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Abstract. Based on the relationship between finite element (FE) solution and mesh size, a new approach based
on mesh depending on the material properties is proposed to make the finite element analysis results more
efficient and more close to the optimal solution. This optimal solution is often evaluated either by experiment or
by finite element method (FEM). At the opposite of the accuracy obtained by sensitivities analysis of the FEM
which requires time-consuming, our approach allows getting the optimal meshing based on the material
properties.
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1 Introduction

The solving process in finite element method (FEM)
includes four main steps: first step, is to discrete the
physical model. Second step, is to determine the governing
equations and their boundary conditions. Third step, is to
give the finite element (FE) equations of discrete elements.
Finally, to solve the FE equations by a joint solution.
Meshing is a critical step in FEM [1–3]. It affects directly
the accuracy of analysis results. The choice of mesh size in
FEM is the eternal question for numerical simulation [4,5].
The accuracy of the meshing size depends on the
geometries of the domain, the materials properties, the
element types and the loading. Theoretically, for FEM
under certain conditions, the accuracy of the mesh is more
precise when it’s size is quite small. However, such as small
size lead to high computation cost. Concretely, one should
follow the algorithm below to reach the optimal precision e:
– Start with initial mesh size equal to h1;
– form Kh1 (stiffness matrix) and Fh1 (discrete loads) we
solve Kh1. Uh1=Fh1;

– Choose a new mesh size h2 that respect h2< h1;
– Then, form Kh2 and Fh2 we solve again Kh2. Uh2=Fh2;
– If jUh2 � Uh1 j

jUh2 j
� e then Stop, Uh2 is the final solution,

Otherwise, h1=h2;
– Return to Step 1.

However, the above approach cost a lot in term of
computation time. In practical, the mesh size is often
chosen by experience [6–9]. On the other hand, the material
is often homogenised when performing FE analysis at a
macroscopic scale. The mesh size cannot be infinitely
reduced. Indeed, we can mesh the local structure, but in
this case, we face the time computing and also a cross-size
simulation. When we select the mesh size for FE
simulation, there must be some error in the FE solution
and in the solution of the differential equation. In general,
this error is monotonous to the mesh size. For the FEM
using the displacement method, the stiffness of the finite
element model increases with the increase of the mesh size
under certain conditions [10–13]. In this article, we propose
a new approach to identify the mesh dependency on
material properties to solve this problem.

2 Relationship between FEM accuracy and
mesh size

In this section, we underline above all through an basic
example of cantilever beam the relation between the
meshing size and the response of the structure.

2.1 Example: the cantilever beam subjected to
uniform load

As discribed in Figure 1, a representative cantilever beam
subjected to uniform load is discussed in this section
(Fig. 2). The beam section is I50a, where y-axial moment of* e-mail: zhouqp@gziit.ac.cn

Int. J. Simul. Multidisci. Des. Optim. 9, A2 (2018)
© Q.-P. Zhou and H. Ding, published by EDP Sciences, 2018
https://doi.org/10.1051/smdo/2017009

Available online at:
https://www.ijsmdo.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:zhouqp@gziit.ac.cn
https://www.edpsciences.org
https://doi.org/10.1051/smdo/2017009
https://www.ijsmdo.org
http://creativecommons.org/licenses/by/4.0


inertia is Iy=1120 cm4. The length of the beam is
L=2000mm. The material properties of the beam are:
Young’s modulus E=210Gpa and the Poisson’s ratio
m=0.3. The bean is under uniform loading with the
following density per length unit q=10N/mm.
The theoretical equation for deflection curve is

wB ¼ �
qx2

8EI ðx
2 � 4lxþ 6l2Þ. At the end of the free edge,

it is equal to wB ¼ � ql4

8EI. Once, we consider the numerical
values, WB= 8.5034mm.
The length of the beam, the cross-sectional dimension,

the load and the material properties remain unchanged,
changing the mesh size h, we obtain in Table 1 the displace-
ment of the cantilever beam WB(h) at different mesh size.
As shown in the above table and figure, the displace-

ment in function of the mesh size WB(h) converges to the
theoretical solutionWB when the mesh size is small enough
(h converges to zero).

2.2 Relation between finite element solution and mesh
size

Using the minimum potential energy principle, we obtain
the following static equation

KhUh ¼ Fh ð1Þ

where, Kh is the FE stiffness matrix that dependent on
Young’s modulus, the Poisson’s ratio. Uh is the nodal
displacement and Fh is the equivalent nodal load.
The elastic deformation energy of the approximate

solution of the displacement obtained by using the
minimum potential energy principle is the lower bound
of the exact solution deformation energy (the approximate
displacement field is smaller than the exact solution). As
we know the finite element solution is:

Uh ¼
Xn

i¼1

Niai ð2Þ

where, Ni and ai are respectively the shape interpolation
function and the weight parameter for each i.
When n is big, there are more parameters to be

determined, the accuracy of the finite element solution is
higher. When n tends to infinity, the approximate solution
approaches the exact solution. So the displacement Uh
converges to the exact solutionU0 when themesh size tends
to zero (see Fig. 3).

3 Mesh dependent material properties

Material properties are usually obtained by physical tests.
For example, the Young’s modular E can be obtained from
the one dimension tensile test (Fig. 4). The values will
depend only on the measurement of stress and strain.

However, the measurements of stress and strain are not
the objective. They depend on which kind of measurements
you used: sample type, measurements of the geometry,
loads and/or evaluationmethods of stress and strain. Using
FEM as a rule to evaluate s and e or U etc, to obtain E and
m. Given element size h, element type, sample geometry
etc, form Kh which is depend on E and m, solve

Kh Eh;mhð ÞUh ¼ Fh: ð3Þ

We obtain mesh dependent evaluations:

Eh ¼ EðhÞandmh ¼ mðhÞ; ð4Þ

where,Kh(Eh,mh) is the stiffness matrix when the mesh size
is h, Eh is the Young’s modulus and mh is the Poisson’s
radio,Uh is the nodal displacement when the mesh size is h;
Fh is the load when the mesh size is h. Uh and Fh can be
obtained by simulation or experiment.

4 Numerical examples

In this section, some numerical examples are calculated to
illustrate the proposedmethod. First, the optimal solutions
to meet a certain accuracy of a typical one dimension
tensile model and a shear dominant model are obtained.
Then, based on the solutions, we obtain the related mesh
that depends on material parameters Eh and mh with a
certain accuracy. We consider for this example a cubic
structure structure subjected to uniform loads. The mesh
scale k is evaluated as:

k ¼
h

l0
; ð5Þ

where h is the mesh size, lo is the minimum characteristic
dimension of concern.

4.1 Example of accuracy for a cuboid under different
loading case

In the following, we will present 3 cases of loading for better
understanding.

4.1.1 Case 1: Tension loading
As displayed in Figure 5, the simulation model is a cubic
structure 5 cm� 5 cm� 10 cm subjected to one dimension
tensile load 200Mpa on a 5 cm� 5 cm section. The material
properties of the cubic structure are Young’s modulus
E=210Gpa and the Poisson’s ratio m=0.3.
We choose the accuracy of the solution is e=10� 3.

Than, we reduce gradually the mesh size from 50mm to
3.1mm in order converge to the optimal value e that we
consider after as a reference value. The error of the
solution before and after encryption meet than the
parameter e.
In Table 2 and Figure 6, we obtain the following

displacement Ut*=9.37779 × 10� 2mm at the smallest
value of e that corresponds a mesh scale equal to 0.0625.

Fig. 1. Cantilever beam subjected to uniform load.
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4.1.2 Case 2: Shearing loading
As displayed in Figure 7, the simulation model is a cubic
structure 5 cm� 5 cm� 10 cm subjected to shear force
100Mpa. The material properties remain the same.
We choose the accuracy of the solution e equal to 3 ×

10� 3. As the previous case, we reduce the mesh size from
50mm to 1.5mm to reach the optimal e (that we consider as
a real or optimal solution).
Table 3 and Figure 8 show that the solution related to

optimal e gives Us*=8.91528 × 10� 1mm with a corre-
sponding mesh scale equal to 0.03125.

4.1.3 Case 3: Mesh dependent material properties
Based on the previous target solutions with a certain
accuracy, we obtain the mesh dependent material param-
eters Eh andmh. First we identify the Eh then we identifymh.

4.1.3.1 Identification of Eh
As the domain, the load and the Poisson’s ratio remain
unchanged (see Fig. 5), we change the mesh size value h to
solve the following equality:

h

U

f(h)

U 0

Fig. 3. Displacement of the domain at different mesh size.

Fig. 2. Displacement of the cantilever beam at different mesh size.

Table 1. Displacement of the cantilever beam at different
mesh size.

Mesh size
(mm)

Displacement
of point B (mm)

Relative
error (%)

10 8.501 0.02824
50 8.5 0.04
100 8.498 0.06352
200 8.487 0.19288
285.7 8.472 0.36928
400 8.444 0.69856
500 8.413 1.06312
667 8.344 1.87456
1000 8.147 4.19128
2000 7.084 16.69216

Fig. 4. Stress-strain curve.

Fig. 5. One dimension tensile model.

Table 2. Elongation of the cubic structure at different
mesh scale.

Mesh scale Mesh size
(mm)

Elongation
(mm)

Relative
error

1 50 9.17396E� 02 1.34E� 02
0.5 25 9.29862E� 02 5.26E� 03
0.25 12.5 9.34778E� 02 2.26E� 03
0.125 6.25 9.36900E� 02 9.37E� 04
0.0625 3.125 9.37779E� 02 –
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UEh ¼ Ut
�:

The material parameter Eh is identified afterward as
described in Table 4 and in Figure 9.

4.1.3.2 Identification of mh

As the domain, the load remain unchanged (see Fig. 7), and
using the identified Young’s modulusEhwe obtained above
we change the mesh size h to solve the following equation to
get parameter mh:

Umh
¼ Us

�:

Fig. 6. Elongation of the cubic structure at different mesh scale.

Fig. 7. Shear loading of the cubic structure.

Table 3. Displacement of the cubic structure at different
mesh scale.

Mesh
scale

Mesh size
(mm)

Displacement
(mm)

Relative
error

1 50 8.05608E� 01 3.59E� 02
0.5 25 8.35637E� 01 3.91E� 02
0.25 12.5 8.69674E� 01 1.60E� 02
0.125 6.25 8.83858E� 01 6.18E� 03
0.0625 3.125 8.89355E� 01 2.44E� 03
0.03125 1.5625 8.91528E� 01 –

Fig. 8. the displacement of the cubic structure at different mesh scale.

Table 4. Identified Young’s modulus at different mesh
scale.

Mesh scale Mesh size (mm) Eh (Mpa)
1 50 2.05436E+05
0.5 25 2.08227E+05
0.25 12.5 2.09328E+05
0.125 6.25 2.09803E+05
0.0625 3.125 2.10000E+05
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4.1.3.3 Application of the mesh dependency material
properties
When we use the given mesh size to solve the real
application (Fig. 10), we should introduce mesh depen-
dent material properties Eh and mh (Tab. 5) to form the
stiffness matrix Kh(Eh, mh). As displayed in Figure 11, the
cubic structure 5 cm� 5 cm� 10 cm is subjected to
uniform loading with the following density equal to
50Mpa.
As the domain and the load remain unchanged during

EF analysis, the comparison of the cases results 1–3 with

different mesh size h are shown below : Case 1 in Table 6,
case 2 in Table 7 and case 3 (using the identified parameters
Young’s modulus Eh and the identified Poisson’s ratio mh)
in Table 8.
As we can see in Figure 12 after Young’s modulus and

Poisson’s ratio correction, the mesh size can increase
almost two levels to reach the same accuracy.

Fig. 9. Identified Young’s modulus at different mesh scale.

Fig. 10. Identified Poisson’s ratio at different mesh scale.

Table 5. Identified Poisson’s ratio at different mesh scale.

Mesh scale Mesh size (mm) mh

1 50 0.1
0.5 25 0.1
0.25 12.5 0.15
0.125 6.25 0.18
0.0625 3.125 0.28

Fig. 11. Cubic structure under uniform loading.
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5 Conclusion

In the finite element analysis, the structural response is
related to the mesh size under certain conditions, the
solution of FE analysis is increase uniformly to converge
to the exact solution. However, with the discontinuity of
the materials and non uniform shape such as composite
and pore materials, the mesh size cannot be too small,
otherwise, it will cause imprecise. The introduction of
mesh dependent material properties correction results in
more accurate results. Moreover, the Young’s modulus
and the Poisson’s ratio correction together gave better

accuracy than with only modulus correction. Finally, the
correction is more efficient for coarse mesh than for fine
mesh. This interval is also what we need to improve
most.
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Table 6. Displacement of the cubic structure at different
mesh scale (Case 1).

Mesh scale Mesh size (mm) Displacement (mm)
1 50 3.36067E� 01
0.5 25 3.37455E� 01
0.25 12.5 3.49967E� 01
0.125 6.25 3.55313E� 01
0.0625 3.125 3.57356E� 01

Table 7. Displacement of the cubic structure at different
mesh scale (Case 2).

Mesh scale Mesh size (mm) Displacement (mm)
1 50 3.43652E� 01
0.5 25 3.40444E� 01
0.25 12.5 3.51211E� 01
0.125 6.25 3.55768E� 01
0.0625 3.125 3.57479E� 01

Table 8. Displacement of the cubic structure at different
mesh scale (Case 3).

Mesh scale Mesh size (mm) Displacement (mm)
1 50 3.46768E� 01
0.5 25 3.44681E� 01
0.25 12.5 3.52141E� 01
0.125 6.25 3.55340E� 01
0.0625 3.125 3.57588E� 01
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