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SUMMARY

Organisms make two types of decisions on a regular
basis. Perceptual decisions are determined by
objective states of the world (e.g., melons are bigger
than apples), whereas value-based decisions are
determined by subjective preferences (e.g., I prefer
apples to melons). Theoretical accounts suggest
that both types of choice involve neural computa-
tions accumulating evidence for the choice alterna-
tives; however, little is known about the overlap or
differences in the processes underlying perceptual
versus value-based decisions. We analyzed EEG
recordings during a paradigm where perceptual-
and value-based choices were based on identical
stimuli. For both types of choice, evidence accumu-
lation was evident in parietal gamma-frequency
oscillations, whereas a similar frontal signal was
unique for value-based decisions. Fronto-parietal
synchronization of these signals predicted value-
based choice accuracy. These findings uncover
how decisions emerge from topographic- and fre-
quency-specific oscillations that accumulate distinct
aspects of evidence, with large-scale synchroni-
zation as a mechanism integrating these spatially
distributed signals.

INTRODUCTION

In animals and humans, goal-directed behavior involves the

planning of motor actions based on sensory information about

the environment and the organism’s internal state. How exactly

these motor actions are selected in the presence of two or

more choice alternatives is still unknown and has become a

central question in neuroscience. Theoretical models and empir-

ical work propose that this process—known as decision-mak-

ing—involves the continuous accumulation of sensory evidence

until a decision criterion is met and a motor action is executed
(Gold and Shadlen, 2007). Computational models—such

as sequential sampling models (SSMs)—suggest that these

evidence accumulation (EA) computations constitute a

domain-general decision mechanism (Bogacz et al., 2006;

Gerstner et al., 2012; Smith and Ratcliff, 2004; Usher and

McClelland, 2001). However, SSMs have so far mostly been

applied to choices based on objective information about phys-

ical properties of sensory stimuli (perceptual decision making

[PDM]) (Bode et al., 2012; Bowman et al., 2012; Brunton et al.,

2013; Deco et al., 2010; Ossmy et al., 2013; Ratcliff et al.,

2009; van Vugt et al., 2012; White et al., 2012). Comparatively

few studies have employed SSMs to investigate other types of

decisions that pervade everyday life, such as choices based

on the participant’s subjective preferences (value-based deci-

sion making [VDM]) (Hunt et al., 2012; Krajbich and Rangel,

2011; Krajbich et al., 2010; Milosavljevic et al., 2010; Philiastides

and Ratcliff, 2013). Crucially, while there are good theoretical

reasons to believe that common mechanisms should underlie

both PDM and VDM (Summerfield and Tsetsos, 2012), it has

been difficult to compare these two types of choices due to

major differences in the experimental approaches and sensory

stimuli employed for these two streams of research. It is thus

unclear whether a common EA process underlies both types of

decision making.

In the present study, we identify electrophysiological markers

of EA processes that were derived using a SSM fitted to partic-

ipants’ choice data and directly compare them between percep-

tual- and value-based choices. To this end, we developed a

behavioral paradigm where, while we acquired EEG recordings,

participants performed perceptual- and value-based decisions

using the same sensory stimuli and motor outputs. With this

experiment we were thus able to control for the various differ-

ences that would normally prevent direct comparisons between

the cortical computations involved in PDM and VDM paradigms.

In our study, we record neural activity using EEG, as this tech-

nique allows noninvasive, parallel, and temporally precise

recording of multiple cortical areas in healthy human volunteers.

The importance of parietal and prefrontal regions for evidence

integration in PDM (and possibly VDM) has been established

by pioneering monkey electrophysiology studies using invasive

single-unit recordings in various areas (e.g., for LIP, Churchland
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et al., 2008; Kiani and Shadlen, 2009; Shadlen and Newsome,

2001; for FEF, Kim and Shadlen, 1999). These studies have typi-

cally been conducted in the monkey brain and have often

recorded from neurons in a single location at a time, leaving it

unclear whether parallel evidence integration processes occur

in multiple cortical areas of the human brain and how such

processes are integrated to yield the final choice outcome. How-

ever, recent EEG investigations (Kelly and O’Connell, 2013;

O’Connell et al., 2012) of PDM showed that it is possible to simul-

taneously capture parallel decision formation and motor prepa-

ratory signals in parietal and motor regions, respectively. This

and other recent studies demonstrate that EEG (and magneto-

encephalograpy [MEG]) can noninvasively reveal multiple neural

determinants of decision formation in the human brain (Donner

et al., 2009; Hunt et al., 2012; O’Connell et al., 2012; Wyart

et al., 2012).

In our investigation of neural evidence integration during PDM

and VDM, we focus on neural oscillations in the gamma-

frequency band, as such signals should carry information related

to the synchronous activity of multiple groups of cortical neurons

(Bollimunta and Ditterich, 2012; Buzsáki et al., 2012; Donner and

Siegel, 2011; Polanı́a et al., 2012a). Single-unit recording studies

have so far reported monotonically increasing firing rates in inte-

grator regions until a motor action is executed (Huk and Shadlen,

2005; Shadlen and Newsome, 2001), and a recent EEG study of

PDM based on slowly varying sensory stimuli showed a mono-

tonically rising event-related potential (ERP) signal that may

correspond to such firing-rate increases (O’Connell et al.,

2012). Computational models suggest that such phenomena

emerge by recurrent excitation mediated by NMDA receptors

and feedback inhibition, which together amplify the difference

between conflicting inputs (Wang, 2002). Such coordinated exci-

tation and inhibition has repeatedly been shown to result in

gamma activity (neural oscillations at 30–90 Hz) that can be

detected with extracellular recordings (Bollimunta and Ditterich,

2012; Buzsáki andWang, 2012). Thus, we hypothesize that these

stereotypical increases in firing rates (or ERPs) in integrator

regions during the decision-making process are reflected in

modulations of gamma power that can be captured noninva-

sively using our EEG recordings.

Our behavioral paradigm allowed us to compute for every trial

the amount of perceptual- or value-based evidence for each

choice alternative and to fit a simple SSM to the behavioral

data. This model accounted well for behavioral performance

and allowed us to derive trial-specific predicted EA signals for

both types of choice. These model-based EA signals accurately

predicted EEG traces related to (1) specific time-frequency

gamma power modulations in parietal regions for both PDM

and VDM, (2) similar gamma power modulations in fronto-polar

regions specifically during the VDM task, and (3) motor prepara-

tory signals. Crucially, gamma phase coupling between the

fronto-polar and parietal regions was higher for VDM than for

PDM and was predictive of correct value-based decisions.

Taken together, these results support the idea that both PDM

and VDM involve computationally similar EA processes imple-

mented in distinct cortical areas. These oscillatory EA processes

occur in a quasi-parallel fashion and are mediated by both local

and large-scale oscillatory synchronization.
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RESULTS

Behavior
We recorded 128-channel EEG data from hungry, healthy human

volunteers performing our binary decision-making task (see

Experimental Procedures for details). Before performing the

decision-making task, we asked the participants to provide

subjective perceptual- and value-based ratings for a set of

food images. For value-based ratings, participants indicated

‘‘how much they wanted to eat the presented food snack at

the end of the experiment’’ (Krajbich and Rangel, 2011; Krajbich

et al., 2010). For perceptual-based ratings, we asked the partic-

ipants to provide an estimate of ‘‘how much they thought (in

percent) the food itemwas covering the black background within

the white square’’ (see Experimental Procedures; Figure 1A;

Figure S1 available online). These subjective perceptual ratings

were highly accurate, as they were strongly correlated with the

objective size measurements for all subjects (T(17) = 42.4, p <

10�15; Figure S1). Moreover, a comparison of accuracies esti-

mated for each subject based on either subjective or objective

perceptual ratings revealed no significant difference (T(17) =

1.55, p > 0.13).

For themain experiment, we generated a balanced set of PDM

and VDM trials divided into four different difficulty levels, based

on the individual subjective ratings of each participant. Impor-

tantly, the perceptual- and value-based ratings provided by the

participants were not correlated (T(17) = 0.24, p > 0.8; Figure S1),

demonstrating that we could examine PDM and VDM based on

identical visual stimuli in a fully independent fashion.

Immediately after providing the ratings, subjects performed

perceptual- and value-based decisions based on the same set

of naturalistic visual stimuli and involving identicalmotor outputs.

The only difference between both types of decisions was which

type of evidence needed to be accumulated for the choice

(perceptual or value based; Figure 1A). In the VDM task, subjects

indicated which item they would prefer to receive at the end of

the experiment, while in the PDM task, subjects indicated which

item covered more of its background. In both tasks, we define a

correct choice as a trial in which the subject chose the item with

a higher rating from the separate rating tasks (Experimental

Procedures).

Our behavioral results revealed that our experimental design

allowed a clear computational separation of PDM and VDM: re-

action times (RTs) and accuracies during both types of choice

were only influenced by the corresponding type of evidence

(i.e., perceptual for PDM and value-based for VDM) (Figures

1B–1D). Control analyses confirmed that there were no con-

founding effects of presentation side (subjects performedequally

well when the food items were presented either to the left or right

side of the screen; t test onmean accuracies andRTs: T(17) < 1.1,

p > 0.3). Taken together, these results show that our paradigm is

well suited to directly compare PDM and VDM, as both types of

decisions were taken in a fully independent fashion and reflected

selective accumulation of just one type of evidence.

Model, Fits, and Predictions
To predict the neural dynamics of EA in the human brain, we

fitted a dynamical SSM of decision making to the behavioral



Figure 1. Paradigm and Behavior

(A) Example screenshot during the decision stage.

Participants were always cued about the type of trial

(PDM or VDM) and on which side of the screen

the food items would be presented (right in this

example, always one stimulus above and one

below). On the opposite side of the screen, an

average-scrambled image of the two food items

was displayed in order to avoid spatial imbalance

(see Experimental Procedures). In VDM trials, sub-

jects chose which item (the upper or the lower item)

they preferred to eat at the end of the experiment. In

PDM trials, subjects chose which item covered

more of the black background.

(B) Accuracies (left panel) and reaction times for

correct trials (right panel) are shown for each evi-

dence level of the VDM (blue) and PDM (red) tasks.

Longer RTs and lower accuracy levels show that

participants were behaviorally sensitive to the evi-

dence manipulation.

(C and D) Behavior was only influenced by the

evidence relevant for the current task (i.e., percep-

tual for PDM and value-based for VDM). Bar plots

represent mean standardized estimates across

subjects from multiple regressions of (C) reaction

times and (D) accuracies on the overall value (OV)

(sum of both items), value difference (VD) between

both items, overall size (OS) (sum of both items),

size difference (SD) between both items, and the

reaction time (RT) in the present trial. Error bars

represent SEM. *p < 0.05. See also Figure S1.
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data of our participants. As perceptual- and value-based deci-

sions were taken in a fully independent fashion and reflected

selective accumulation of just one type of evidence (see Figures

1C and 1D), we could fit a single SSM to both tasks (PDM or

VDM) and only needed to change the input to this model from

trial to trial. For any given choice, the model therefore received

task difficulty of the currently relevant stimulus dimension as

input (i.e., IPDM = jS1 � S2j and IVDM = jV1 � V2j, where S and V

are the rated sizes and values of the items on each PDM and

VDM trial, respectively). Based on these inputs, the model then

(1) accounted for both accuracies and RTs for each trial type

and (2) provided us with a prediction of the moment-by-moment

accumulated evidence signal (at a millisecond resolution) until a

decision was made.

For this SSM approach, we used the general form of the

Ornstein-Uhlenbeck process (OU) (Experimental Procedures),

which can be described as a reduction of the leaky competing

accumulator family of models (Bogacz et al., 2006). In brief, the

OU is described by the following equation:

dEA= ðl3EA+ kIÞdt + sdW; (1)

where EA is the amount of evidence accumulated at a given time

t (i.e., the moment-by-moment evidence favoring one of the

alternatives), I is the input to the system (i.e., difference in

value or relative size between the food items IPDM = jS1 � S2j
and IVDM = jV1� V2j, whereS and V are the rated sizes and values

of the items on each PDM and VDM trial, respectively), k is a
linear drift parameter that scales the input (in units of ms�1), l

is a parameter that denotes the leak-strength (or urgency) of

the process, and sdW are independent white noise (Wiener)

increments of step s (sampled independently every 1 ms). Addi-

tionally, we accounted for visual processing and cortico-

muscular responses by subtracting a non-decision time (nDT,

also a parameter to be fitted) from the empirical RTs. By fitting

this model to the observed behavioral data, we could therefore

generate a prediction for a likely neural EA signal underlying

observed behavior, given the model and its input on a given trial.

Initially, we fitted the model (Equation 1) to the individual data

of each participant and compared the fitted parameters for the

two decision types. This analysis revealed that the only para-

meter that differed between PDM and VDM across subjects

was the drift parameter k. This drift parameter adjusts the impact

of the input I (e.g., value or size difference) on the evolution of the

EA signals (Figure S2A). We found that k was larger in PDM than

in VDM (to make k comparable between PDM and VDM in this

specific analysis, the input I to the model, Equation 1, ranged

from 1 to 4 in unitary steps for each difficulty level) (i.e., I ˛ [1,

2, 3, 4] for both PDM and VDM) (see Figure S2A). This means

that subjects accumulated evidence at a higher rate in PDM

than in VDM, for the specific value and size differences used in

our task (note that this does not necessarily represent any funda-

mental difference between PDM and VDM, but rather that the

value and size differences in the two tasks were not perfectly

matched on difficulty) (see Experimental Procedures; Figures
Neuron 82, 709–720, May 7, 2014 ª2014 Elsevier Inc. 711



Figure 2. Model Fits and Predictions

(A and B) The OU model provided excellent fits to

observed choices and reaction times in the (A) VDM

task and (B) PDM task. The first two rows in (A) and

(B) show density plots of the RTs for correct trials at

each difficulty level (value difference levels in VDM

and size difference levels in PDM) (see Figure 1B),

and the last row shows mean accuracies and RTs

for both data and model.

(C and D) Fitted parameters of the OU model were

used to generate model predictions of the decision

variable for VDM ([C], blue) and PDM ([D], red). Grey

traces in each panel are randomly selected simu-

lated trials of the OU process time locked to

boundary crossing. The thick blue/red line repre-

sents the mean of 5,000 simulated trials time locked

to model response. Thin blue/red lines above and

below the thicker line represents ±SD. These model

predictions were tested against time-frequency

decompositions of our collected EEG data. See also

Figure S3.
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1B and S2A). Importantly, our analysis clearly indicates that

behavioral differences between the two tasks were not driven

by differences in noise (parameter s) or urgency (parameter l).

In order to derive the model-predicted EA signal for the EEG

analyses, we then fitted the model to the data pooled across

participants to ensure the maximum amount of precision for

parameter estimation (Figure S2B; see also Hare et al., 2011;

Krajbich et al., 2010). The resulting model parameters were as

follows: l = 2.3, k = 0.11 (ms�1), s = 0.6, and nDT = 0.4 s for

VDM with inputs I = VD ˛ [1, 2, 3, 4] and l = 1.8, k = 0.04

(ms�1), s = 0.7, and nDT = 0.4 s for PDM with inputs I = SD ˛
[5%, 10%, 15%, 20%] (inspection of the likelihood landscape

confirms that we found a global maximum; see Experimental

Procedures and Figure S2 for further details and discussion of

the model fits). The model provided excellent fits for accuracies

and RTs in both tasks ( Figures 2A and 2B) and led to a predicted

response-locked EA signal depicted in Figures 2C and 2D. Note

that for PDM trials, this predicted EA signal is identical if we used

the subjective ratings instead of the objective sizes of the items

as input to the model (Figure S2C). Note also that the exponen-

tial-like shape of themodel-predicted EA signals was not caused

by the urgency signal in the OU model fits (i.e., l > 0), as such a
712 Neuron 82, 709–720, May 7, 2014 ª2014 Elsevier Inc.
shape was also present for fits of a stan-

dard DDM to our data (i.e., l = 0 in Equa-

tion 1; Figure S2D) (see also Ratcliff et al.,

2003) or even for l < 0 (Schurger et al.,

2012). In the EEG analyses, we then in-

spected the time-frequency decomposi-

tions of our collected EEG data for any

signals that closely followed these model-

predicted, response-locked EA signals.

Local Oscillations Encode the
Model-Predicted EA Signal
As briefly discussed in the introduction, we

hypothesized that stereotypical increases
of firing rates in integrator regions—previously reported in

single-unit and EEG-ERP recording studies (O’Connell et al.,

2012; Shadlen and Newsome, 2001)—are reflected in modula-

tions of time-frequency gamma power that can be captured

using EEG recordings in humans. We tested this hypothesis by

relating the model-predicted EA signals to time-frequency

decompositions of the EEG data, time-locked to the response

(Experimental Procedures). Note that for all these analyses, we

ruled out artificial modulations of gamma power by possible

‘‘stereotypical’’ eye movements with control analyses of eye-

tracking data (Supplemental Experimental Procedures).

In our analysis, trials were divided into even and odd trials in

order to test predictions of the fitted model out of sample (i.e.,

against independent data). To this end, we first used the even-

numbered trials to identify sensors where oscillatory activity

was closely related to the shape of the model-predicted EA,

and then we formally tested the model predictions with the

data from the independent odd-numbered trials. For the first

step, we linearly regressed time-frequency decompositions of

the even trials against the model-predicted EA signal. We only

considered clusters in the sensor-frequency space where this

yielded significant results surviving correction for multiple



Figure 3. Relationship between EEG Time-

Frequency Decompositions and Model

Predictions

Time-frequency decompositions were divided into

even and odd trials in order to test model pre-

dictions out of sample.

(A–C) Clusters in sensor-frequency space where,

during even-numbered trials, neural oscillations

were related tomodel predictions (see Experimental

Procedures and Results).

(D–F) Normalized time-frequency decompositions

averaged across sensors within the clusters that

closely followed the model-predicted EA signal (see

topographical maps in [A]–[C]). The white dashed

lines in the time frequency decompositions bracket

the frequency range corresponding to the topo-

graphical plots shown in (A)–(C).

(G) In order to test our model predictions out of

sample,we investigated the relationshipbetween the

model and the other half of the data (odd-numbered

trials) basedon the sensor-frequency clusters shown

in (A)–(C). Colored lines correspond to average time-

frequency decompositions of the data from

odd-numbered trials, extracted from the sensor-

frequency clusters (defined with data from even-

numbered trials) shown in (A)–(C).Grey shaded areas

correspond to ±1 SD of the model-predicted EA.

(H–I) Compare the relationship of model predictions

and data between conditions (VDM versus PDM) via

a t statistic of the difference in model-data corre-

lation between conditions for each EEG channel

and each frequency band.

(H) Negative correlations of the model predictions

with beta-band oscillations were stronger for VDM

than PDM at fronto-central sensors (cluster span-

ning 18–23 Hz).

(I) Positive correlations of model predictions with gamma-band oscillations were stronger for VDM than PDM at fronto-polar sensors (cluster spanning 48–65 Hz).

Clusters in (H) and (I) survive Monte-Carlo cluster correction for multiple comparisons at p < 0.05. See also Figure S3.
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comparisons and where time-frequency decompositions for

each time-point lay within 1 SD of the model predictions (Exper-

imental Procedures).

Our analysis revealed that, in both PDM and VDM trials,

model-predicted neural EA signals were present in gamma oscil-

lations for sensors located over parietal regions (PDM: 48–66 Hz,

VDM: 46–64 Hz, PBonferroni < 0.001) (Figures 3B, 3C, 3E, and 3F).

Additionally, we found that only for VDM trials, gamma activity of

sensors over fronto-polar regions reflected the model-predicted

EA signals (46–62 Hz, PBonferroni < 0.001) (Figures 3B and 3E). The

same held for beta-band oscillations (18–20 Hz, PBonferroni <

0.001) at fronto-central electrodes during VDM trials, but this

time with an inverted relationship (i.e., a negative correlation)

(Figures 3A and 3D). For PDM trials, by contrast, our analysis

strategy did not reveal any frontal cluster with such oscillatory

signals, even at a very liberal statistical threshold (Puncorrected <

0.001; please note that null relationships cannot be formally

confirmed with classical statistics).

For the second step of the analysis, we tested the model

predictions in these identified clusters out of sample by regress-

ing the corresponding time-frequency decompositions of the

second half of the data (odd-numbered trials) from these clusters

on the model predictions. We found that for all sensor-frequency

clusters depicted in Figures 3A–3F, the model predictions were
indeed confirmed by the independent data (R > 0.93, p < 10�15

for all clusters) (Figure 3G). This shows that the model-derived

EA signals could indeed accurately predict the temporal shape

of gamma power oscillations in the identified regions for fully

independent data.

In a second analysis, we tested whether themodel predictions

also held for the independent dataset when we considered the

data extracted from the regions separately for different levels

of task difficulty and for trials with long and short RTs (relative

to the median RT) at each difficulty level (Figure S4). In these

analyses, we established that the extracted EEG traces show

two important properties of EA signals. First, we found that there

was no significant difference in the response-locked threshold of

the signals for trials with different RTs or task difficulty, using

repeated-measures ANOVAs of the response threshold with

the factors difficulty level (easy/hard) and RT level (fast/slow)

(Table S1). Second, we showed that the ramping speed of the

EEG signals fully conforms with the predictions of the SSM for

fast versus slow and hard versus easy trials. For this second

result, we analyzed the EEG signals time-locked to stimulus

onset. This was a potentially noisier test due to visual potentials

evoked by the sudden onset of our stimuli. As predicted by the

model, we found that EEG signals in shorter trials ramp up

more quickly than the signals in longer trials (Figures S4C and
Neuron 82, 709–720, May 7, 2014 ª2014 Elsevier Inc. 713



Figure 4. Fronto-Parietal Synchronization

(A) Interregional connectivity (dWPLI) between the fronto-polar sensors shown

in Figure 3B and the conjunction of the sensors in parietal clusters shown in

Figures 3B and 3C was stronger for VDM than for PDM. Stronger phase-

coupling was found for VDM in the �40–70 Hz frequency range between 0.85

and 0.2 s before response onset (upper plot). Clusters shown in the upper plot

survive Monte-Carlo cluster correction for multiple comparisons at p < 0.05.

Lower plot shows the dWPLI averaged across the 40–70 Hz frequency range

for VDM (blue) and PDM (red). Shaded areas represent ±1 SEM.

(B) Fronto-parietal connectivity (dWPLI in the �40–70 Hz frequency range

between 0.85 and 0.2 s before response onset) during VDM (but not PDM) was

stronger for correct than for incorrect trials. Error bars represent ±1 SEM. *p <

0.05; **p < 0.01.

(C) The strength of fronto-parietal connectivity (dWPLI) during VDM correlated

with the accuracy of value-based choices. The plot shows linear regressions of

mean accuracies for each subject on the dWPLI for each participant in the 45–

65 Hz frequency range for latencies between �0.85 and �0.2 ms. This is

displayed for VDM (left panel, blue dots) and for PDM (right panel, red dots).
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S4D). Additionally, the model predicts marginal differences

between easy and hard trials in this analysis (with easier trials

ramping up faster than hard trials), which we also observed in

our empirical data (Figures S4C and S4E). Together, these

results confirm that the EEG signals we identify here indeed

show important properties of EA signals predicted by the SSM

used in the present study.

In the previous analysis, we investigated the relationship

between model and time frequency decompositions indepen-

dently for VDM and PDM. To test for differences between VDM

and PDM, we compared the relationship of model-predicted

EA signals and data between conditions (VDM and PDM) by

computing a t statistic of correlation differences between condi-
714 Neuron 82, 709–720, May 7, 2014 ª2014 Elsevier Inc.
tions across subjects for each EEG channel and each frequency

band (Experimental Procedures). This analysis showed that for

fronto-polar sensors, the model predictions correlated with

oscillations in the gamma-frequency band more strongly for

VDM than for PDM (p < 0.05 montecarlo cluster-corrected,

cluster spanning 48–56 Hz) (Figure 3I). Additionally, we found

for sensors located over fronto-central regions that the previ-

ously described negative correlation between model-predicted

EA signals and beta activity (Figures 3A and 3D) was also stron-

ger for VDM compared to PDM (p < 0.05 montecarlo cluster-

corrected, cluster spanning 18–25 Hz) (Figure 3H).

Do these differences in neural data relate to differences in

behavioral performance (see Figure 1B) between PDM and

VDM? To address this issue, we repeated the analysis with

performance-matched sets of data. To this end, we compared

easy trials in VDM (difficulty level 3 and 4) with difficult trials in

PDM (difficulty level 1 and 2), given that accuracies and RTs

were not significantly different between these trials (T(17) <

1.74, p > 0.1; see Figure 1B). Importantly, we were able to repro-

duce the results obtained in Figures 3H and 3I (see Figure S3).

Thus, differences in task difficulty—as measured with RTs and

accuracies—cannot explain why model-predicted EA signals

showed a stronger correlation with frontal gamma and beta

oscillations for VDM than for PDM.

Large-Scale Synchronization of Distributed EA
Processes
The finding that both parietal and frontal oscillations related to

EA signals for VDM led us to hypothesize that VDM may require

the sharing of information between fronto-polar and parietal

regions. To test this, we compared the coherence between these

two regions by computing the debiased weighted phase lag

index (dWPLI). Note that this method ensures that differences

in absolute power of oscillations between VDM and PDM cannot

affect differences in the degree of coherence between the two

conditions (Supplemental Experimental Procedures).

Strikingly, we found that synchrony between parietal and

fronto-polar regions was significantly higher for VDM than for

PDM in the same gamma frequency range, as identified in the

power-modulation analysis (�0.8 to �0.2 s and frequency

window between �40–70 Hz) (see Figure 4A). To ensure that

this observed difference in connectivity between VDM and

PDM was not caused by differences in task difficulty and/or

RTs, we again compared the connectivity measures between

easy trials in VDM and difficult trials in PDM. These trials were

fully matched for behavior between PDM and VDM (see Fig-

ure 1B); however, the connectivity measure between these two

types of choice still showed a significant difference (T(17) >

3.1, p < 0.01) for the same frequency range and latencies as

before. The stronger fronto-parietal gamma-band coherence

for VDM therefore probably reflects differences in choice

processes rather than simply different levels of behavioral

performance.

It is often argued that phase synchronization between different

sites serves to facilitate communication between segregated

cortical areas (Polanı́a et al., 2012b; Siegel et al., 2012). If both

the frontal and parietal oscillations observed here serve an

essential but distinct role for VDM, then we should see that the



Figure 5. Lateralized Readiness Potential

(A) Simplified schematic representation of how the

lateralized readiness potential (LRP) is calculated.

Raw electric potentials of sensors located over the

left and right motor cortex are subtracted from one

another.

(B and C) Shown is the LRP (multiplied by �1 for

visualization purposes) for VDM ([B], blue trace) and

PDM ([C], red trace) together with model-predicted

activity (black). The grey shaded area represents the

SD interval of the model prediction. Motor prepara-

tory activity also closely followed the decision vari-

ablepredictedby themodel, suggesting that theLRP

may also reflect EA processes. See also Figure S4.

Neuron

Perceptual versus Value-Based Decisions
level of gamma-band synchrony between fronto-polar and pari-

etal regions should relate to the level of task performance in

VDM. A post hoc analysis indeed revealed that phase coupling

between fronto-polar and parietal sensors in the VDM trials

was positively correlated with accuracy in VDM trials (linear

regression: r = 0.64, p < 0.01; nonparametric Spearman’s corre-

lation: RSpearman = 0.79, p = 0.034) (left plot in Figure 4C).

Conversely, the same phase coupling between fronto-polar

and parietal sensors in the PDM trials did not correlate with

PDM accuracy (linear regression: r = �0.39, p = 0.11; nonpara-

metric Spearman’s correlation: RSpearman =�0.38, p = 0.12) (right

plot in Figure 4C), and the correlations of synchronization and

accuracy correlations were significantly larger for VDM than for

PDM (Z = 3.25, p < 0.005; Supplemental Experimental Proce-

dures). In addition to these correlations across participants, we

also tested for a relationship between fronto-parietal synchrony

and accuracy at the single-trial level. To this end, we compared

our fronto-parietal synchrony measure between correct and

incorrect trials for PDM and VDM (repeated measures ANOVA

with factors task [PDM/VDM] and accuracy [correct/incorrect]).

Fronto-parietal synchrony was significantly stronger for VDM

than PDM (main effect task, F(1,17) = 4.52 and P = 0.04), and

this effect was modulated by accuracy at trend level (interaction

of task and accuracy, F(1,17) = 3.69 and p = 0.071) (see

Figure 4B). Planned comparisons showed that fronto-parietal

synchrony was indeed higher for correct than incorrect trials

during VDM trials (T(17) = 2.41, p = 0.02) but not during PDM

trials (T(17) = 0.9, p > 0.3). Moreover, the synchrony measure

during correct VDM trials was higher than during all other trial

types (all T > 2.35; all p < 0.05). These results confirm that

fronto-parietal gamma synchrony is related to behavioral perfor-

mance during VDM.

Relation of Oscillatory EA Signal to Motor Preparatory
Activity
The readiness potential (RP) orBereitschaftpotential refers to the

slow (1–2 s) buildup of electrical activity overmotor-related areas

that reliably precedes self-initiated movements. The RP has

been proposed as a signature of planning, preparation, and initi-

ation of volitional acts. It has been recently established that for

self-initialized movements RPs can be explained as an accumu-

lation-like process (Schurger et al., 2012). However, the involve-

ment of this electrophysiological signature in EA for PDM or

VDM, rather than just self-generated responses, is unclear

(although see (Gluth et al., 2013a) for a recent study investigating
RPs in VDM). Our results revealed that lateralized RPs (LRPs)

(Figure 5A) in both PDM and VDM tasks were highly correlated

with model predictions of our SSM (r > 0.95; p < 10�16) (Figures

5B and 5C), therefore supporting suggestions that LRPs may

also reflect evidence-accumulation processes (Schurger et al.,

2012).

Subsequently, we investigated the relationship between these

LRPs and the previously described gamma activity that reflected

the model-predicted EA. First we asked whether there was a

systematic latency between the peaks in activity of the two

signals. Across participants, no such latency was found

(T(17) < 1.1, p > 0.3). Second, we computed the cross-correlation

between gamma activity and LRPs in order to investigate

whether one of the signals preceded the other as they were drift-

ing towards their maximum. We found that across participants,

the lag latency of the cross-correlation peak did not significantly

differ from zero (T(17) < 0.4, p > 0.7). These results suggest that

both gamma activity in integrator regions and LRPs follow the EA

signals predicted by the OU model in a quasi-parallel fashion.

Note that this result does not indicate that gamma activity

described in the present study is simply a concomitant of tradi-

tionally studied LRPs, but instead that both parietal gamma

activity and LRPs may be explained as accumulation-like pro-

cesses as defined by SSMs (see also Schurger et al., 2012).

Future studies should investigate whether these two signals

can be dissociated with paradigms that systematically mani-

pulate sensory and motor requirements (see e.g., O’Connell

et al., 2012).

DISCUSSION

Our paradigm allowed us to identify common and distinct neural

mechanisms of EA in PDM and VDM by explicit comparisons of

neural activity during both types of decisions taken on identical

stimuli and involving the same motor output. The model-

predicted EA signal from a simple SSM accounted for trial-

specific gamma power modulations in the parietal cortex for

both PDM and VDM tasks and in fronto-polar cortex for just

the VDM task. Activity in these parietal and fronto-polar regions

was more synchronized in VDM than in PDM, and the degree of

synchronization predicted accuracy in VDM, but not in PDM.

This pattern of results suggests that parietal regions encode a

common decision variable in both PDM and VDM but that frontal

regions perform an additional EA process that is unique to value-

based decisions. Furthermore, this prefrontal process is coupled
Neuron 82, 709–720, May 7, 2014 ª2014 Elsevier Inc. 715
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by large-scale interactions with the decision variable encoded in

parietal cortex.

What information may be accumulated during the two types of

choice? In the PDM task, participants are assumed to decide

based on objective color and shape signals that allow the

computation and comparison of the physical sizes of the two

items (White et al., 2012). In the VDM task, by contrast, it is

assumed that decisions are taken based on value signals indi-

cating preference for one item or the other. These signals likely

reflect subjective evaluations of the items (Hare et al., 2011; Kraj-

bich et al., 2010; Milosavljevic et al., 2010). Previous work has

shown that fixating on an item temporarily boosts the evidence

for that item (Krajbich et al., 2010; Towal et al., 2013). In the

present task, however, subjects made decisions by covert atten-

tion; we therefore cannot provide decisive information as to

whether the value signals are partially constructed from attention

to the stimuli and/or from memory of prior ratings of the food

items. In any case, our use of subjective value differences as

inputs to the value-based decision process is fully consistent

with prior VDM studies using similar task designs (Milosavljevic

et al., 2010; Krajbich et al. 2010, Philiastides and Ratcliff,

2013). Moreover, our model fits clearly suggest that such

value-related information is accumulated in a similar fashion as

perceptual information during decision making.

The observed monotonic increase of gamma activity in

evidence integration regions (as the motor-execution point is

approached) may possibly emerge from an evolving amplifica-

tion of the activity representing the conflicting alternatives, which

is generated by synaptic reverberation of NMDA receptorsmedi-

ated by feedback inhibition (Wang, 2002). These signals repre-

sent the coordinated activity of large pools of neurons and can

therefore be captured via readout of extracellular electric fields

(Buzsáki and Wang, 2012). In humans, this notion is supported

by MEG studies suggesting that emerging gamma activity in

parietal regions reflects perceptual readout and action planning

(Pesaran, 2010; Van Der Werf et al., 2010). Moreover, monotonic

increases of high gamma activity—representing accumulation of

sensory evidence in PDM—have also been observed in sensori-

motor regions (Donner et al., 2009). Here we have shown that

such gamma-activity patterns evolve with the temporal shape

of EA processes as predicted by the SSM fitted to the observed

behavioral data. Moreover, our data demonstrate that these

signals are also observed at fronto-polar electrodes during

value-based decisions, thus further supporting the idea that

medial-frontal regions play a central role in value-based choices

and in the accumulation of value-based evidence (Basten et al.,

2010; Hare et al., 2011; Harris et al., 2011; Hunt et al., 2012; Lim

et al., 2011; McNamee et al., 2013; Philiastides et al., 2010).

In addition to oscillations in the gamma range, we also found

that beta oscillations over fronto-central regions negatively

followed the predicted EA signal only for value-based decisions.

Monotonic decreases of beta oscillations in motor-related areas

have often been proposed as a signature of action control and

also integration of sensory neural activity for decision making

(Donner et al., 2009; Gluth et al., 2013b; de Lange et al., 2013;

O’Connell et al., 2012; Wyart et al., 2012). On the other hand,

recent theories of frontal cortex contributions to value-guided

decision-making suggest that distinct substructures of fronto-
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central cortex may perform different computations during the

decision-making process in parallel; while ventro-medial frontal

regions are thought to compute and/or compare the values of

the offered alternatives, posterior segments of the anterior

cingulate cortex (ACC) and dorso-medial prefrontal cortex

(dmPFC) have been proposed to instantiate comparisons of

action values (Kolling et al., 2012; Shenhav et al., 2013). These

latter computations may involve anatomical connections linking

dmPFC and ACC with both supplementary motor areas and

areas of the ventro-medial prefrontal cortex (Beckmann et al.,

2009). Although the relatively low spatial resolution of EEG

recordings does not allow us to infer the involvement of specific

prefrontal sites, the ACC and dmPFC are certainly candidate

regions that may generate the fronto-central beta-band activity

that negatively followed the predicted EA signal, possibly reflect-

ing valuation of the action to be taken (Kolling et al., 2012; Shen-

hav et al., 2013).

Our findings revealed that value-based EA involves parallel

and synchronized frequency-specific oscillations in fronto-polar

and parietal regions. Moreover, these processeswere accompa-

nied by a buildup ofmotor preparatory activity, asmeasuredwith

LRPs in this study. This underlines that multiple neural signals in

the shape of EA processes are deployed in parallel during

choice. Our finding of such EA signals in frontal, parietal, and

motor-related areas is generally in line with previous neuroimag-

ing or electrophysiology studies that have identified such signals

separately for each of these areas, as well as the basal ganglia

(Ding and Gold, 2013; Donner et al., 2009; Klein-Flügge et al.,

2013; O’Connell et al., 2012; Shadlen and Newsome, 2001).

One possible explanation for the widespread occurrence of EA

signals across different brain areas is that integrators of sensory

evidence may be constantly readout in downstream decision

regions (e.g., those that assign value to choice options) and ulti-

mately in motor structures through cortico-striatal-thalamo-

cortical circuits (Bogacz and Larsen, 2011; Ding and Gold,

2013). These coordinated signals may therefore reflect rapid

information transfer between brain regions coding different

aspects of sensory or internal evidence that need to be inte-

grated for the choice outcome.

In line with this possibility, we found that coupling between

fronto-polar and parietal regions was higher in value-based

than in perceptual-based EA and that such synchronization

occurred in the same gamma-frequency range in which oscilla-

tory activity in these two regions tracked EA processes. Further-

more, we found that the strength of phase coupling in the gamma

band between fronto-polar and parietal regions was crucially

related to improved behavior in VDM,whereas it was not relevant

for PDM. This may reflect that parietal cortex, proposed to be

responsible for perceptual readout of the incoming sensory

evidence (Huk and Shadlen, 2005), may share this information

with frontal regions that implement valuation and comparison

of the offered alternatives (Basten et al., 2010; Hunt et al.,

2012; Philiastides et al., 2010). That relative increases of phase

coupling occurred in a high frequency band—the same in which

evidence was accumulated—may have allowed a rapid transfer

of information between remote neural populations (Gregoriou

et al., 2009; Siegel et al., 2008). As discussed above, the transfer

of information between relatively distant frontal and parietal
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regions might be relayed by subcortical regions; however,

anatomical dissection studies have also shown that certain

regions of the parietal cortex are directly linked with orbito-fron-

tal regions (Cavada et al., 2000), thus also potentially allowing

fast large-scale synchronization in the gamma band (Gregoriou

et al., 2009).

Our findings appear broadly consistent with recent sugges-

tions of EEG and MEG studies that have also used SSMs as a

tool to derive predictions for slow (<10 Hz) oscillatory neural

signals in independent studies of either PDM (van Vugt et al.,

2012) or VDM (Hunt et al., 2012). However, our study is the first

to use predictions of computational models fitted to behavioral

data in order to predict an EA signal for both PDM and VDM in

fully matched tasks, therefore allowing the comparison of these

two types of EA processes.

Taken together, the results of the present study bolster the

notion that decisions emerge from an integrative EA process

that occurs in parallel across distinct brain regions that process

different aspects of the incoming sensory signals (e.g., percep-

tual and value readout). This process appears to be instantiated

locally by neural oscillations and seems to be coordinated

between different areas via large-scale neural synchronization.

Future studies should explore whether simple accumulator

models in conjunction with EEG measures can further identify

and distinguish the neural signals related to evidence integration

underlying other common types of human decisions, such as

social, risky, and intertemporal choices.
EXPERIMENTAL PROCEDURES

Subjects

A total of 23 healthy right-handed volunteers (age 20 to 30) with normal or

corrected-to-normal visionwere included in the study. Subjects were informed

about all aspects of the experiment and gave written informed consent. None

of the participants suffered from any neurological or psychological disorder or

took medication during the time the experiment was conducted. Subjects

were paid 70 CHF for their participation in the experiment, in addition to

receiving one food item (see below). The experiments conformed to the Decla-

ration of Helsinki and the experimental protocol was approved by the Ethics

Committee of the Canton of Zurich.

Stimuli and Behavioral Task

Subjects were asked not to eat or drink anything within 3 hr before the start of

the experiment. After the experiment, subjects were required to stay in the

room with the experimenter while eating the food item that they chose in a

randomly selected trial of the VDM task (see below).

The behavioral task consisted of two main steps: (1) the rating phase and (2)

the decision-making task. In the rating phase, we asked the participants to

provide subjective perceptual- and value-based ratings from the same set of

65 different food images using an on-screen slider scale. All of the food items

were in stock in our lab, and subjects were notified about this. For value-based

ratings, participants indicated ‘‘how much they wanted to eat the presented

food snack at the end of the experiment’’ with a scale from �10 to 10 in steps

of 1. For perceptual-based ratings, we asked the participants to provide an

estimate of ‘‘how much (in percent) they thought the food item was covering

the black background within the white square’’ on a scale from 5% to 100%

in steps of 5% (see Figure S1). Before providing the ratings, subjects briefly

saw all of the items for an effective use of the value-based rating scale.

Immediately after the ratings, an algorithm selected a balanced set of PDM

and VDM trials divided in four different difficulty levels based on the individual

subjective ratings provided by each participant. Difficulty levels for the VDM

task were rbest � rworst ˛ [1, 2, 3, 4] and for PDM were rbigger � rsmallest ˛
[5%, 10%, 15%, 20%]. Afterwards, subjects proceeded to perform the

decision-making task. Trials started with presentation (for 2 s) of a central

fixation cross (�0.2�) and a word (length �0.8�; height �0.3�) indicating

whether subjects were in a PDM trial (word ‘‘LIKE’’) or in a VDM trial (word

‘‘AREA’’). On the subsequent screen, the fixation cross was replaced by the

letter ‘‘L’’ or ‘‘A’’ (�0.2�) to remind subjects that they were in a VDM or PDM

trial, respectively. Over this cue letter, an additional cue symbol (either ‘‘>’’

or ‘‘<’’; both �0.2�) instructed subjects to covertly shift attention to the right

or left visual fields, respectively. Subjects were instructed to keep their eyes

fixated on the central cue for at least 1.5 s (this was controlled by the use of

eye tracking, see below). Only after successful fixation for at least 1.5 s were

the two food items simultaneously displayed at the right or left side of the

screen (x eccentricity: 4.3�; y eccentricity: 3.6�; white square surrounding

each food item, width 6�) (see Figure 1A), as indicated by the prior cue. Simul-

taneously, an average-scrambled image of the two food items was displayed

on the opposite side of the screen (see Figure 1A) in order to avoid spatial

imbalance in the display, therefore preventing reflexive saccades as observed

in pilot experiments.

In the VDM task, subjects indicated which item (upper or lower) they would

prefer to receive at the end of the experiment while in the PDM task, subjects

indicated which item (upper or lower) covered more area within the white

square. Tomake these choices, subjects used a key-pad button located under

their right-index finger (upper item) or the right thumb (lower item). During the

decision period, subjects were instructed not to generate eye-blinks and to

make the decision by covert attention (see eye-tracking below). Subjects

had 4 s to make a decision; otherwise the trial was marked as a ‘‘miss trial’’.

We defined a correct choice as a trial in which the subject chose the item

with a higher rating from the separate rating tasks. Each experimental session

consisted of 480 trials divided in eight blocks of 60 trials each. The maximum

number of consecutive PDM or VDM trials in a single block was pseudo-

randomized to between 6 and 12 trials. The 480 trials were fully balanced

across all factors (visual field [left/right]; trial type [PDM or VDM]; difficulty level

[1–4]; correct response [up/down]).

EEG Recordings

EEGs were recorded against an average reference electrode using sintered

Ag/AgCl electrodes at 128 positions with an equidistant hexagonal layout

using a Waveguard Duke 128 channels cap (http://www.ant-neuro.com/) con-

nected to a 128-channel QuickAmp system (Brain Products). Electrode imped-

ance was monitored throughout the experiment to be below 10 KU. Sampling

frequency rate was 512 Hz at an analogue-digital precision of 24 bits. The EEG

cap was set up on each subject’s head before participants proceeded to the

soundproof and electromagnetically shielded chamber to perform the ratings

and the decision-making task during EEG recordings.

Eye Tracking

Subjects’ fixation patterns were tracked and recorded at 500 Hz with an

EyeLink-1000 (http://www.sr-research.com/). Before each choice trial,

subjects were required not to blink and maintain fixation at the center of the

screen for 1.5 s before the items would appear. Afterwards the food items

were displayed (see above). From stimulus onset until the response was

detected, subjects were also required not to blink and maintain fixation

(tolerance 1.2�), otherwise the trial was aborted and subjects received a

feedback message indicating that the trial was interrupted due to eye move-

ments. Such trials were marked as ‘‘invalid’’ in our behavioral and EEG

analyses. Subjects practiced the task and fixation in a 10 min practice session

of the decision-making task. For this practice session, subjects were pre-

sented with a different set of stimuli than those used in the real experimental

session.

Behavioral Analysis

RTs and accuracies were split into VDM and PDM trials and averaged

separately for each of the four difficulty levels described above (see Figure 1B).

To investigate the effects of the PDMand VDM onRTs in correct trials, we con-

structed the following linear regression model:

RTcorrect = b0 + b1OV + b2VD+ b3SD+ b4OS: (2)
Neuron 82, 709–720, May 7, 2014 ª2014 Elsevier Inc. 717
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We defined ri and ai as the subjective value rating and area rating of each

food image i, respectively. For any given trial, we define OV = rimage1 + rimage2,

VD = rbest � rworst, SD = abiggest � asmallest, and OS = aimage1 + aimage2 (see Fig-

ure 1C). This model was independently fitted for each subject and each exper-

imental condition (PDM or VDM).

To investigate the effects of PDM and VDM tasks on accuracies, we con-

structed the following logistic regression model:

Pchoice =
1

1+ expð � ðb0 + b1OV + b2VD+ b3RT + b4SD+ b5OSÞÞ;

(3)

where in addition to the already defined OV, VD, SD, and OS (see above), RT

denotes the RT in the current trial. This model was independently fitted for

each subject and each experimental condition (PDM or VDM).

After fitting these models for each subject and each experimental condition,

parameter estimates were standardized and their deviance from 0 was esti-

mated with a two-sided t test (see Figures 1C and 1D).

Computational Model

As our SSM approach, we used the general form of the one-dimensional OU

process. The OU is described by the following equation:

dEA= ðl3EA+ kIÞdt + sdW; (1 in main text)

where I is the input to the system (i.e., difference in value or relative size

between the food items), k is a parameter that scales the input, l is a parameter

that denotes the leak strength (or urgency) of the process and serves as an

adaptive control mechanism that can directly shape evidence integration

computation (Bogacz et al., 2006; Brunton et al., 2013), and sdW are indepen-

dent white noise (Wiener) increments of step s. We used dt = 0.001 s, and we

assumed that the model makes a decision when jxj R 1. Additionally, we

accounted for visual processing and cortico-muscular responses by sub-

tracting a non-decision time (nDT, a free parameter to be fitted) from the empir-

ical RTs.

The model was fit to the RT data separately for correct and incorrect trials in

order to account for both RTs and choice accuracies. Initially, we fitted the

model to the individual data of each participant and compared the fitted

parameters for the two decision types (Figure S2A). In order to derive the

model-predicted EA signal for the EEG analyses, we then fitted the model to

the data pooled across participants to ensure the maximum amount of preci-

sion for parameter estimation (Figure S2B). The datawere fit to themodel using

maximum likelihood estimation. RTs were separated for VDM and PDM trials

into correct/incorrect trials for each of the four difficulty levels, and the nDT

was subtracted from these data. These RT distributions were compared to

the distributions generated by the model. For a given set of values of model

parameters, we estimated the log likelihood (LL) of the data using the following

formula:

LL=
X4

icorrect = 1

log
�
KS

�
RTi

Data;RT
i
Model

��
+

X4

iincorrect = 1

log
�
KS

�
RTi

Data;RT
i
Model

��
;

(4)

whereKS(x,y), is the probability that two distributions are equal, estimatedwith

the Kolmogorov-Smirnov test, and i represents a given difficulty level. Then,

we identified the set of parameters of the model that maximized the log likeli-

hood. The search was performed over a coarse grid search of values for l =

[�9, �8.8,., 8.8, 9], k = [0,0.005, ., 0.3], s = [0.02, 0.04, ., 1.5] and

nDT = [0.2, 0.25,., 0.6] s. The simulation of the model for each set of param-

eters at a given point of the grid was run with 5,000 simulations.

We used these fitted parameters to generate model-predicted EA signals by

averaging activity of 5,000 trials time-locked to the decision latencies starting

�1.1 s before the decision threshold is crossed (see Figure 2). If the response

time of the model was shorter than�1.1, then we padded the beginning of the

epoch with null values (i.e., these values did not contribute to the average
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across simulated trials). Averages of model-predicted activity were quantita-

tively and qualitatively tested against the average time-frequency decomposi-

tions of our collected EEG data (see below).

EEG Analysis

Analysis of the data was performed using a custom-built script implemented in

Matlab 7.12 64-bit (The MathWorks) and Fieldtrip (Oostenveld et al., 2011).

EEG datasets were divided into epochs starting 1.3 s before response and

finishing 0.3 s after response. In the present study, there are two main reasons

to focus our analyses on response-locked EEG signals: (1) typically, RTs were

greater than 1 s; therefore, response-locked analyses allow us to minimize

contamination from early visual evoked potentials, and (2) SSMs—like the

OU process—do not predict activity after the decision is made; thus,

response-locked analyses allow us to exclude these data. Line noise was

removed using discrete Fourier transform, and all trials were first cleaned

from artifacts. This was initially done using independent component analysis

to identify eye movements and other noise artifacts. Note that our valid trials

are free of eye blinks (see eye tracking above). Careful inspection of the indi-

vidual components was based on topography and power spectrum to remove

components representing artifacts. Furthermore, individual trials were visually

inspected, and those with extremely high variance (e.g., muscle artifacts) were

removed from the data. Two subjects were excluded from further analysis due

to excessive artifacts. Three additional subjects were removed from the anal-

ysis due to excessive invalid trials (i.e., trials with eye blinks or saccades over

50%; see eye tracking above). Thus, all of the analyses in this study (behavior,

models, and EEG) were carried out with the remaining 18 subjects. For these

remaining subjects, on average, 18% ± 4.3% of the trials were rejected.

Spectral estimates were performed for each correct trial based on a multi-

taper method using standard routines implemented in Fieldtrip. Analyses

were performed in the 16–100 Hz frequency range. The length of the temporal

slidingwindowwas exactly eight cycles per timewindow in steps of 0.02 s. The

width of frequency smoothing was set to 0.33f with a frequency resolution in

steps of 1 Hz. We characterized power relative to a prestimulus baseline �0.5

to�0.1. For each EEG channel and experimental condition (VDM or PDM), the

spectral estimates were averaged across trials and subjects. The time decom-

position of each frequency and each channel was correlated with the activity

predicted by the model. Correlations were computed from �1.2 s to �0.1 s

with respect to response detection. The reason for placing the leading end

of the model at �100 ms is that this point has been shown to coincide with

an abrupt increase in cortico-spinal excitability; activity after that time is there-

fore likely attributable to motor execution per se rather than choice and

response preparation (Chen et al., 1998; Gratton et al., 1988; Haggard, 2011).

We inspected the EEG data for the model-predicted EA signals with a data

analysis strategy that combined qualitative and quantitative criteria (see

below). This strategy was essential as we are not interested in any possible

monotonic relationship betweenmodel and data, but only in oscillatory signals

that closely follow model-predicted EA signals. Trials were divided into even

and odd trials in order to test predictions of the fitted model out of sample

(i.e., against independent data). To this end, we first used the even-numbered

trials to identify sensors where oscillatory activity was closely related the

shape of the model-predicted EA signal; we then formally tested the model

predictions against the data from the independent odd-numbered trials. The

analysis for the first half of the data was carried out in two steps: first, a linear

regression with 55 time points in each time series (i.e., �1.2 to �0.1 s in steps

of 0.02 s) was calculated between time-frequency decompositions of the

actual even-numbered trials and model predictions. We only considered

sensors belonging to frequency-spatial clusters that survived Bonferroni

correction at p < 0.05. Second, from the sensor-frequency clusters surviving

the quantitative tests, we only further considered time-frequency decomposi-

tions in sensor space that lay within 1 SD of the model predictions to ensure

that fits were based on the full temporal interval. Afterwards, in order to test

our model predictions out of sample, we investigated the relationship between

model and the second half of the data (linear regression between model and

odd-numbered trials) based on the sensor-frequency clusters identified in

the previous analysis.

To compare the relationship of model predictions and data between condi-

tions (e.g. between VDM and PDM), we computed a t statistic of the difference
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in correlation (rPearsons) between model predictions and data for each EEG

channel and each frequency band. Initially, we thresholded the 3D (2D

topographic location of the electrodes + frequency) two-sided t statistic

map at p < 0.05. For each cluster surviving this threshold, we defined its

size as the integral of the t scores (condition difference) across the extension

of the cluster and tested its significance using a permutation statistic (i.e.,

we repeated the cluster identification 10,000 times with shuffled condition

labels to create an empirical distribution of cluster sizes under the null hypo-

thesis of no difference between conditions) (Maris, 2012). Here we report clus-

ters surviving a cluster correction for multiple comparisons at p < 0.05.
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