
Automatic Bug Tracking System

Using Text Analysis and Machine

Learning Predictions

DR. P Meena Kumari,1
1Associate Professor, T John Institute of Technology, Bengaluru, Karnataka,

Abstract. Every day, many bugs are raised, which are not fully resolved, and a
large number of developers are using open sources or third-party resources, which
leads to security issues. Bug-triage is the upcoming automated bug report system to
assign respective security teams for an ample rate of bug reports submitted from
different IDEs within the organization (on-premises). Furthermore, by predicting
the appropriate team (who can resolve the bug) in an organization, the bugs can be
assigned once it is tracked. With this, cost and time can be saved in tracking and
assigning the bugs. In this paper, we are implementing an Automatic bug tracking
system (ABTS) to assign the team for the reported bug using the Text analysis for
bug labeling and classification machine learning algorithm for predicting developer.

Keywords. Supervised Machine Learning, Text Analysis, Bug Triage, Natural
Language Processing

1. Introduction

For the past coupleof decades, self-service software has been created using machine-
learning techniques. In addition, to evaluate patterns in various applications SML
(Supervised Machine Learning) methods are widely used, but we have found little for
software repositories.

While developing open-source software, Bug tracking systems play an essential
role as team members can be dispersed worldwide. Usually,the bug report is assigned
manually to a single developer, who is then responsible for correcting thoseerrors. In
such widely distributed projects, developers and other project contributors can never
meet, where there are many integrity and confidentiality issues. Therefore, we are
implementing the Automatic Bug Tracking System (ABTS) for the reported bug
description text. Once in the ABTS a bug is reported then it will be stored in the
database in the form of .txt, CSV, or excel files, it is further analyzed and processed to
assign and analyze its features and fix them.

Automated text classification is considered an essential method for organizing and
processing many documents in digital forms, which are becoming more and more
widespread. In general, text classification plays an essential role in capturing
information, retrieving text, and answering questions. In addition, finding and fixing
bugs in software systems has always been a significant issue in software engineering.

1Dr. P Meena Kumari, Associate Professor, T John Institute of Technology, Bengaluru, Karnataka; E-

mail: meenasri33@gmail.com

Advances in Parallel Computing Algorithms, Tools and Paradigms
D.J. Hemanth et al. (Eds.)

© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/APC220025

184

2. Problem Statement

In the existing system, bug reporting and tracking are manual, that is, when an
application is implemented in an organization; if ever bug reported in that IDE, the
testers keep them largely available open sources like google, etc., to security issues.
Therefore, the newly implementing application details may leak outside easily, even
though the bugs are not solved. In this manual system, many issues are there like
security, integrity, and technical.

3. Literature Survey

Chaturvedi & Singh, 2012, stated that to send or report errors and monitor their
progress various bug reporting systems had been developed. Bug reporting and
tracking systems provide a platform for recording problems/failures encountered by the
client or software user [1].

As per Zou et al. (2011), current approaches to bug classification are based on
machine learning algorithms that generate classifiers from bug reporting training[2].
Bug sorting is an important step in the bug correction process. The goal of bug sorting
is to assign a new incoming bug to the right potential developer.

Anvik et al. (2005)state that most open-source software development projects
include an open bug repository - which software users can take full advantage of - to
report and track software system issues and the scope for improvement is high. Using
the Open Bug Store: more system problems can be detected due to the relative ease of
reporting errors[3]. In addition, more problems can be solved because more developers
can participate in troubleshooting, and developers and users can participate in bug
discussions and allow users to enter the system direction. Nevertheless, many integrity
and confidentiality issues arise for many newly implemented applications.

Čubranić, (2004) stated that Bug Triage, which decides what to do with the
incoming bug report, is increasingly taking resources for developers on large open-
source projects[4]. According to T et al. (2019), text classification is becoming an
essential step in capturing data and adequately categorizing websites [5].Neethu &
Rajasree, (2013)stated that, unfortunately[6], many things have diverted users faster
than the notion that developers are unresponsive and ignore user bug messages and
feature requests - and kill the project community.

According to Luyckx & Daelemans, (2005), Automatic text classification is a text
mining application that refers to documents by pre-defined content categories[7]. Many
text classification applications include indexing, document filtering or routing, and
hierarchical classification of websites and web search engines.

Pushaplatha and Murnalini 2019 have proposed a severity prediction and bug
report classification for closed software bugs [8]. In this approach, three different
ensemble ML algorithms such as Bagging, voting, and Adaboosthave appliedto NASA
dataset. Ramay et al., 2019 [12] have proposed deep neural network-based bug severity
prediction techniques[9]. At first, the NLP methods are utilized to preprocess the bug's
reports and afterward another score is determined to track down the feeling of bug
columnists. Otoom et al., 2019 have introduced a mechanized methodology for bug
reports arrangement utilizing a clever component determination strategy [10]. The list
of capabilities is created based on the normal events of the various watchwords in the
rundown of the bug report.

P. Meena Kumari / Automatic Bug Tracking System 185

4. Methodology

The process of converting structured text data into meaningful data for analysis, text
classification, supporting sentimental search tools analysis to measure product review
feedback from customers, and entity modeling for fact-based decision making is called
Text analytics. Figure 1, Text analysis is the classification of specific text according to
several author categories. An element vector is created in a document that contains
binary or numeric characters separated by commas based on the information and class
status (A and B).

Figure 1. Text analyzer Architecture

Classification algorithms take the identified data (because they are in the

monitored practice methods) and learn the patterns in the data that can be used to
estimate the classification output variable(Machine Learning, n.d.). It can most often be
group variable (a variable that determines which group a particular case belongs to) and
binomial (two groups) or multinomial (more than two groups), and these problems are
quite common ML tasks.

Estimating the class of a given data point is the process of Classification. Classes
are sometimes called targets or labels or categories. Classification of Predictive
Modeling is the task of estimating the mapping function (f) from input variables (x) to
discrete output variables (y). The problem of identifying subpopulations (categories) to
which it belongs to based on the target label is called Classification. In taxonomy there
are many applications in different domains, like credit approval, medical diagnostics,
target marketing, and so on. After selecting and modifying the elements, the documents
can be easily referenced in a usable form using the ML algorithm. However, they often

P. Meena Kumari / Automatic Bug Tracking System186

differ in the Random Forest Model, Naïve Bayes, and XGBoost ML (Machine
Learning) algorithms.

Naive Bayes (NB) is a very simple probabilistic algorithm based on Bayes theorem
which is used in classification problem solving. In Bayesian analysis, the resulting
taxonomy is created by combining both information categories, the former and the
probabilities, to create the so-called posterior probability of the Bayes' rule. The NB
classification is a primary probability classification based on the application of the
Bayes theory. NB calculates the set of probabilities by combining the values in a given
dataset. The NB classification also has a fast-decision-making process.

Random Forest creates more decisive trees and combines them to get a more
accurate and stable reference. RF (Random Forest) is a flexible and easy-to-use ML
algorithm that gives great results most of the time, even without hyper-parameter
tuning. Random Forest creates more decisive trees and combines them to get a more
accurate and consistent reference. Figure 2, Random Forest adds extra coincidence to
the model when the tree grows. Instead of looking for the most important function
when splitting a node, it looks for the best function among the random subset functions.
This means that the data/population used to build the random forest tree will be
replaced, and the detailed variables will also be bootstrapped, so the partitioning will
not be implemented on the same important variables.

Figure 2. Most frequent words

Implementing the gradient boosting concept is XGBoost. Algorithm writer Tianki
Chen, says that “To give better performance XGBoost uses a more controlled model
formalization to control over-fitting”. Therefore, it helps in reducing excess equipment.
It is built on the principles of the gradient improvement framework and is designed to
"change the intensities of machine computing constraints and provide a scalable,
portable and accurate library." To calculate the best distribution XGBoost uses

P. Meena Kumari / Automatic Bug Tracking System 187

histogram-based and a pre-computed algorithm. The histogram-based algorithm divides
all element data points into separate baskets and uses these baskets to find the
histogram distribution. XGBoost not only performs taxonomic functions; Accepts only
numeric values. Therefore, different encodings like one-time encoding, label encoding
or intermediate encoding, must be performed before classification data can be delivered
to XGBoost. XGBoost can make automatic function selection and capture high-order
interactions without hurting. XGBoost also has a randomization parameter, i.e., a
partial pattern of columns, which helps to reduce the interaction of each tree. It can deal
with persistent and categorical data naturally, it can deal with naturally missing data,
and they are strong for outliers at the inputs, which vary under the constant changes of
the inputs. Select the default variable, and we can capture linear relationships in data
and high-order interactions between inputs and scale large datasets.

5. Analysis, Evaluation, and Results

In this article, we have collected publicly available bug-reported datasets in the CSV
file format, and the description of the bug is taken as an input text variable. For this text
variable, we have analyzed and by applying effectively Supervised- ML Classification

Algorithms in R-Studio environment using R-Programming, to predict the team which
the ABTS can automatically assign that newly reported bug Furthermore, from the
respective supervised ML classification algorithms, the "Accuracy" has been taken as
evolution metrics to determine the effective machine learning algorithm for the input
database. Figure 3, Input database is a Bug reported data with four variables ("owner,”
"issue_title,” "description", and "Team" (A &B)) and 5000 observations. Here we are
taking the "description" variable for the text analysis and applying classification

algorithms, as the dependent (target/outcome) variable has two labels, which are
considered binary classifications.

Figure 3. Input data in table format

Creating corpus, This Vignette tm package briefly introduces text mining in R
using the text mining framework provided. We demonstrate methods for importing data,
corpus processing, preprocessing, metadata management, and creating a template for
term documents. Figure 4, The main structure for document management in the dark is
the so-called corpus, which refers to collecting text documents. The corpus is an
abstract concept and may have many implementations in parallel. The so-called default

P. Meena Kumari / Automatic Bug Tracking System188

execution is VCorpus (short for unstable corpus), which executes known meanings
from most R objects: corpora means that R objects are full memory.

Input Text:

Figure 4: Corpus data for the description variable

6. Transformations

Once we have the corpus, we usually want to modify the documents, such as ignoring
tracks and deleting tracks. In tm, this whole function is included in the transition
concept. Figure 5, Transitions are performed using the tm_map() function, which
applies the function (maps) to all corpus elements. Generally, all transitions work on
text documents and only apply to all the tm_map () corpus.

6.1 Creating dtm (Bag-Of-Words) Model:

Creating Term-Documents Matrices: A common approach to text extraction is to create
a matrix of term documents from the corpus. Figure 6, The TermDocumentMatrix and
DocumentTermMatrix classes (depending on whether you want the expressions to be
rows and columns as documents) use smaller matrices for corpora in the Tm package.
Word-document matrix checking displays a pattern, while as. Matrix () presents the
entire matrix in a dense format (which is very memory-intensive for large matrices).

<<DocumentTermMatrix (documents: 109982, terms: 598023)>>
Non-/sparse entries: 4002301/65767763285
Sparsity : 100%
Maximal term length: 15650
Weighting : term frequency (tf)

6.2 Most frequent words with 99% frequency accuracy:

Term document matrices are also very large for normal-sized datasets. Therefore, we
provide a method to eliminate small expressions, i.e., expressions that occur only in a
very small number of documents. In general, it dramatically reduces the matrix without
losing the important relationships inherent in the matrix:

<<DocumentTermMatrix (documents: 109982, terms: 532)>>
Non-/sparse entries: 1993695/56516729
Sparsity: 97%
Maximal term length: 41

P. Meena Kumari / Automatic Bug Tracking System 189

Weighting: term frequency (tf)

Figure 5. Transformation function in text document.

P. Meena Kumari / Automatic Bug Tracking System190

Figure 6. Converting DocumentTermMatrix as a matrix

7. Evaluation

Performance can be determined in various ways; However, accuracy, appeal, and
precision are commonly used. Table 1, to determine them, we must first begin by
understanding whether the document classification is True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN).

The confusion matrix is an important part of our study because reviews from
datasets can be classified as duplicate or genuine reviews. The number of right and
wrong estimates is summed with the values of the number and divided by the
individual classes. This is crucial to the matrix of chaos. Calculating the confusion
matrix will give us a better idea of what our taxonomic model corrects and what kind
of errors it makes.
Table 1. Classification: TP, FP, TN and FN.

 Team-A Team-B

Team-A TP FN
Team-B FP TN

Accuracy is commonly used as a benchmark for classification methods. However,
accuracy values are much less likely to fluctuate in the number of correct decisions
than accuracy and appeal:

�������� =
(�	 + �
)

(�	 + �	 + �
 + �
)

Very often, the category of interest in text classification is exceedingly small. This

high representation of the negative class in data retrieval problems causes problems in
assessing the performance of classifiers using accuracy. In this case, the performance of
the algorithm classification is measured by accuracy and subtraction.

Classification algorithms can achieve high accuracy by categorizing each example
negatively—analysis of the scalability of several classifiers in classification
experiments on text classification and noisy texts. Noise is the process of extraction
(affected by errors) from media other than digital texts (e.g., transliterations of speech
records collected by the recognition system). In a clean and noisy version of the same
document (word bug rate between ~ 10 and ~ 50 percent), the performance of the

P. Meena Kumari / Automatic Bug Tracking System 191

classification system is compared. Noisy lessons are obtained using handwriting
recognition and optical character recognition simulation.

The mechanisms used to compile the classification set are i) the use of different
subsets of training data in the same practice method, ii) the use of different training
parameters in the same training method (e.g., the use of different starting weights for
each neural network in the file) iii) the use of different learning methods. Many
researchers have shown that combining multiple taxonomies improves classification
accuracy by combining multiple taxonomies for text taxonomy.

8. Conclusion

The problem of text classification is a research topic of artificial intelligence, especially
concerning the huge number of documents available in e-mails, discussion forum posts,
and other electronic documents in the form of websites and other electronic texts. For
the specified classification method, it was found that the classification performances of
the classifiers differ based on the different institutions of the training texts; in some
cases, such differences are quite significant. This observation indicates that the
performance of the classification is to some extent related to its training corpus and that
a good or high-quality training organization can obtain good performance
classifications. Unfortunately, very little research has been found in the literature on
using the training text corpora to improve classification performance. However, from
the analysis using machine learning algorithms, we can predict which team (A or B) the
newly reported bug can be assigned.

References

[1] Chaturvedi, K. K., & Singh, V. B. (2012). Determining Bug severity using machine learning
techniques. 2012 CSI (CONSEG), 1–6. https://doi.org/10.1109/CONSEG.2012.6349519

[2] Zou, W., Hu, Y., Xuan, J., & Jiang, H. (2011). Towards Training Set Reduction for Bug Triage. 2011
IEEE 35th Annual Computer Software and Applications Conference, 576–581.
https://doi.org/10.1109/COMPSAC.2011.80

[3] Anvik, J., Hiew, L., & Murphy, G. C. (2005). Coping with an open bug repository. Proceedings of the
2005 OOPSLA Workshop on Eclipse Technology EXchange, 35–39.
https://doi.org/10.1145/1117696.1117704

[4] Čubranić, D. (2004). Automatic bug triage using text categorization. In SEKE 2004: Proceedings of the
Sixteenth International Conference on Software Engineering & Knowledge Engineering, 92–97.

[5] T, K., Sekaran, K., D, R., V, V. K., & M, B. J. (2019). Personalized Content Extraction and Text
Classification Using Effective Web Scraping Techniques. International Journal of Web Portals (IJWP),
11(2), 41–52. https://doi.org/10.4018/IJWP.2019070103

[6] Neethu, M. S., & Rajasree, R. (2013). Sentiment analysis in Twitter using machine learning techniques.
2013 (ICCCNT), 1–5. https://doi.org/10.1109/ICCCNT.2013.6726818

[7] Luyckx, K., & Daelemans, W. (2005). Shallow Text Analysis and Machine Learning for Authorship
Attribution. LOT Occasional Series, 4, 149–160. http://localhost/handle/1874/296538

[8] Pushpalatha, M. N., & Mrunalini, M. (2019). Predicting the severity of closed source bug reports using
ensemble methods. In Smart Intelligent Computing and Applications (pp. 589-597). Springer,
Singapore

[9] Ramay, W. Y., Umer, Q., Yin, X. C., Zhu, C., & Illahi, I. (2019). Deep neural network-based severity
prediction of bug reports. IEEE Access, 7, 46846-46857.

[10] Otoom, A. F., Al-jdaeh, S., & Hammad, M. (2019, August). Automated classification of software bug
reports. In Proceedings of the 9th International Conference on Information Communication and
Management (pp. 17-21).

P. Meena Kumari / Automatic Bug Tracking System192

