fig. 6. User interface of the system

Overall, there were 701 students who used the system during the Fall 2019 and Fall 2020 semester. However,
one-time visit or very limited interaction with the system do not provide us with meaningful data required

ACM Trans. Comput. Educ.



Adaptive assessment and content recommendation in online programming course • 13

Fig. 7. Recommendation of coding exercises

Fig. 8. Stages of the experiment

to investigate how the proposed method performs in real-time. Therefore, the analyzed data sample included
only students who have solved more than 10 coding exercises (n=87). The study lasted one semester, with two
generations of students (31 students in 2019, and 56 students in 2020).
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4.3 Data collection

The following data were collected to evaluate the eiciency and efectiveness of the proposed method (i.e.,
Elo-rating algorithm combined with unit-tests):

• Students’ interaction data with ProTuS (e.g., browsing history, session logs, students’ clicks on any
element of the user interface, duration of actions, students’ selection of recommendations, etc.). These
records were used to analyze students’ activities and their response to the system recommendations.
• System-generated rankings of students, which were calculated based on the students’ interactions
with the learning resources (e.g., number of submission attempts, number of trials/errors with the coding
exercises, time to complete the coding exercises, number of submitted solutions, etc.).
• Survey data regarding the students’ learning outcomes and the efectiveness of the implemented module,
collected at the end of the semester (i.e., Fall 2020). The survey consisted of 8 questions, of which 5 were
open-ended questions and three were yes-no questions.

4.4 Measurements

To investigate how the proposed method performs in real-time, we introduced metrics to quantify the quality of
the recommendations, the efectiveness of the proposed method, and the eiciency of the modiied Elo-rating
algorithm.

The quality of the recommendations measures the percentage of the generated correct recommendations
of coding exercises made by the tutoring system [86]. Thus, to measure the quality of the recommendations (i.e.,
RQ3), we used the standard precision and recall evaluation metrics [41, 42].

• Precision is deined as the percentage of recommended items that truly turn out to be relevant (i.e.,
consumed by the student).
• Recall is deined as the percentage of relevant (i.e., ground-truth positive) items that have been recom-
mended as positive.

These commonly used evaluation metrics are calculated as:

Precision =
tp

tp + fp
(5)

Recall =
tp

tp + fn
(6)

where:

• tp (true positive) represents the number of coding exercises recommended and started by the students.
• fp (false positive) represents the number of coding exercises recommended but not started by the students.
• fn (false negative) represents the number of coding exercises started by the students but not recommended.

Using precision and recall, we calculated the trade-of between the number of recommended exercises generated
by the system and the number of exercises undertaken by the students. In practice, the programming tutoring
system creates rankings of the coding exercises based on the implemented Elo-rating algorithm; hence, the top-k
coding exercises are always recommended to students. However, the students have the opportunity not to choose
the generated system recommendations, and therefore, we decided to look into students’ selection of exercises
when they choose not to follow the system recommendations. In particular, we were interested to see if the
students tend to select coding exercises that are close to their proiciency level or select exercises above/below
their current rating.

The Efectiveness of the proposed method is represented through the quality of the system generated grades
(i.e., RQ1). To evaluate the quality of the system generated grades, we compared those grades with the actual
grades (i.e., based on their inal exam) students received at the end of the course. For example, the students
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were assigned with the same initial ranking (i.e., 1300) and, after a series of assessments, their ratings roughly
fell in the [1100,1500] range (including outliers). These ratings represent a set of system generated rankings.
Students also received a course grade from their teachers because they have attended the university course in
OOP from which the students were recruited for the study. Students’ interactions with the tutoring system and
the outcome of the exercises submitted in that system were not considered in the students inal course grades.

4.5 Data analysis

To answer the irst RQ (i.e., Elo-rating efectiveness), we compared the grades that the tutoring system generated
for each student with the grades that the teacher assigned at the end of the course, by performing a paired sample
t-test [47]. The inal grades assigned by the teacher were calculated based solely on the inal exam. The course
grades were scaled to the [1100,1500] interval in order to be comparable to the system generated ratings (the
interval has been divided into six equally sized sub-intervals, each representing one grade of the grading scale
used at the university where the study took place). Hence, we performed a paired sample t-test [47] that depicts
if there is a statistically signiicant diference between the two means. Although with certain limitations, we
argue that this method is suitable due to the thoroughness and acceptability of the inal grades assigned from the
teacher. Therefore, it has been used to measure the performance of a sample of students in two diferent activities
and analyze their diferences. Hence, the null hypothesis states: "There is no signiicant diference between the
grades generated by the system and the inal course grades assigned by the instructor".
When it comes to the second RQ (i.e., the eiciency of the proposed method (Elo-rating algorithm and unit

testing) in real-time adaptive assessment of programming tasks) we calculated how quickly the system can start
giving relevant personalized results. The Eiciency of the method is evaluated by analyzing the number of
calculation steps required (i.e., how many coding exercises a student needs to solve) for the system to generate
an accurate student ranking (i.e., RQ2). In other words, it represents the measure of how quickly the system can
start giving relevant personalized results. To evaluate the eiciency of the proposed algorithm for an automatic
and objective way of generating ratings, we studied the efect of the number of accessed and solved exercises
over the performance of the proposed algorithm.
To answer the third RQ and investigate the accuracy of provided content recommendations we used the

standard precision and recall evaluation metrics. Details about the measurments are provided in the section 4.4.
When it comes to the fourth RQ (i.e., studentsâĂŹ experience with the proposed method) we conducted a

thematic analysis of the qualitative data collected from students at the end of the study (Fall 2020 semester). In
particular, we applied an elicitation technique and conducted a thematic analysis on the survey data following
Braun and Clarke [9] six-step framework. Unlike many qualitative methodologies, this analysis is not tied to
a particular theoretical perspective [59]. Because the nature of the study was exploratory, so was the analysis;
thus, we used an inductive approach and looked for themes that emerged from the text [9]. The survey data was
divided between two researchers who coded the data individually. Later, the diferences were settled, and we end
the process achieving a high inter-rater reliability (CohenâĂŹs k = 0.78). The analysis led to four themes and
eight unique codes (i.e., practice options, learner characteristics, assisted guidance, ITS beneits, personal choices,
individual needs, useful content, and current drawbacks). Most of the coded nodes are associated with one theme,
but some are associated with more than one theme.

5 RESULTS

The students who used the system and were included in our study (a total of 701 students registered into the
system), engaged in 4528 user-sessions with 6920 visited content (students’ visits to examples, challenges, or
coding exercises). A typical student spent circa 49 minutes within the system. A total of 1016 coding exercises
have been tried to solve. The detailed overview of the collected data is presented in Table 1.
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Table 1. Users’ session details

Users’ session details

Overall number of systems’ users 701
Number of solved coding exercises 1016
Number of active users (solved more than 10 exercises) 87
Overall number of user sessions 4528
Average overall session time of a student 48m54s
Number of visited content 6920
The number of students that responded to the survey 34

Table 2. Results of recommendation in ProTuS

Educational content Precision Recall Recommendation technique

Coding exercises 0.65 0.62 Elo-rating
Examples and challenges 0.64 0.63 Adaptive sequencing recommendations

uality of the recommendations

Precision and recall have been used to evaluate the quality of the content recommendations (Table 2). The results
showed that the probability of the implemented Elo-based algorithm recommending relevant coding exercises was
0.62 (recall), and the probability that all of the recommended coding exercises were relevant was 0.65 (precision).

To further analyze the behavior of the students on an individual level, Precision and Recall were calculated for
each coding exercise (Figure 9) and student individually (Figure 10). As one can notice, the igures contain fewer
dots than the reported number of students and visited content, but this is due to the overlaps at some points in
the graph.
Analyzing the content in Figure 9, one can notice that majority of content lies above the 0.5 point mark of

precision, meaning that the algorithm returned substantially more relevant results than irrelevant ones. Looking
at the individual choices of students (Figure 10), one can observe that the students could be roughly divided into
two groups. The irst group includes students who almost blindly followed the recommendations (recall is 1 or in
close proximity), although they were not instructed or asked to do so, but freely choose to solve the exercises
that match their proiciency level. The other group of students almost completely ignored the recommendations
and preferred to select coding exercises based on a topic or concepts they were struggling with during learning.

For the purpose of our study and as already mentioned in the data analysis section, we decided to look into the
students’ selection of coding exercises when they were not following the recommendations. Thus, we analyzed
the average diference between the current rank of every student and the diiculty of the chosen exercise. The
results are presented in Figure 11 and they describe how values for a single student are spread across the entire
range (the outliers have been removed).

It can be observed that 50% of the choices that students made fall into a small range of [-44,83], meaning that
overall, the students selected exercises similar to their own ratings. On average, they tended to select the exercises
slightly above their rank, which is indicated by the median of 8, showing the ambition to achieve better results.
However, their choices are spread along a wide range, so a signiicant number of students experimented with
exercises of high and low diiculty.
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Fig. 9. Precision/recall plot of the performed recommendations - per content

Fig. 10. Precision/recall plot of the performed recommendations - per student

Efectiveness

A paired t-test was conducted in order to determine whether there is a signiicant diference between the grades
generated by the system (i.e., system rankings) and the grades that are given by the instructor. Table 3 displays
the descriptive statistics for these two sets of grades. We can see from the two means that the system generated
grades have a similar mean (mean = 1410.51) to the course grades (mean = 1408). Moreover, the standard deviation
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Fig. 11. Diferences in the dificulty level of exercises and the current

Table 3. Descriptive statistics of two sets of grades

Mean N Standard deviation Standard error

Systems’ generated grades 1410.51 109 113 11
Course grades 1408 109 184.26 17.65

Table 4. Dependent t-test results

Mean r
95% conidence interval

t df p-value
Lower Upper

Pair: 2 sets of grades
(df$ELOrating and
df$Course.points)

2.1955 0.011 -37.58 41.97 0.1094 108 0.9131

shows that the grades given by the instructor have a higher deviation compared to the system grades, which are
very close to the mean.

The results of the performed paired t-test are presented in Table 4. One can notice that there is not a signiicant
diference between the grades generated by the system and the course grades assigned by the teacher, (t(108) =
2.1955, p = 0.91, r = 0.01), meaning that with 95% conidence we can keep the null hypothesis.
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Eficiency

In order to test the eiciency of the proposed method, we investigated how many steps are needed for the
proposed algorithm to generate an accurate student rating. In practice, this means that we investigated how
many coding exercises a student needs to solve (or try to solve) in order to be ranked accurately. To increase the
accuracy of rank estimation, the analysis focused only on students who solved at least 10 coding exercises.

Figure 12 shows how the ratings of the most active students changed over time. The chart displays only students
who completed at least 10 exercises. The x-axis represents the number of coding exercises students solved, while
the y-axis presents their ranking in a particular moment. Thus, it can be observed that the biggest changes in
rating occurred after the irst 6 to 7 solved exercises. After the seventh step, ratings only slightly converged
toward their inal ratings. Based on that fact, it can be concluded that the requirement for the successful rating of
students with the proposed method requires no more than 7 steps; the optimum can be achieved in a maximum
of 10 iterations. If we compare our indings with indings reported in the past, we can say that the eiciency
of the proposed method does not lag behind other more popular methods used in digital assessment [2, 77, 97].
However, additional evaluations are needed to compare the eiciency of the proposed method with other popular
methods that are currently in use.

Fig. 12. Trends of students’ ratings

Themes from the thematic analysis

Theme 1: Supporting students’ empowerment, conidence and problem solving skills. When it comes to
learning with ITS, the majority of the students agreed that their voluntary exposure to the system throughout
the semester supported the learning outcomes of the OOP course (82.4% of 34 participants). The system ofered
relevant content that allowed students to engage with "learning by doing" practices, with most the students
identifying this as the factor which led to actual learning, - "I learned more by actually coding and troubleshooting

errors rather than watching a two hour lecture". Moreover, the proposed activity empowered students to achieve
actual learning outcomes by engaging to "trial and error" and "search for new knowledge" practices, especially
for the novices, who had to search online for particular concepts, terminology, or to understand the way tasks
are composed and worded; - "I had to do research to be able to solve some of the tasks, which in turn helped me to

improve my knowledge". Several students also said: - "[the system] helped me [to learn] by making me search for

new knowledge" and - "it [the tasks] made me think and research before answering [submitting the code]".
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In general, almost all students found the usage of the system helpful toward improving their proiciency and
some of their personal beliefs/feelings toward programming. Some students expressed that - "The immediate

feedback from the system when it tells you if your code works or not, gives you conidence to try diferent approaches",
- "I got better at debugging and understanding logic how to approach diferent problems", as well as - "It helped me to

become more conident to write the correct syntax". At the end, the main beneits from learning with ITS that the
students listed in the survey included: - "It’s [ofers] short tasks with not too much [acceptable] complexity"; - "I
learn the things I actually need for the exam"; - "I can complete the tasks while being able to verify [immediately] the

result"; and - "the explanations [the automatic feedback I get] after I submit the code".

Theme 2: Complementary nature of adaptive assessment in programming education and the impor-
tance of a tailored "assessment trajectory". This theme elicited from the participants views on the use of the
proposed adaptive assessment method as an additional content source in programming education. Students said
that there is a good alignment between the course outline and the adaptive assessment method of the system,
which is the reason they positively viewed and used the system as an additional resource to practice Java and
improve their skills. Another reason that adds toward their optimistic behavior for usage of adaptive assessment
in programming education was the possibility to choose content that one inds it interesting, relevant, or need
it at a particular moment during the learning process, with integrated automatic feedback (e.g., syntax errors,
run-time errors for speciic cases and values). One student pointed out - "[this system] is not liner. It gives me

opportunity to jump to a topic I feel I need, where I can ind various levels of diiculty for the same concept I study".
Approximately half of the students expressed a positive attitude regarding the "assessment trajectory" they

received from the system itself; - "I particularly enjoyed the guidance from easy to headache tasks". However,
although some students found the system helpful to - "gradually tackle more diicult [programming] problems",
majority of the students (i.e., 64.7% of 34 participants) did not follow the path lined by the system for them.
Many students expressed their concerns regarding the recommendation process; in fact, 64.7% stated that the
system recommended tasks that did not meet their needs; - "I followed my own selection [of tasks] because the

recommendations were not aligned to my needs", - "I did not ind the recommendations useful or easy to tackle"; and -
"I followed my own path, because I know what I need". In addition, several students said that they used both ways,
the generated recommendations by the system and their own selection, and they used their own selection when
they could not understand or solve the recommended tasks.

Theme 3: The promise of the confluence of adaptive assessment with other advanced capabilities (e.g.,
gamiication, adaptive navigation) to support programming education. Students communicated several
ideas about what they expect from adaptive assessment that can assist them to improve the way they learn.
First, they pointed out to the need for more gamiication elements in the system; - "There is [already] a certain
gamiication which makes learning fun in [Anonymous]. I would be even more motivated to use the system if directed

more heavily towards gamiication". Second, students reported some issues with the user interface. They said:
- "The cold start in [Anonymous] is not easy"; - "Although it is frustrating [to use the system] at times, it actually

helped me learn. I just expect more intuitive interface"; and - "I often felt confused on where I was on the website, and

both the recommendations and the navigation felt like more of an obstacle rather than being helpful. When I found

the Master grids overview I completely stopped using all other methods of navigation. The [MasteryGrids] panel gives

a very intuitive way of seeing what I have and I have not done".
Theme 4: Ofering "on the spot" support and feedback in programming education. Last, students posi-

tively expressed their attitude toward the immediate feedback (e.g., syntax errors, run-time errors for speciic
cases and values) they received after submitting the written code; - "It helped me explore various approaches I had

in my mind and see how my code worked [based on each of those approaches]", which is something they expect
to be even more adapted in future; - "Well, I found that it was quite diicult to see what aspects of the code that

ACM Trans. Comput. Educ.



Adaptive assessment and content recommendation in online programming course • 21

was wrong when I got errors. Like when i got 14/15 correct on one task, and it gave no message of what the last task

was, only a Sad emoji". In future versions of the system, it will be beneicial to improve the recommendation
process, i.e., align the generated recommended tasks with the students’ needs which currently the students ind
it challenging; - "I expect the recommended path to be the best way to gain skills eiciently".

6 DISCUSSION AND CONCLUSION

Assessment is a key component of education as it helps students to relect on their progress, be aware of the
knowledge gaps they have, and act as guidance where to focus to further enhance the development of their skills
[32, 37, 63]. Recent studies in programming education indicate that automatic assessment has the capacity to
successfully prepare (even sometimes better compared to demonstrators and lecturers) students for situations
where they have to write the code by themselves; thus, motivating the development of self-suiciency [60].
Moreover, automatic digital assessment has the capacity to motivate and encourage students’ skills development
as it provides early and continuous feedback per activity (i.e., after every submitted exercise in a system) [37], as
well as to increase programming practice and decrease fraudulent behavior [5].

The ultimate goal is not only to automate the assessment of programming assignments, but to utilize com-
puterized adaptive practice in online or blended programming courses. Therefore, the aim of the study was to
explore how accurate and precise the Elo-rating algorithm is for recommending learning content (e.g., coding
exercises) and, thus, how eicient and scalable the proposed adaptive assessment module is. As a irst step toward
automated assessment in introductory OOP programming courses, we explored how to develop a simple and
eicient method for adaptive and automatic assessment of programming assignments, leveraging smart and
open learning content [12], utilizing unit tests, and a state-of-the-art ranking algorithm (i.e., Elo-rating) [77].
With considerable caution and the respective contextual limitations, we want to report positive indings for the
feasibility and potential of using this modiied Elo-rating method in recommending coding exercises.
Our indings show that the implemented modiied Elo-rating algorithm returns substantially more relevant

recommendations than irrelevant ones (see Figure 4). Moreover, the Elo-rating method inds relevant coding
exercises for a particular student 65% of the time, and it is 62% precise in recommending the proportion that is
actually relevant for that particular student. The numbers might not appear very high, but our results are compa-
rable with results coming from the adaptive sequencing recommendation method [46] used for recommending
examples and challenges.
In addition, we observed two core groups of students, one who constantly followed and selected the recom-

mended exercises without being instructed or asked to do so, and another who were creating their own learning
paths. We argue that the group who selected the recommended coding exercises found this recommended learning
path comfortable enough to follow it throughout the learning experience, conirming that the reported values are
adequate as a proof of concept. On the other hand, the students from the second group who were creating their
own learning trajectory and did not select any of the recommended content resulted in a good matching of the
selected coding exercises with their competence level. In particular, the results presented in Figure 11 show that
those students were quite good at selecting coding exercises that were aligned with their rankings. They avoided
selecting exercises that were far beyond their knowledge competence levels, or were very easy for them to solve.
Therefore, the results indicate that some students are aware of their own expertise and possible knowledge
gaps, leading them to be conident in creating and choosing learning trajectories that keep them engaged and
inlow (i.e., "completely involved in something to the point of forgetting time, fatigue, and everything else but
the activity itself") [23, p.15], assisting them in progressing toward their own learning goals. For those two core
groups to be supported, future research in programming education can develop dedicated methods and system
functionalities that scafold those two strategies and support students to select/receive better recommendations.
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Regarding the method’s efectiveness, we compared the ratings that the system generated with the grades
that the teacher assigned to the students at the end of the course. The dependent t-test showed that there is no
signiicant diference between the ratings generated from the system and students’ inal grades. The discovered
and reported diferences have their own limitations (e.g., the way those rankings were made, the time period
over which those rankings were inluenced, the competences they are based on), for which we would welcome
further investigations in the proposed method, but also which inform our contemporary teaching and assessment
approaches (e.g., adequacy of exams and exercises to evaluate programming knowledge).

We also calculated the method’s eiciency by considering the number of steps required to generate an accurate
student rating. The number of steps was represented through the number of correctly solved and submitted
exercises, which in our case is seven steps. However, we have not compared the eiciency of our method to
another methods that are often used in adaptive RS, which is planned for the next study. We also want to
implement a method based on IRT and see if that method might give better results than the proposed modiied
Elo-rating method.
Finally, we have analyzed the students’ quantitative insights on the use of the proposed adaptive assessment

method. The students indicated overall positive views and particularly highlighted four areas that the proposed
method was beneicial for them (as they came out from the thematic analysis of their responses). First, it
supported their conidence and problem-solving skills, and empowered them to sustain their eforts to solve
the problem and even seek external knowledge. They also said that the use of the system helped them to
achieve actual learning outcomes by engaging to "trial and error" and "search for new knowledge" practices.
Second, the adaptive assessment served as a complementary resource for them and they found the tailored
"assessment trajectory" helpful. Third, the students recognized the importance of coupling adaptive assessment
with gamiication capabilities. They indicated the importance of intensifying the use of advanced capabilities (e.g.,
further gamiication, navigation), indicating that this is likely to lead to increased motivation and engagement
with the content. The fourth beneit indicated from the students has to do with the system’s ability to provide
"on the spot" feedback and amplify their mental abilities and processes that are very useful in programming
education.

6.1 Limitations and future work

The indings of this paper support our initial proposition that adaptive assessment and content recommendation
have inherent beneits for learning programming, which would enable more capacity to support introductory
courses in CS education. Although our study presents some positive indings, it also indicates some shortcomings
and limitations that are worth mentioning. First, learning eiciency and efectiveness, and recommendation
accuracy may not be related. This is one of the evaluation challenges in RS that is still open. However, we have
not measured learning gain in this study, which is an interesting assumption that we want to explore in future.
Second, the participants of our study, although they represent an appropriate sample for our study (e.g., CS

students with basic procedural programming knowledge who are learning OOP), were of a limited number, and
the potential bias of the selection method (only the ones who engaged the most) might have produced slightly
diferent results than the needs of the typical CS student. Nevertheless, the results provide a valid proof of concept
and are reported with considerable caution, aiming to provide a springboard in CS education research that will
allow us to proceed to further studies.
Third, recommendation accuracy is not suicient to infer satisfaction [80]. So even if the recommendations

generated by the recommender system are accurate, students may not be satisied with the recommended learning
paths, even though we observed one group of students who had been following all of the recommendations
throughout the semester. Users’ satisfaction includes many psychological aspects and further studies with students
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are needed to empower productive conversations and embrace a human-centered perspective toward improving
the design of adaptive assessment "at-scale" [53].

The last limitation we would like to report is connected with the evaluation of the efectiveness of the proposed
adaptive assessment. We compared the efectiveness with students’ grades; however, students’ inal grades might
be heavily afected by the content taught and focused on the teacher and the content provided in the learning
system. The learning system contains 15 topics that are aligned with the curriculum taught at the university,
but those 15 topics are not an exhaustive list of the topics the instructors teach in the OOP courses. Therefore,
it is likely that the teacher’s focus inluenced the content used for the assessment of the course, and is slightly
diferent from the one the learning system uses.

6.2 Implications

In sum, the major implication for practice from our indings is that the modiied Elo-rating method could
efectively pair educational content complexity with students’ proiciency, leading to recommending relevant
coding exercises. This might create a more engaging learning setting for students, as they would not feel
uncomfortably challenged or bored by the complexity of the exercises compared to their current knowledge.
Moreover, the idea behind our method is not to replace the instructors in grading students, but to assist them
in assessing programming assignments from large courses throughout the semester (e.g., to adapt and scale
the assessment process), so that the assigned grades at the end of the course are uniform representation of the
knowledge students’ have gained, and more accurate considering their efort throughout the semester, rather than
the exam at the end. Also, as reported in our indings, there are students who select and follow recommendations
as their learning path, which may lead to sustaining higher levels of engagement and performance, the two
critical components for successful learning. Finally, as programming is a subject that students mainly learn in
digital learning environments, a prerequisite for an efective and engaging learning process is the existence of
adaptive and lexible learning settings that can personalize and adapt learning content to individual learners.
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