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Abstract. Every day, many bugs are raised, which are not fully resolved, and a 
large number of developers are using open sources or third-party resources, which 
leads to security issues. Bug-triage is the upcoming automated bug report system to 
assign respective security teams for an ample rate of bug reports submitted from 
different IDEs within the organization (on-premises). Furthermore, by predicting 
the appropriate team (who can resolve the bug) in an organization, the bugs can be 
assigned once it is tracked. With this, cost and time can be saved in tracking and 
assigning the bugs. In this paper, we are implementing an Automatic bug tracking 
system (ABTS) to assign the team for the reported bug using the Text analysis for 
bug labeling and classification machine learning algorithm for predicting developer.  

Keywords. Supervised Machine Learning, Text Analysis, Bug Triage, Natural 
Language Processing 

1. Introduction 

For the past coupleof decades, self-service software has been created using machine-
learning techniques. In addition, to evaluate patterns in various applications SML 
(Supervised Machine Learning) methods are widely used, but we have found little for 
software repositories.  

While developing open-source software, Bug tracking systems play an essential 
role as team members can be dispersed worldwide. Usually,the bug report is assigned 
manually to a single developer, who is then responsible for correcting thoseerrors. In 
such widely distributed projects, developers and other project contributors can never 
meet, where there are many integrity and confidentiality issues. Therefore, we are 
implementing the Automatic Bug Tracking System (ABTS) for the reported bug 
description text. Once in the ABTS a bug is reported then it will be stored in the 
database in the form of .txt, CSV, or excel files, it is further analyzed and processed to 
assign and analyze its features and fix them.  

Automated text classification is considered an essential method for organizing and 
processing many documents in digital forms, which are becoming more and more 
widespread. In general, text classification plays an essential role in capturing 
information, retrieving text, and answering questions. In addition, finding and fixing 
bugs in software systems has always been a significant issue in software engineering.  
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2. Problem Statement 

In the existing system, bug reporting and tracking are manual, that is, when an 
application is implemented in an organization; if ever bug reported in that IDE, the 
testers keep them largely available open sources like google, etc., to security issues. 
Therefore, the newly implementing application details may leak outside easily, even 
though the bugs are not solved. In this manual system, many issues are there like 
security, integrity, and technical. 

3. Literature Survey 

Chaturvedi & Singh, 2012, stated that to send or report errors and monitor their 
progress various bug reporting systems had been developed. Bug reporting and 
tracking systems provide a platform for recording problems/failures encountered by the 
client or software user [1]. 

As per Zou et al. (2011), current approaches to bug classification are based on 
machine learning algorithms that generate classifiers from bug reporting training[2]. 
Bug sorting is an important step in the bug correction process. The goal of bug sorting 
is to assign a new incoming bug to the right potential developer.  

Anvik et al. (2005)state that most open-source software development projects 
include an open bug repository - which software users can take full advantage of - to 
report and track software system issues and the scope for improvement is high. Using 
the Open Bug Store: more system problems can be detected due to the relative ease of 
reporting errors[3]. In addition, more problems can be solved because more developers 
can participate in troubleshooting, and developers and users can participate in bug 
discussions and allow users to enter the system direction. Nevertheless, many integrity 
and confidentiality issues arise for many newly implemented applications.  

Čubranić, (2004) stated that Bug Triage, which decides what to do with the 
incoming bug report, is increasingly taking resources for developers on large open-
source projects[4]. According to T et al. (2019), text classification is becoming an 
essential step in capturing data and adequately categorizing websites [5].Neethu & 
Rajasree, (2013)stated that, unfortunately[6], many things have diverted users faster 
than the notion that developers are unresponsive and ignore user bug messages and 
feature requests - and kill the project community. 

According to Luyckx & Daelemans, (2005), Automatic text classification is a text 
mining application that refers to documents by pre-defined content categories[7]. Many 
text classification applications include indexing, document filtering or routing, and 
hierarchical classification of websites and web search engines.  

Pushaplatha and Murnalini 2019 have proposed a severity prediction and bug 
report classification for closed software bugs [8]. In this approach, three different 
ensemble ML algorithms such as Bagging, voting, and Adaboosthave appliedto NASA 
dataset. Ramay et al., 2019 [12] have proposed deep neural network-based bug severity 
prediction techniques[9]. At first, the NLP methods are utilized to preprocess the bug's 
reports and afterward another score is determined to track down the feeling of bug 
columnists. Otoom et al., 2019 have introduced a mechanized methodology for bug 
reports arrangement utilizing a clever component determination strategy [10]. The list 
of capabilities is created based on the normal events of the various watchwords in the 
rundown of the bug report. 
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4. Methodology 

The process of converting structured text data into meaningful data for analysis, text 
classification, supporting sentimental search tools analysis to measure product review 
feedback from customers, and entity modeling for fact-based decision making is called 
Text analytics. Figure 1, Text analysis is the classification of specific text according to 
several author categories. An element vector is created in a document that contains 
binary or numeric characters separated by commas based on the information and class 
status (A and B). 

 
 
 

 
Figure 1. Text analyzer Architecture 

 
Classification algorithms take the identified data (because they are in the 

monitored practice methods) and learn the patterns in the data that can be used to 
estimate the classification output variable(Machine Learning, n.d.). It can most often be 
group variable (a variable that determines which group a particular case belongs to) and 
binomial (two groups) or multinomial (more than two groups), and these problems are 
quite common ML tasks.  

Estimating the class of a given data point is the process of Classification. Classes 
are sometimes called targets or labels or categories. Classification of Predictive 
Modeling is the task of estimating the mapping function (f) from input variables (x) to 
discrete output variables (y). The problem of identifying subpopulations (categories) to 
which it belongs to based on the target label is called Classification. In taxonomy there 
are many applications in different domains, like credit approval, medical diagnostics, 
target marketing, and so on. After selecting and modifying the elements, the documents 
can be easily referenced in a usable form using the ML algorithm. However, they often 
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differ in the Random Forest Model, Naïve Bayes, and XGBoost ML (Machine 
Learning) algorithms.  

Naive Bayes (NB) is a very simple probabilistic algorithm based on Bayes theorem 
which is used in classification problem solving. In Bayesian analysis, the resulting 
taxonomy is created by combining both information categories, the former and the 
probabilities, to create the so-called posterior probability of the Bayes' rule. The NB 
classification is a primary probability classification based on the application of the 
Bayes theory. NB calculates the set of probabilities by combining the values in a given 
dataset. The NB classification also has a fast-decision-making process. 

Random Forest creates more decisive trees and combines them to get a more 
accurate and stable reference. RF (Random Forest) is a flexible and easy-to-use ML 
algorithm that gives great results most of the time, even without hyper-parameter 
tuning. Random Forest creates more decisive trees and combines them to get a more 
accurate and consistent reference. Figure 2, Random Forest adds extra coincidence to 
the model when the tree grows. Instead of looking for the most important function 
when splitting a node, it looks for the best function among the random subset functions. 
This means that the data/population used to build the random forest tree will be 
replaced, and the detailed variables will also be bootstrapped, so the partitioning will 
not be implemented on the same important variables.  

 

 
Figure 2. Most frequent words 

Implementing the gradient boosting concept is XGBoost. Algorithm writer Tianki 
Chen, says that “To give better performance XGBoost uses a more controlled model 
formalization to control over-fitting”.  Therefore, it helps in reducing excess equipment. 
It is built on the principles of the gradient improvement framework and is designed to 
"change the intensities of machine computing constraints and provide a scalable, 
portable and accurate library." To calculate the best distribution XGBoost uses 
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histogram-based and a pre-computed algorithm. The histogram-based algorithm divides 
all element data points into separate baskets and uses these baskets to find the 
histogram distribution. XGBoost not only performs taxonomic functions; Accepts only 
numeric values. Therefore, different encodings like one-time encoding, label encoding 
or intermediate encoding, must be performed before classification data can be delivered 
to XGBoost. XGBoost can make automatic function selection and capture high-order 
interactions without hurting. XGBoost also has a randomization parameter, i.e., a 
partial pattern of columns, which helps to reduce the interaction of each tree. It can deal 
with persistent and categorical data naturally, it can deal with naturally missing data, 
and they are strong for outliers at the inputs, which vary under the constant changes of 
the inputs. Select the default variable, and we can capture linear relationships in data 
and high-order interactions between inputs and scale large datasets. 

5. Analysis, Evaluation, and Results  

In this article, we have collected publicly available bug-reported datasets in the CSV 
file format, and the description of the bug is taken as an input text variable. For this text 
variable, we have analyzed and by applying effectively Supervised- ML Classification 

Algorithms in R-Studio environment using R-Programming, to predict the team which 
the ABTS can automatically assign that newly reported bug Furthermore, from the 
respective supervised ML classification algorithms, the "Accuracy" has been taken as 
evolution metrics to determine the effective machine learning algorithm for the input 
database. Figure 3, Input database is a Bug reported data with four variables ("owner,” 
"issue_title,” "description", and "Team" (A &B)) and 5000 observations. Here we are 
taking the "description" variable for the text analysis and applying classification 

algorithms, as the dependent (target/outcome) variable has two labels, which are 
considered binary classifications.  

 

 
Figure 3. Input data in table format 

Creating corpus, This Vignette tm package briefly introduces text mining in R 
using the text mining framework provided. We demonstrate methods for importing data, 
corpus processing, preprocessing, metadata management, and creating a template for 
term documents. Figure 4, The main structure for document management in the dark is 
the so-called corpus, which refers to collecting text documents. The corpus is an 
abstract concept and may have many implementations in parallel. The so-called default 
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execution is VCorpus (short for unstable corpus), which executes known meanings 
from most R objects: corpora means that R objects are full memory. 
 

Input Text:  

 
Figure 4: Corpus data for the description variable  

6. Transformations 

Once we have the corpus, we usually want to modify the documents, such as ignoring 
tracks and deleting tracks. In tm, this whole function is included in the transition 
concept. Figure 5, Transitions are performed using the tm_map() function, which 
applies the function (maps) to all corpus elements. Generally, all transitions work on 
text documents and only apply to all the tm_map () corpus. 

6.1 Creating dtm (Bag-Of-Words) Model: 

Creating Term-Documents Matrices: A common approach to text extraction is to create 
a matrix of term documents from the corpus. Figure 6, The TermDocumentMatrix and 
DocumentTermMatrix classes (depending on whether you want the expressions to be 
rows and columns as documents) use smaller matrices for corpora in the Tm package. 
Word-document matrix checking displays a pattern, while as. Matrix () presents the 
entire matrix in a dense format (which is very memory-intensive for large matrices). 

<<DocumentTermMatrix (documents: 109982, terms: 598023)>> 
Non-/sparse entries: 4002301/65767763285 
Sparsity : 100% 
Maximal term length: 15650 
Weighting : term frequency (tf) 

6.2 Most frequent words with 99% frequency accuracy: 

Term document matrices are also very large for normal-sized datasets. Therefore, we 
provide a method to eliminate small expressions, i.e., expressions that occur only in a 
very small number of documents. In general, it dramatically reduces the matrix without 
losing the important relationships inherent in the matrix: 

<<DocumentTermMatrix (documents: 109982, terms: 532)>> 
Non-/sparse entries: 1993695/56516729 
Sparsity: 97% 
Maximal term length: 41 
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Weighting: term frequency (tf) 

 
Figure 5. Transformation function in text document. 
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Figure 6. Converting DocumentTermMatrix as a matrix 

7. Evaluation 

Performance can be determined in various ways; However, accuracy, appeal, and 
precision are commonly used. Table 1, to determine them, we must first begin by 
understanding whether the document classification is True Positive (TP), False Positive 
(FP), True Negative (TN), and False Negative (FN). 

The confusion matrix is an important part of our study because reviews from 
datasets can be classified as duplicate or genuine reviews. The number of right and 
wrong estimates is summed with the values of the number and divided by the 
individual classes. This is crucial to the matrix of chaos. Calculating the confusion 
matrix will give us a better idea of what our taxonomic model corrects and what kind 
of errors it makes. 
Table 1. Classification: TP, FP, TN and FN. 

 Team-A Team-B 

Team-A TP FN 
Team-B FP TN 

 

Accuracy is commonly used as a benchmark for classification methods. However, 
accuracy values are much less likely to fluctuate in the number of correct decisions 
than accuracy and appeal: 

�������� =
(�	 + �
)

(�	 + �	 + �
 + �
)
 

 
Very often, the category of interest in text classification is exceedingly small. This 

high representation of the negative class in data retrieval problems causes problems in 
assessing the performance of classifiers using accuracy. In this case, the performance of 
the algorithm classification is measured by accuracy and subtraction. 

Classification algorithms can achieve high accuracy by categorizing each example 
negatively—analysis of the scalability of several classifiers in classification 
experiments on text classification and noisy texts. Noise is the process of extraction 
(affected by errors) from media other than digital texts (e.g., transliterations of speech 
records collected by the recognition system). In a clean and noisy version of the same 
document (word bug rate between ~ 10 and ~ 50 percent), the performance of the 
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classification system is compared. Noisy lessons are obtained using handwriting 
recognition and optical character recognition simulation.  

The mechanisms used to compile the classification set are i) the use of different 
subsets of training data in the same practice method, ii) the use of different training 
parameters in the same training method (e.g., the use of different starting weights for 
each neural network in the file) iii) the use of different learning methods. Many 
researchers have shown that combining multiple taxonomies improves classification 
accuracy by combining multiple taxonomies for text taxonomy.  

8. Conclusion 

The problem of text classification is a research topic of artificial intelligence, especially 
concerning the huge number of documents available in e-mails, discussion forum posts, 
and other electronic documents in the form of websites and other electronic texts. For 
the specified classification method, it was found that the classification performances of 
the classifiers differ based on the different institutions of the training texts; in some 
cases, such differences are quite significant. This observation indicates that the 
performance of the classification is to some extent related to its training corpus and that 
a good or high-quality training organization can obtain good performance 
classifications. Unfortunately, very little research has been found in the literature on 
using the training text corpora to improve classification performance. However, from 
the analysis using machine learning algorithms, we can predict which team (A or B) the 
newly reported bug can be assigned.  
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