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What if it was easier to prevent schizophrenia than to treat it?
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Neural tube defects occur when the brain or the spinal cord fails
to close early in embryonic development. While genetic poly-
morphisms affecting folate metabolism suggest that only certain
individuals may be at increased risk for neural tube defects,’ since
1992 all women of childbearing age have been recommended to
consume daily folic acid.? This proved so effective that wheat
products are now fortified as well.> Our ability to prevent neural
tube defects, with only a vitamin, demonstrates that we must now
consider the idea that we can preclude other neurodevelopmental
disorders as well.

Schizophrenia is preceded by a long period of disease
progression prior to the onset of symptoms. How best to study a
disease prior to diagnosis? Classically, physicians and scientists have
done this by tracking high-risk individuals for decades, waiting for
symptom onset to occur in a small subset of their cohort. This is
both time-consuming and inefficient. With the Nobel Prize winning
discovery by Shinya Yamanaka in 2007, it is now possible to
reprogram human-induced pluripotent stem cells (hiPSCs) from
patient cells;® these hiPSCs have the ability to differentiate into all
cell types found in the body.* Suddenly, scientists gained the ability
to generate stem cells from every person on the planet, providing
the opportunity to study disease processes in patient-derived cells
cultured in a laboratory dish.

Current hiPSC differentiation strategies yield neurons that
mostly resemble the fetal brain cells (Brennand et al. 2015
Molecular Psychiatry; Mariani et al. 2012 PNAS; Nicholas et al. 2013,
Cell Stem Cell; Pasca et al., Nature Methods 2015), making them a
better tool for the study of the molecular aspects of disease
predisposition, rather than the disease-state itself. For example,
hiPSC-based studies of late onset neurodegenerative diseases
such as Parkinson’s Disease,”® Alzheimer's Disease® '° and
amyotrophic lateral sclerosis’' have failed to recapitulate the
severe neuronal loss observed in human disease. Using hiPSCs, we
and others have found that schizophrenia hiPSC-derived neural
progenitor cells show evidence of aberrant migration,'? deficits
associated with adherens junctions and polarity,'® increased
oxidative stress'® ' ' and perturbed responses to environmental
stressors;'® while schizophrenia hiPSC-derived neurons exhibit
decreased neurite number,'” reduced synaptic maturation' '7~'°
and synaptic activity,'® ' and blunted activity-dependent
response.?® These in vitro deficits may reflect processes underlying
disease predisposition in patients. Consistent with this, we
recently reported unbiased hiPSC-based evidence?' that was
convergent with novel human genetics-based analyses,?* suggest-
ing that microRNA-9 may partially contribute to genetic risk for
schizophrenia in a subset of patients.

While the potential of hiPSC-based models to establish a
personalized medicine approach to the treatment of schizophre-
nia—one drug screen per genotype—has been widely dis-
cussed,” here | posit that the first hiPSC-based screens may
instead identify drugs more suitable for disease prevention. It may

ultimately prove easier to apply hiPSC-based models towards the
prevention, rather than treatment, of schizophrenia.
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