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CYLINDERS IN CANONICAL DEL PEZZO FIBRATIONS

MASATOMO SAWAHARA

Abstract. Cylinders in projective varieties play an important role in connection with unipotent
group actions on certain affine algebraic varieties. The previous work due to Dubouloz and
Kishimoto deals with the condition for a del Pezzo fibration to contain a vertical cylinder. In the
present work, as a generalization in the sense of singularities, we shall determine the condition
under which a del Pezzo fibration with canonical singularities admits a vertical cylinder by
means of degree and type of singularities found on the corresponding to the generic fiber.

In this article, let k be a field of characteristic zero (not necessarily an algebraically closed
field) and let k be the algebraic closure of k.

1. Introduction

Let X be an algebraic variety over k. Then an open subset U of X is called a cylinder if U
is isomorphic to A1

k × Z for some variety Z over k. Certainly, cylinders are geometrically very
simple, however recently they begin to receive a lot of attention in connection with unipotent
group actions on affine cones over polarized varieties (see, e.g., [4, 5, 15, 16, 17, 18]). Thus, it
is important to find a cylinder in projective varieties, but in general, it is not easy to decide
whether a given projective variety V contains a cylinder. Supposing that V contains a cylinder,
a resolution of singularities of V still contains a cylinder, in particular, its canonical divisor is not
pseudo-effective. Then by virtue of [2, Corollary 1.3.3], V is birational to a suitable Mori Fiber
Space (MFS, for short) by means of the minimal model program (MMP, for short). Conversely,
assuming that a normal projective variety V admits a process of MMP V 99K X, where X is
MFS which contains a cylinder, it follows that so does the initial V by [11, Lemma 9]. Thus, in
some sense, it is important and essential to try to find cylinders contained in MFS.

Let f : X → Y be MFS. In case of dim(Y ) = 0, namely, X is a Q-Fano variety of Picard rank
one, it is a delicate question to know whether X possesses a cylinder or not (see [13, 14, 15,
17, 25, 26, 27]). In order to deal with cylinders found in MFS with base variety Y of positive
dimension, it is useful to prepare the notion of vertical cylinders:

Definition 1.1 ([10]). Let f : X → Y be a dominant morphism between normal algebraic
varieties defined over k and let U ≃ Z × A1

k be a cylinder on X. We say that U is a vertical
cylinder with respect to f if there exists a morphism g : Z → Y such that the restriction of f to

U coincides with g ◦ prZ : U ≃ A1
k × Z

prZ→ Z
g→ Y .

We note that the existence of a vertical cylinder with respect to f is equivalent to saying that
the generic fiber of f contains a cylinder defined over the field of function over the base variety
(cf. [10, Lemma 3]). Let f : X → Y be MFS of dim(Y ) = dim(X)− 1, i.e., Mori conic bundle.
Then it is not difficult to see that the existence of vertical cylinders with respect to f results in
that of a rational point in the generic fiber of f . In this article, we are mainly interested in the
case of dim(Y ) = dim(X) − 2, i.e., f is a del Pezzo fibration. Since general fibers are del Pezzo
surfaces, they contain cylinders. Hence to some extent it would be reasonable to expect that
cylinders found on general fibers of f could be unified to yield a vertical cylinder in the total
space X. However this is too optimistic, indeed if X has only terminal singularities, then the
total space X of a del Pezzo fibration f : X → Y admits a vertical cylinder if and only if the
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2 MASATOMO SAWAHARA

generic fiber Xη of f admits a rational point and is of degree greater than or equal to 5 (see [10,
Theorem 1]). Our next target lies in del Pezzo fibrations f : X → Y whose total spaces possess
canonical singularities.

Definition 1.2. A dominant projective morphism f : X → Y of relative dimension two between
complex algebraic varieties is called a canonical del Pezzo fibration if the generic fiber Xη of f
is a Du Val del Pezzo surface of Picard rank one over the function field k = C(Y ) of Y , i.e., the
base extension Xη,k to the algebraic closure k of k has at most Du Val singularities.

In consideration of [10, Lemma 3], the existence of a vertical cylinder contained in a given
canonical del Pezzo fibration consists in a cylinder defined over C(Y ) in the generic fiber Xη.
The field C(Y ) being not algebraically closed, the essence lies in the following problem:

Problem 1.3. Let S be a Du Val del Pezzo surface of ρk(S) = 1 over k. In which case does S
contain a cylinder ?

See [6, 1] for relevant results about Problem 1.3 in case where k is algebraically closed. Our
main results in this article, which are stated in what follows depending on the degree d of Du
Val del Pezzo surfaces, shall reply completely to Problem 1.3. The meanings of the notation
used in Theorems 1.5 and 1.6 are defined later in Definitions 2.1 and 2.4:

Theorem 1.4. Any Du Val del Pezzo surface S over k with Picard rank ρk(S) = 1 and of degree
greater than or equal to 5 contains a cylinder.

Theorem 1.5. Let S be a Du Val del Pezzo surface over k with ρk(S) = 1 and of degree 3 or
4. Then S contains a cylinder if and only if S has a singular point, which is k-rational, such
that it is not of type A++

1 .

Theorem 1.6. Let S be a Du Val del Pezzo surface over k with ρk(S) = 1 and of degree d ≤ 2.
Then we have the following:

(1) If d = 2 (resp. d = 1) and Sk has a singular point of type A6, A7, D4, D5, D6, E6 or
E7 (resp. type A8, D6, D7, D8, E7 or E8), then S contains a cylinder.

(2) If d = 2 (resp. d = 1) and Sk has a singular point of type (A5)
′′ (resp. type (A7)

′′)*1,

then S contains a cylinder if and only if this singular point is not of type A++
5 (resp.

type A++
7 ) on S.

(3) If d = 2 (resp. d = 1) and Sk allows only singular points of type A1 (resp. A1, A2, A3,
D4), then S does not contain a cylinder.

(4) If S does not satisfy any condition on singularities of (1), (2) and (3) above, then S
contains a cylinder if and only if S has a singular point, which is k-rational, of type A−

n ,
D−

n or E−
n .

Since Problem 1.3 is completely settled by virtue of Theorems 1.4, 1.5 and 1.6, we can deter-
mine canonical del Pezzo fibrations f : X → Y admitting vertical cylinders depending on degree
of f and singularities in the generic fiber Xη of f . However, the treatment of singularities on
generic fibers is quite subtle, for instance, even in the case that two Du Val del Pezzo surfaces
are of Picard rank one over a field k whose base extensions over k are mutually isomorphic, it
may be that exactly only one of them contains a cylinder (see Example 6.7).

The scheme of the article proceeds as follows: In §2, we shall prepare preliminaries, which are
used in the later sections. In particular, the notation of Du Val singularities over a field k of
characteristic zero plays important roles, which are used in Theorems 1.5 and 1.6 in the article.
We shall prove the main results in §3 and §5. More precisely, Theorems 1.4 and 1.5 are proved
in §3 and Theorem 1.6 is proved in §5, respectively. Since the proof for Theorem 1.6 is somehow
involved, we need to prepare a further result in §4 in addition to those in §2. In the last section

*1Note that a singular point of type (A5)
′′ (resp. (A7)

′′) on a Du Val de Pezzo surface of degree 2 (resp. 1) is
automatically k-rational.



CYLINDERS IN CANONICAL DEL PEZZO FIBRATIONS 3

§6, we shall provide some examples of cylinders in Du Val del Pezzo surface of Picard rank one
over a field k of characteristic zero and those in canonical del Pezzo fibrations.

Notation and Conventions. We will use the following notations:

• C: The field of complex numbers.
• R: The field of real numbers.
• Q: The field of rational numbers.
• k: A field of characteristic zero.
• k: An algebraic closure of k, i.e., an algebraically closed field of characteristic zero.
• Fn: The Hirzebruch surface of degree n, i.e., Fn := P(OP1 ⊕ OP1(n)), where n is a
non-negative integer.
• Vk: The base extension over k of an algebraic variety V over k, i.e., Vk := V ×Spec(k)

Spec(k).
• A1

∗,k: The affine line over k with one k-rational point removed, i.e., A1
∗,k := Spec(k[t±1]).

• C(n): A k-form of the affine line A1
k
with n-times closed points removed.

• ρk(V ): The Picard rank of a projective variety V over k.
• (D ·D′): The intersection number of two divisors D and D′.
• (D)2: The self-intersection number of a divisor D, i.e., (D)2 = (D ·D).
• n-curve: A smooth rational curve with self-intersection number n.
• Bs(L ): A (set-theoretic sense) base locus of a linear system L .
• δi,j : The Kronecker delta.
• ⌈q⌉: The round up of a rational number q.
• Weak del Pezzo surface: A smooth projective surface such that its anti-canonical divisor
is nef and big but not ample.
• P1-fibration (resp. P1-bundle) π : V → B (over k): A surjective morphism over k such
that for a general closed point (resp. any closed point) b ∈ B the fiber Vb over the residue
field k(b) is isomorphic to P1

k(b).

• Mori conic bundle π : V → B (over k): A surjective morphism over k such that for any
closed point b ∈ B the fiber Vb over the residue field k(b) is isomorphic to the plane
conic, which is not necessarily irreducible.

Acknowledgement. The author is deeply grateful to his supervisor Professor Takashi Kishi-
moto for his useful advice. Also, he would like to thank the referees for suggesting many valuable
comments that helped to improve this article.

2. Preliminaries

2.1. Du Val singularities. In this subsection, we quickly review Du Val singularities over
algebraically closed fields, and then define Du Val singularities over algebraically non-closed
fields.

The properties of Du Val singularities over an algebraically closed field are well known (see,
e.g., [12], for details). In particular, we recall that a Du Val singular point on a normal algebraic
surface over C is analytically equivalent to one of the following:

An : (x2 + y2 + zn+1 = 0) ⊆ A3
C = Spec(C[x, y, z]) (n ≥ 1);

Dn : (x2 + y2z + zn−1 = 0) ⊆ A3
C = Spec(C[x, y, z]) (n ≥ 4);

E6 : (x
2 + y3 + z4 = 0) ⊆ A3

C = Spec(C[x, y, z]);

E7 : (x
2 + y3 + yz3 = 0) ⊆ A3

C = Spec(C[x, y, z]);

E8 : (x
2 + y3 + z5 = 0) ⊆ A3

C = Spec(C[x, y, z]),

where we note that Du Val singularity types of An, Dn, E6, E7 and E8 correspond to the Dynkin
diagrams of types An, Dn, E6, E7 and E8, respectively.
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From now on, we shall consider Du Val singularities over algebraically non-closed fields. Let
V be a normal algebraic surface over k and let p be a Du Val singular point on Vk, which is
k-rational. Notice that the exceptional set of the minimal resolution at p ∈ Vk is invariant under

the action of the Galois group Gal(k/k). Thus, depending on a fashion of the Gal(k/k)-action
on the exceptional set, we shall divide the type of Du Val singularities in a more refined way as
follows:

Definition 2.1. Let V be a normal algebraic surface over k, let p be a Du Val singular point

on Vk, which is k-rational, let σ : Ṽ → V be the minimal resolution of p over k and let N be the

exceptional set of σ on Ṽ .

(1) Assume that the type of p is an type A1 on Vk. Then:

(i) p is of type A+
1 on V if N(k) 6= ∅.

(ii) p is of type A++
1 on V if N(k) = ∅.

(2) Assume that p is an type An for n ≥ 2 on Vk. Then:

(i) p is of type A−
n on V if ρk(Ṽ )− ρk(V ) = n.

(ii) p is of type A+
n on V if ρk(Ṽ )− ρk(V ) < n and N(k) 6= ∅.

(iii) p is of type A++
n on V if ρk(Ṽ )− ρk(V ) < n and N(k) = ∅.

(3) Assume that p is an type Xn on Vk, where Xn means Dn for n ≥ 4 or En for n = 6.
Then:
(i) p is of type X−

n on V if ρk(Ṽ )− ρk(V ) = n.

(ii) p is of type X+
n on V if ρk(Ṽ )− ρk(V ) < n.

Remark 2.2. If k = R, then all types of Du Val singularities over k correspond to all types of
real Du Val singularities in [20, §9] except for type A1. Meanwhile, although [20] defines both
of Du Val singularities of type A+

1 and type A−
1 , whereas in Definition 2.1, we do not prepare

the notation for type A−
1 intentionally in consideration of the assertion (4) in Theorem 1.6.

Example 2.3. Let Ṽ be a k-form of the Hirzebruch surface F2 of degree two over k. Notice that

the minimal section M on Ṽk, which is a (−2)-curve, is defined over k. Hence, we obtain the

contraction σ : Ṽ → V of M defined over k. Then p := σ(M) ∈ Vk is a Du Val singular point

of type A1. Now, if M is a non-trivial k-form of P1
k
, then M(k) = ∅ (see Lemma 2.6 below).

Namely, if M ≃ P1
k (resp. M 6≃ P1

k), then p ∈ S is of type A+
1 (resp. A++

1 ).

2.2. Types of weak del Pezzo surfaces. For any Du Val del Pezzo surface S defined over k,

recall that its minimal resolution S̃ is a weak del Pezzo surface over k and satisfies (−KS)
2 =

(−K
S̃
)2, which is called the degree of S (or S̃). Conversely, for any weak del Pezzo surface

S̃ defined over k, note that the union of all (−2)-curves on S̃k is defined over k and can be

contracted, hence, we obtain the contraction σ : S̃ → S over k of this union, so that S is a
Du Val del Pezzo surface over k. Hence, Du Val del Pezzo surfaces over k are in one-to-one
correspondence with weak del Pezzo surfaces over k via minimal resolutions. In this subsection,
we shall recall a classification of the types of weak del Pezzo surfaces over a field of characteristic
zero for later use. Moreover, we will introduce the notation for a special kind of singularities
included in Du Val del Pezzo surfaces from a different point of view than in §§2.1.

2.2.1. Let S̃ be a weak del Pezzo surface defined over a field k of characteristic zero. Then
we associate to S̃ “Degree”, which is the degree of S̃, “Singularities”, which means singularities

on the surface given by the blow-down of all (−2)-curves on S̃k, and “#Lines”, which is the

number of all (−1)-curves on S̃k. The triplet (Degree, Singularities, #Lines) is called the type

of S̃ (see [28, §§2.3]). The type of weak del Pezzo surfaces is classified, see for instance [3, 7, 30],
[9, §§8.4–8.7 and §§9.2], and [28, Table 3] for the list in the classification.

In what follows, we follow the notation on the type of weak del Pezzo surfaces as in [28,
§§2.3]. For the readers’ convenience, we give some comments on this notation. Almost all types
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of weak del Pezzo surfaces are determined by only “Degree” and “Singularities”, namely the
remaining information on “#Lines” would be uniquely determined by the former two. In each
of the other exceptional types, there are exactly two possibilities about “#Lines”. In order
to distinguish such cases, we use the notation something like (X)< and (X)>, where X means
“Singularities” and #Lines of (X)< is less than #Lines of (X)>. For example, in case of
(Degree,Singularities) = (6, A1), then “#Lines” is either 3 or 4. Hence, if #Lines = 3 (resp.
#Lines = 4), then this type is denoted by (A1)< (resp. (A1)>).

2.2.2. Let S be a Du Val del Pezzo surface of degree d ≤ 2 defined over k and let σ : S̃ → S be

the minimal resolution, so that S̃ is a weak del Pezzo surface of degree d.
By the classification of types of weak del Pezzo surfaces, assuming that Sk admits at least

one singular point of type A9−2d or at least two singular points, one of which is of type A7−2d

and the other of which is of type A1, the type of the weak del Pezzo surface S̃ is not uniquely

determined by only “Degree” and “Singularities” if and only if “Singularities” of S̃ is one of the
following: {

d = 2 : A5 +A1, A5, A3 + 2A1 or A3 +A1.

d = 1 : A7 or A5 +A1.
(2.1)

For the above mentioned cases (2.1) only, we shall adopt the notation found in [6, §§2.2] as
follows to make the proof more transparent. We note that in (2.2) each of the left hand side is
the notation used in [6, §§2.2], meanwhile, each of the right hand side is the one defined in 2.2.1.
For types in (2.1), we will adopt the ones at the left hand side in (2.2):





d = 2 : (A5 +A1)
′ = (A5 +A1)<, (A5 +A1)

′′ = (A5 +A1)>, (A5)
′ = (A5)<,

(A5)
′′ = (A5)>, (A3 + 2A1)

′ = (A3 + 2A1)<, (A3 + 2A1)
′′ = (A3 + 2A1)>,

(A3 +A1)
′ = (A3 +A1)<, (A3 +A1)

′′ = (A3 +A1)>.

d = 1 : (A7)
′ = (A7)>, (A7)

′′ = (A7)<, (A5 +A1)
′ = (A5 +A1)>,

(A5 +A1)
′′ = (A5 +A1)<.

(2.2)

On the other hand, to state our main result exactly, we shall divide the types of k-rational
Du Val singularity x ∈ Sk of type A9−2d as follows by making use of their notation:

Definition 2.4 (cf. [30]). With the notation as above, the singular point x is of type (A9−2d)
′

(resp. type (A9−2d)
′′) if there exists a (−1)-curve on S̃k meeting the (−2)-curve corresponding

to the central vertex on the dual graph of the minimal resolution (resp. there does not exist

such a (−1)-curve on S̃k).

Remark 2.5. If Sk admits a singular point x of type A9−2d, then S̃ is of one of the following
types:

• d = 2: A5 +A2, A5 +A1, A5.
• d = 1: A7 +A1, A7.

Moreover, if S̃ is of A9−2d +Ad-type, then the singular point x is of type (A9−2d)
′.

2.3. Properties of weak del Pezzo surfaces. In this subsection, we shall recall some prop-
erties about mainly weak del Pezzo surfaces defined over algebraically non-closed fields.

Lemma 2.6. Let V be a smooth algebraic variety over k satisfying Vk ≃ Pn
k
. If V has a

k-rational point, then V ≃ Pn
k .

Proof. See [24, Proposition 4.5.10]. �

In this article, we will treat k-minimal weak del Pezzo surfaces over k. Here, a smooth
projective surface W defined over k is k-minimal if any birational morphism W → W ′ to a
smooth projective surface W ′ over k is an isomorphism. Recently, the author studied k-minimal
weak del Pezzo surfaces ([28]). In particular, we will use the following result later:
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Proposition 2.7. Let W be a weak del Pezzo surface of degree d defined over k satisfying one
of the following conditions:

• d = 4 and W is of (2A1)<-type.
• d = 2 and W is of A2-type.

Then the following assertion hold:

(1) Wk is endowed with a structure of Mori conic bundle π : Wk → P1
k
over k with exactly

(8− d)-times of singular fibers such that each (−2)-curve on Wk is a section of π, where
each singular fibers of π consists of exactly two (−1)-curves meeting transversely.

(2) W is k-minimal if and only if ρk(W ) = 2.
(3) If W is k-minimal, then W does not contain any cylinder.

Proof. See [28]. In particular, the assertion (1) follows from [28, Claim 3.8 and Remark 3.9]. �

The following two lemmas are basic but will play important roles in §4 and §5:

Lemma 2.8. Let W be a weak del Pezzo surface over k and let D be a divisor on W . If
(D)2 = −1, (D · −KW ) = 1 and (D ·M) ≥ 0 for any (−2)-curve M on W , then there exists a
(−1)-curve E on W such that E ∼ D.

Proof. See [9, Lemma 8.2.22]. �

Lemma 2.9. Let W be a weak del Pezzo surface over k of degree d. Then the number of
(−2)-curves on W is less than or equal to 9− d.
Proof. See [9, Proposition 8.2.25]. �

Moreover, we also prepare a variant of Corti’s inequality:

Proposition 2.10. Let V be a smooth algebraic surface over k, let ∆1 and ∆2 be two curves
on V , which are meeting transversely at a point, say p, let L be a mobile linear system on V ,
let a1 and a2 be two non-negative rational numbers and let µ be a positive rational number. If:

(
V, (1 − a1)∆1 + (1− a2)∆2 +

1

µ
L

)

is not log canonical at p, then we have:

i(L1, L2; p) > 4a1a2µ
2,

where i(L1, L2; p) is the local intersection multiplicity at p of two general members L1, L2 ∈ L .

Proof. See [8, Theorem 3.1(1)]. �

A variant Corti’s inequality is a useful tool for proving the absence of cylinders in smooth
surfaces over algebraically non-closed fields (cf. [10, 28]). This article again uses this inequality
in proving the absence of cylinders (see Lemmas 2.15 and 5.10).

2.4. Properties with respect to cylinders. In this subsection, we shall present some bene-
ficial tools about cylinders for later use.

Definition 2.11. Let X be an algebraic variety over k and let U be a cylinder of X. Then the
closed subset X\U on X is called the boundary of U .

We think that the following lemma is well known but could not find a proof in the literature.
Hence, we shall give the proof of this lemma for the readers’ convenience.

Lemma 2.12. Let V be a smooth projective surface over k and let U ≃ A1
k ×Z be a cylinder of

V . Then the boundary divisor of U , say D, has no cycle.
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Proof. If D has a cycle, then Dk also has a cycle, hence, we may assume k = k. The closures in

V of fibers of the projection prZ : U ≃ A1
k × Z → Z yields a linear system on V , say L , hence

we have the rational map ΦL : V 99K Z to a projective model Z of the closure of Z in V . Note
that Bs(L ) consists of at most one point by the configuration of L . Let ψ : V̄ → V be the
shortest succession of blow-ups the point on Bs(L ) and its infinitely near points such that the
proper transform of L is free of base points to give rise to a morphism ϕ := ΦL ◦ ψ : V̄ → Z,
where we shall define ϕ := ΦL if Bs(L ) = ∅. Hence ϕ is a P1-fibration, moreover, ψ∗(D)red. is
the union of a section and all singular fibers of ϕ. Thus, if D has a cycle, then some singular
fibers of ϕ also have a cycle. However it is impossible, because, in general, it is known that any
singular fiber of P1-fibration does not have a cycle (see, e.g., [21, Lemma 12.5]). This completes
the proof. �

The following two lemmas are not difficult but will play an important role in constructing the
cylinders.

Lemma 2.13. Let V be a k-form of P1
k
× P1

k
and let F1 and F2 be two 0-curves on Vk with

(F1 · F2) = 1. Namely, Pic(Vk) = Z[F1] ⊕ Z[F2]. Let C be a geometrically rational curve on V

with Ck ∼ F1+F2. If C has a k-rational point, say p, then there exists a cylinder U ≃ A1
k×A1

∗,k
on V satisfying C ∩ U = ∅.
Proof. Let C1 and C2 be two rational curves on Vk satisfying p ∈ Ci and Ci ∼ Fi for i = 1, 2.
Note that each of these curves uniquely exists and the union C1 + C2 is defined over k. Let
ϕ : V ′ → V be a blowing-up at p, let E be the exceptional curve of ϕ, and let us put C ′ := ϕ−1

∗ (C)
and C ′

i := ϕ−1
∗ (Ci) for i = 1, 2. Noticing that E ≃ P1

k and C ′
1 +C ′

2 is defined over k, by Lemma
2.6 we obtain the contraction ψ : V ′ → P2

k of C ′
1 +C ′

2 over k, which maps C ′ ∪E onto a pairs of
lines in P2

k. Hence, we have an isomorphism U := V \(C ∪C1∪C2) ≃ P2
k\ψ(C ′∪E) ≃ A1

k×A1
∗,k.

In particular, C ∩ U = ∅ by construction of U . �

Lemma 2.14. Let V be a k-form of F2, let M be a (−2)-curve on Vk, let F be a 0-curve on Vk.
Namely, Pic(Vk) = Z[M ]⊕Z[F ]. Let C be a geometrically rational curve on V with (Ck ·M) ≤ 1

and (Ck · F ) = 1. If C has a k-rational point, say p, then there exists a cylinder U ≃ A1
k ×A1

∗,k
on V satisfying (M ∪ C) ∩ U = ∅.
Proof. Since V has the k-rational point p, we know that V is the trivial k-form of F2 by using
Lemma 2.6, i.e., V ≃ P(OP1

k
⊕OP1

k
(2)). Meanwhile, M is automatically defined over k and there

exists a unique rational curve F0 on V with F0,k ∼ F passing through p. If (C ·M) = 0, then

V \(M∪F0∪C) ≃ A1
k×A1

∗,k because the pair (V,M+F0+C) is a minimal normal compactification

of A1
k ×A1

∗,k (see [29] or [19]). In what follows, we consider the case (C ·M) = 1. Then p is the

intersection point ofM , F0 and C. Let ϕ : V ′ → V be a blowing-up at p, let E be the exceptional
curve of ϕ, and let us putM ′ := ϕ−1

∗ (M), F ′ := ϕ−1
∗ (F0) and C

′ := ϕ−1
∗ (C). Since F ′ is a k-form

of a (−1)-curve and is defined over k, we obtain the contraction ψ : V ′ → V ′′ ≃ F3 of F ′. Then
V \(M ∪ F0 ∪ C) ≃ V ′′\ψ(M ′ ∪ C ′ ∪ E) ≃ A1

k × A1
∗,k because the pair (V ′′, ψ∗(M

′ +C ′ + E)) is

a minimal normal compactification of A1
k × A1

∗,k (see [29] or [19]). �

At the end of this subsection, we shall present the fact about cylinders in Du Val del Pezzo
surfaces of Picard rank one. Let S be a Du Val del Pezzo surface over k with ρk(S) = 1 and
of degree d. Suppose that S contains a cylinder, say U ≃ A1

k × Z, where Z is a smooth affine
curve defined over k. The closures in S of fibers of the projection prZ : U ≃ A1

k ×Z → Z yields
a linear system, say L , on S. Then the following lemma can be shown by applying the proof of
[10, Proposition 9]:

Lemma 2.15. Let the notation be the same as above. Then Bs(L ) consists of exactly a k-
rational point, say p. Moreover, if d ≤ 4, then p is a singular point on S.
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Proof. Note that Bs(L ) consists of at most one k-rational point by the configuration of L .
Hence, we shall prove Bs(L ) 6= ∅. However, this assertion follows from ρk(S) = 1. Indeed, any
general members L1 and L2 of L must intersect. Thus, there exists a unique k-rational point p
on Sk such that Bs(L ) = {p}.

In order to prove the last assertion, suppose that d ≤ 4 and p is a smooth point on S. Let

σ : S̃ → S be the minimal resolution over k. S̃ also contains a cylinder Ũ := σ−1(U) ≃ U . The

closures in S̃ of fibers of the projection prZ : Ũ ≃ A1
k×Z → Z yields a linear system, say L̃ , on

S̃. Then, σ−1(p) is a k-rational point, say p̃, on S̃. On the other hand, by ρk(S) = 1, we have

L̃ ∼Q a(−K
S̃
) for some a ∈ Q>0. Indeed, we see L̃ = σ−1

∗ (L ) = σ∗(L ), since p is a smooth
point on S. In addition to, we see −K

S̃
= σ∗(−KS) by construction of σ. Thus, we can obtain

a contradiction by the argument similar to [10, Proposition 9]. In fact, show that (S̃, 1
a
L̃ ) is not

log canonical at p̃, moreover, derive contradiction by Corti’s inequality (see Proposition 2.10).
Therefore, p must be a singular point on S if d ≤ 4. �

3. Degree 3 or higher

In this section, we shall prove Theorems 1.4 and 1.5. Let S be a Du Val del Pezzo surface over

k of degree d ≥ 3 and let σ : S̃ → S be the minimal resolution over k, so that S̃ is a weak del

Pezzo surface. Hence, S̃ is a k-form of the Hirzebruch surface F2 of degree 2 or there exists the

birational morphism S̃k → P2
k
over k. In particular, we can explicitly observe the configuration

of (−1)-curves and (−2)-curves on S̃k (see [3, 7] or [9, §§8.4–8.6 and §§9.2]).

3.1. Classification of Du Val del Pezzo surfaces of Picard rank one. The purpose of
this subsection is that we shall classify Du Val del Pezzo surfaces of Picard rank one and of
degree ≥ 3.

Lemma 3.1. If there exists a (−1)-curve E on S̃k, which does not meet any (−2)-curve on

S̃k, such that either E is defined over k or the Gal(k/k)-orbit of E is a disjoint union, then
ρk(S) > 1.

Proof. We shall take this (−1)-curve E. By assumption, the direct image of the Gal(k/k)-orbit
of E via σ can be contracted defined over k. Hence, there exists a blow-down τ : S → S′ over
k, so that ρk(S) > 1. �

Lemma 3.2. Assume that any (−1)-curve and (−2)-curve on S̃k are defined over k, respectively.

If the number of all (−2)-curves on S̃k is less than 9− d, then ρk(S) > 1.

Proof. Indeed, we obtain ρk(S) > (10 − d) − (9 − d) = 1 since ρk(S̃) = ρk(S̃k) = 10 − d and

ρk(S̃)− ρk(S) < 9− d by assumption. �

We shall view explicitly to these results of Lemmas 3.1 and 3.2 combined with the classification
of weak del Pezzo surfaces of degree ≥ 3 (see [3, 7] or [9, §§8.4–8.6 and §§9.2]). The types
satisfying the condition of Lemma 3.1 are as follows (see also Example 3.3):

• d = 7 and A1-type.
• d = 6 and (A1)>-type.
• d = 5 and A2 +A1, A2, A1-type.
• d = 4 and A4, A2 +A1-type.
• d = 3 and D5, A3 + 2A1, A4, A3 +A1, A2 + 2A1, A3, A2 +A1, 2A1-type.

Similarly, the types satisfying the condition of Lemma 3.2 are as follows (see also Example 3.3):

• d = 6 and 2A1-type.
• d = 5 and A3-type.
• d = 3 and A4 +A1-type.
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Example 3.3. (1) Assume that d = 3 and S̃ is of A3 + 2A1-type. Then the dual graph

corresponding to the union of all (−2)-curves and all (−1)-curves on S̃k is as follows:

•••◦
◦ • ◦

•❖
❖❖❖

❖❖

◦ • ◦
•♦♦♦♦♦♦

Here, “◦” means a (−2)-curve and “•” means a (−1)-curve. Hence, there exists a unique

(−1)-curve on S̃k defined over k, which does not meet any (−2)-curve on S̃k. Thus, we
obtain ρk(S) > 1 by Lemma 3.1.

(2) Assume that d = 3 and S̃ is of A4 +A1-type. Then the dual graph corresponding to the

union of all (−2)-curves and all (−1)-curves on S̃k is as follows:

• • ◦ •
◦◦◦

•
◦
•

Here, “◦” means a (−2)-curve and “•” means a (−1)-curve. Hence, each (−1)-curve and

(−2)-curve on S̃k is defined over k. Moreover, the number of all (−2)-curves on S̃k is
less than 9− 3 = 6. Thus, we obtain ρk(S) > 1 by Lemma 3.2.

Thus, we do not have to deal with these types. Furthermore, the following two lemmas hold:

Lemma 3.4. Assume that d = 5 and S̃ is of 2A1-type, then ρk(S) > 1.

Proof. Note that the dual graph corresponding to the union of all (−2)-curves and all (−1)-
curves meeting a (−2)-curve, on S̃k is as follows:

• ◦ • ◦ •
Here, “◦” means a (−2)-curve and “•” means a (−1)-curve. Hence, we obtain a birational

morphism τ : S̃ → P2
k over k such that ρk(S̃) ≥ 2 + ρk(P

2
k) = 3. If ρk(S̃) ≥ 4, then we see

ρk(S) ≥ 2 by ρk(S̃) ≤ ρk(S) + 2. If ρk(S̃) = 3, then we see ρk(S) = 2 since ρk(S̃) = ρk(S) + 1
by construction of τ . �

Lemma 3.5. Assume that d = 4. If S̃ is of (A3)> or (2A1)>-type, then ρk(S) > 1.

Proof. Note that the dual graph corresponding to the union of all (−2)-curves and all (−1)-
curves meeting a (−2)-curve on S̃k is as follows according to types of S̃:

•
◦ ◦

•
◦
•

◦ • ◦
•❣❣❣❣❣
•❲❲❲

❲❲
• ❲❲❲❲❲
• ❣❣❣❣

❣

Here, “◦” means a (−2)-curve and “•” means a (−1)-curve. We consider two cases separately:

(A3)>-type: In this case, we obtain a birational morphism τ : S̃ → F1 over k such that

ρk(S̃) ≥ 2+ρk(F1) = 4. If ρk(S̃) ≥ 5, then we see ρk(S) ≥ 2 by ρk(S̃) ≤ ρk(S)+3. If ρk(S̃) = 4,

then we see ρk(S) = 2 since ρk(S̃) = ρk(S) + 2 by construction of τ .

(2A1)>-type: In this case, we obtain a birational morphism τ : S̃ → F1 over k such that

ρk(S̃) ≥ 1+ρk(F1) = 3. If ρk(S̃) ≥ 4, then we see ρk(S) ≥ 2 by ρk(S̃) ≤ ρk(S)+2. If ρk(S̃) = 3,

then we see ρk(S) = 2 since ρk(S̃) = ρk(S) + 1 by construction of τ . �

In what follows, we shall consider the remaining cases. For any remaining type of weak del
Pezzo surfaces, there exists certainly a Du Val del Pezzo surface S over k with ρk(S) = 1 such

that its minimal resolution S̃ is of this type. Then we see that the Picard number ρk(S̃) is as

in Table 1 (resp. 2) according to the type of S̃. Here, Table 1 (resp. Table 2) summarizes all
types that Sk admits (resp. does not admit) a singular point, which is k-rational.
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Table 1. Types of S̃ in Theorems 1.4 and 1.5 (I)

d
Type

n◦ Dual graph d
Type

n◦ Dual graph
ρk(S̃) ρk(S̃)

8
A1

9◦
◦
M

6
A2 +A1

1◦ ◦ L
•◦◦

2 4

6
A2

6◦ ◦
F
◦
M

• ❖❖
• ♦♦ 6

(A1)<
1◦ ◦ L

• ❖❖•
• ♦♦3 2

5
A4

1◦
◦◦◦ •
◦ L

4
D5

1◦
◦◦◦ ◦ •
◦ L5 6

4
A3 + 2A1

10◦
◦
• ◦

F1
◦
M
◦
F2
•
◦

4
D4

6◦ ◦
F

◦ ❖❖•
◦ ♦♦•

◦
M4 or 6 4

4
A3 +A1

2◦ ◦
L1

• ◦ ◦ ◦
L2

•♦♦
•❖

❖ 4
A2 + 2A1

4◦
◦ • ◦

F1

◦
F2

• ◦
5 3

4
4A1

8◦
◦
M

◦ • ◦
C
• ◦

4
(A3)<

10◦ ◦
F1

◦
M
◦
F2

•♦♦
•❖❖

• ❖❖
• ♦♦4 or 5 3 or 4

4
3A1

5◦
◦ • ◦

C
• ◦

4
A2

4◦ ◦
F1

◦
F2

•♦♦
•❖❖

• ❖❖
• ♦♦3 2

4
(2A1)<

8◦ ◦
M

◦
C

•♦♦
•❖❖

• ❖❖
• ♦♦ 4

A1
5◦ ◦

C

•♦♦
•❖❖

• ❖❖
• ♦♦3 2

3
E6

1◦
◦◦◦ ◦ ◦ ◦

•◦ L
3

A5 +A1
2◦

◦◦
L1

◦ ◦ ◦
L2

•
◦•7 7

3
3A2

2◦
•◦◦
◦L1 ◦L2

• ◦ ◦
3

A5
2◦ ◦

L1

◦
•
◦ ◦ ◦

L2

•♦♦
•❖❖4 or 7 6

3
2A2 +A1

3◦
◦◦
• ◦

Q
•
◦ ◦

3
D4

1◦ ◦ L
◦ ❖❖•
◦•
◦ ♦♦•4 3

3
2A2

7◦ ◦
M
◦
F
• ◦ ◦

C
•
•❖❖
•♦♦

3
4A1

3◦ ◦ Q
• ❖❖◦
•◦
• ♦♦◦5 3

3
A2

2◦ ◦
L1

◦
L2

•♦♦ •
•❖

❖
• ❖❖•
• ♦♦ 3

A1
3◦ ◦

Q

•♦♦ •
•❖

❖
• ❖❖•
• ♦♦2 or 3 2

Table 2. Types of S̃ in Theorems 1.4 and 1.5 (II)

d Type ρk(S̃) V d Type ρk(S̃) V d Type ρk(S̃) V

4 4A1 2 or 3 S8 4 (2A1)< 2 W4 3 3A2 2 S6

3 2A2 3 W4 3 4A1 2 S9 3 3A1 2 S6
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Now, we will present the remark of Tables 1 and 2.

For a weak del Pezzo surface S̃ such that the triplet (d,Type, ρk(S̃)) is one of the list in Table
1, “n◦” and “Dual graph” in Table 1 present the explicit construction a birational morphism

τ : S̃ → V , where V is defined by the following according to the number of n◦:

• V is a k-form of P2
k
, i.e., Vk ≃ P2

k
, if n◦ = 1◦, 2◦ or 3◦.

• V is a k-form of P1
k
× P1

k
, i.e., Vk ≃ P1

k
× P1

k
, if n◦ = 4◦ or 5◦.

• V is a k-form of F2, i.e., Vk ≃ F2, if n
◦ = 6◦, 7◦, 8◦, 9◦ or 10◦.

Moreover, “Dual graph” in Table 1 is a dual graph corresponding to the union of all (−2)-curves
and some (−1)-curves on S̃k, which is clearly defined over k, where “◦” means a (−2)-curve
and “•” means a (−1)-curve. The birational morphism τ is then defined by the compositions
of the successive contractions of the (−1)-curves corresponding to all vertices • in the dual
graph in Table 1 and that of the proper transform of the branch components such that all
curves corresponding to vertices with no label in the dual graph in Table 1 are contracted by

τ , according to the type of S̃. Note that, by construction, τ is defined over k. This birational
morphism τ will be used for the explicit construction of cylinders in S in §§3.2.

Similarly, for a weak del Pezzo surface S̃ such that the triplet (d,Type, ρk(S̃)) is one of the

list in Table 2, there exists a birational morphism τ : S̃ → V over k such that V is that as in
Table 2. Here, in Table 2, Sd′ means a smooth del Pezzo surface of degree d′ with ρk(Sd′) = 1
andW4 means a weak del Pezzo surface of degree 4 and of (2A1)<-type with ρk(W4) = 2. Notice
that W4 is k-minimal by Proposition 2.7.

The following example presents how to determine the value of ρk(S̃) according to types of
weak del Pezzo surfaces. By the argument in this example or the argument similar, the lists of
Tables 1 and 2 are constructed.

Example 3.6. Assume that ρk(S) = 1, d = 3 and S̃ is of 4A1-type. Then we shall show that

ρk(S̃) is equal to 2 or 3 (see also Tables 1 and 2). We will consider whether Sk admits a singular
point of type A1, which is k-rational or not, in what follows.

Sk does not admit any singular point of type A1 which is k-rational: It is known that S̃k
can be constructed by the blow-up at the intersection points of four lines in a general linear

position on P2
k
(see [9, §§9.2]). Notice that the union of six (−1)-curves on S̃k corresponding

to these points is defined over k, so is this blow-up. In other words, there exists the blow-up

τ : S̃ → S9 over k at the intersection points {xi,j}1≤i<j≤4 of four lines L1, . . . , L4 in a general
linear position on P2

k
such that the union of these lines is defined over k, where S9 is a k-form of

P2
k
and xi,j is the intersection point on Li and Lj. Supposing that ρk(S̃)− ρk(S) ≥ 2, without

loss of generality, L1 and L2 (resp. L3 and L4) are exchanged by the Gal(k/k)-action. Namely,

ρk(S̃)− ρk(S) = 2. Since x1,2 and x3,4 are k-rational points, we see ρk(S̃)− ρk(S9) ≥ 3. Thus,

we obtain 1 = ρk(S) ≥ 2, which is absurd. Thus, we see ρk(S̃) = 2.
Sk admits a singular point of type A1 which is k-rational: By assumption, we can take the

(−2)-curveM on S̃k, which is defined over k. Then we can take the birational morphism τ : S̃ →
V , which is the compositions of the successive contractions of the (−1)-curves corresponding to
all vertices • in the dual graph in Table 1 and that of the proper transform of the branch
components such that all curves corresponding to vertices with no label in the dual graph in
Table 1 are contracted by τ , where V is a k-form of P2

k
. Note that, by construction, τ is defined

over k. Put m := ρk(S̃)− ρk(S). By construction of τ , we see ρk(S̃)− ρk(V ) = 2(m− 1). Thus,

we obtain ρk(S̃) = 3 because of ρk(S̃) = m − 1 = 2(m − 1) − 1 by ρk(S) = ρk(V ) = 1. This

means that all (−2)-curves except for M on S̃k are exchanged by the Gal(k/k)-action.

3.2. Proof of Theorems 1.4 and 1.5. In this subsection, we shall show Theorems 1.4 and
1.5. With the notation as above, assume further that ρk(S) = 1.
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At first, we shall show the “only if” part in Theorem 1.5. Assume that d is equal to 3 or
4 and S contains a cylinder, say U ≃ A1

k × Z. The closures in S of fibers of the projection
prZ : U ≃ A1

k ×Z → Z yields a linear system, say L , on S. By Lemma 2.15, Bs(L ) consists of
only one singular point on S, which is k-rational, say p. In order to prove the “only if” part in
Theorem 1.5, we shall show that the singularity of p is not type A++

1 on S.

Lemma 3.7. Let the notation and the assumptions be the same as above. If the singular point
p is of type A1 on Sk, then p is not of type A++

1 on S.

Proof. Since Uk is smooth, Ũ := σ−1(U) ≃ U is a cylinder on S̃. The closures in S̃ of fibers of the

projection prZ : Ũ ≃ A1
k × Z → Z yields a linear system, say L̃ , on S̃. By the assumption, the

reducible exceptional locus over k of the minimal resolution at p consists of only one (−2)-curve,
sayM . Notice thatM is defined over k. By construction of L̃ , we see that a general member of

L̃k does not meet any (−2)-curve other thanM on S̃k. Hence, we can write L̃ ∼Q a(−KS̃
)−bM

for some a, b ∈ Q. Noting that the degree d of S is equal to 3 or 4, we have (L̃ )2 = da2−2b2 6= 0

because of a, b ∈ Q. Thus, Bs(L̃ ) 6= ∅. In particular, Bs(L̃ ) consists of exactly one k-rational
point lying on M . Thus, we obtain M(k) 6= ∅, which implies that p is not of type A++

1 on S. �

By Lemma 3.7, this completes the proof of the “only if” part in Theorem 1.5.
Next, in order to show Theorem 1.4 and the “if” part in Theorem 1.5, we shall assume that

Sk has a singular point, which is k-rational, such that it is not of type A++
1 on S if d is equal

to 3 or 4. By using Table 1, we can construct the birational morphism τ : S̃ → V as in §§3.1.
Let N be the divisor consisting of the union of all (−2)-curves on S̃k and let E be the reduced
exceptional divisor of τ . Then the support Supp(N + E) corresponds to the dual graph as in

Table 1 according to the type of S̃. Noting that the number of n◦ is determined depending on

the type of S̃ by using Table 1, we shall construct a cylinder Ũ on S̃ according to the number
of n◦:
n◦ = 1◦: In this case, we see that V ≃ P2

k and the image of the vertex with a label written L

via τ is a line on V ≃ P2
k, say L. Put Ũ := S̃\Supp(N + E). Then we see Ũ ≃ V \L ≃ A2

k.
n◦ = 2◦: In this case, we see that V ≃ P2

k and the images of two vertices with labels written

L1 and L2 via τ are distinct two lines on V ≃ P2
k, say L1 and L2. Put Ũ := S̃\Supp(N + E).

Then Ũ ≃ V \(L1 ∪L2) ≃ A1
k ×C(1). Furthermore, Ũ ≃ A1

k ×A1
∗,k only if L1 and L2 are defined

over k.
n◦ = 3◦: In this case, V is a k-form of P2

k
. Note that S has a singular point of type A+

1 by the

configuration of curves in S̃k and assumption. Hence, S̃k has a k-rational point lying on Supp(N),

so does V . Thus, V ≃ P2
k by Lemma 2.6. Meanwhile, the image of the vertex with a label written

Q via τ is an irreducible conic on V ≃ P2
k, say Q. Notice that Q admits a k-rational point, so that

Q ≃ P1
k by Lemma 2.6. Let L be a line on V such that L and Q tangentially meet at a general

k-rational point. Noting that τ−1
∗ (L) is defined over k, set Ũ := S̃\Supp(N+E+τ−1

∗ (L)). Then

Ũ is certainly the cylinder on S̃ since Ũ ≃ V \(Q ∪ L) ≃ A1
k × A1

∗,k.

n◦ = 4◦: In this case, V is a k-form of P1
k
× P1

k
. Note that two curves corresponding to

the vertices with labels written F1 and F2 meet transversely at a point. Since this point is a
k-rational point, so is the image, say x, via τk. Moreover, the images of two vertices with labels
written F1 and F2 via τk are distinct two curves such that they pass through x and are closed

fibers of the first and second projection Vk ≃ P1
k
× P1

k
→ P1

k
, say F1 and F2, respectively. Note

that the union F1 + F2 is defined over k. Set Ũ := S̃\Supp(N + E). Then Ũ is certainly the

cylinder on S̃ since Ũ ≃ V \(F1 ∪ F2) ≃ A2
k (see [10, Proposition 12]).

n◦ = 5◦: In this case, V is a k-form of P1
k
× P1

k
. Namely, Pic(Vk) = Z[F1]⊕ Z[F2], where F1

and F2 are general fibers of the first and second projection Vk ≃ P1
k
× P1

k
→ P1

k
, respectively.

Meanwhile, the image of the vertex with a label written C via τk is a geometrically rational
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curve, say C, with C ∼ F1+F2. Note that S has a singular point of type A+
1 by the assumption.

Hence, Supp(N) admits a k-rational point, say p̃, so does C. By Lemma 2.13, V contains a

cylinder, whose boundary includes C. We shall take Ũ to be the pullback of this cylinder by τ .

Then Ũ is a cylinder on S̃ satisfying Ũ ∩ Supp(N + E) = ∅.
n◦ = 6◦: In this case, we see that V ≃ F2 and the images of two vertices with labels written

M and F via τ are the minimal section and a closed fiber of the P1-bundle V ≃ F2 → P1
k, say

M and F , respectively. Set Ũ := S̃\Supp(N + E). Then Ũ is certainly the cylinder on S̃ since

Ũ ≃ V \(M ∪ F ) ≃ A2
k.

n◦ = 7◦: In this case, V is a k-form of F2. Note that Sk has a singular point of type A2, which

is k-rational, by the configuration of curves on S̃k and assumption. Hence, S has a k-rational
point lying on Supp(N), so does V . Thus, V ≃ F2 by using Lemma 2.6. Meanwhile, the images
of two vertices with labels writtenM and F are those as in 6◦, sayM and F , moreover, the image
of the vertex with a label written C via τ is a rational curve on V , say C, with C ∼M +2F . By

Lemma 2.14, V contains a cylinder, whose boundary includes M ∪F ∪C. We shall take Ũ to be

the pullback of this cylinder by τ . Then Ũ is a cylinder on S̃ satisfying Ũ ∩ Supp(N + E) = ∅.
n◦ = 8◦: In this case, V is a k-form of F2. Note that S has a singular point of type A+

1 by

the configuration of curves on S̃k and assumption. Thus, V ≃ F2 by an argument similar to the
case of 7◦. Moreover, we can assume that the image of the vertex with a label written M via
σ is a singular point of type A+

1 . Meanwhile, the images of two vertices with labels written M
and C via τ are those as in 7◦, say M and C, respectively. Then C admits a k-rational point.

By Lemma 2.14, V contains a cylinder, whose boundary includes M ∪C. We shall take Ũ to be

the pullback of this cylinder by τ . Then Ũ is a cylinder on S̃ satisfying Ũ ∩ Supp(N + E) = ∅.
n◦ = 9◦: In this case, V = S̃ and V is a k-form of F2. Hence, S̃ contains a cylinder Ũ , so

that Ũ ∩ Supp(N) = ∅ (see [28, Corollary 4.5]).
n◦ = 10◦: In this case, V is a k-form of F2 and the images of the vertices with labels written

M and Fi via τ are a k-form of the minimal section and k-forms of closed fibers of the P1-bundle
Vk ≃ F2 → P1

k
, say M and Fi, respectively. Then V contains a cylinder, whose boundary

includesM ∪F1∪F2 (see [28, Corollary 4.5]). We shall take Ũ to be the pullback of this cylinder

by τ . Then Ũ is a cylinder on S̃ satisfying Ũ ∩ Supp(N + E) = ∅.
For all cases, we obtain a cylinder Ũ on S̃ such that Ũ ∩ Supp(N) = ∅. Therefore, S contains

the cylinder σ(Ũ ) ≃ Ũ . This completes the proof of Theorem 1.4 and the “if” part in Theorem
1.5.

Remark 3.8. We shall state some remarks on the above argument.

(1) In these cases n◦ = 1◦, 4◦ or 6◦, then S always contains the affine plane A2
k (compare

the fact that the Du Val del Pezzo surface over C with ρC(S) = 1 and of degree d ≥ 3
contains C2 if and only if the pair of the degree and the singularities of this surface is
(8, A1), (6, A2 +A1), (5, A4), (4,D5) or (3, E6), see [22]).

(2) In these cases n◦ = 9◦ or 10◦, then S̃ need not to have a k-rational point, where note that

S̃ has a k-rational point if and only if V is a trivial k-form. However, S always contains
a cylinder, say U ≃ A1

k × Z (compare the fact that any smooth del Pezzo surface over
k with ρk(S) = 1 containing a cylinder admits k-rational points, see [10]). This implies
that Z need not be k-rational.

4. Divisors on weak del Pezzo surfaces

Let S be a Du Val del Pezzo surface over k and let σ : S̃ → S be the minimal resolution over
k, so that S̃ is a weak del Pezzo surface over k. In this section, we will study the property of

some Q-divisors on S̃k and look for some (−1)-curves on S̃k, which are Q-linearly equivalent to
some divisors generated by the anti-canonical divisor and some (−2)-curves.
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4.1. Properties of Q-divisors composed of (−2)-curves. In this subsection, let x be a
singular point of type An, D5 or E6 on Sk, which is k-rational, let M1, . . . ,Mn be the irreducible

components of the exceptional set on S̃k by the minimal resolution at x on Sk. Assume that the
dual graph of

∑n
j=1Mj is the following graph according to the singularity type of x on Sk:

• Type An:

◦
M1

◦
M2

· · · ◦
Mn(4.1)

• Type D5:

◦M1

◦❖
❖❖❖

❖❖ M3
◦
M4

◦
M5

◦ ♦♦
♦♦♦

♦

M2

(4.2)

• Type E6:

◦
M1

◦
M3

◦❖
❖❖❖

❖❖ M5
◦
M6

◦ ♦♦
♦♦♦

♦M4
◦
M2

(4.3)

Let M be a Q-divisor on S̃k, which is generated by M1, . . . ,Mn, so that:

M =

n∑

j=1

bjMj

for some b1, . . . , bn ∈ Q.

Lemma 4.1. Assume that the singular point x is of type An on Sk. Let j0 be an integer with
1 ≤ j0 ≤ n. If (−M ·Mj) = δj0,j, then we have:

M =
n− j0 + 1

n+ 1

j0∑

j=1

jMj +
j0

n+ 1

n−j0∑

j=1

jMn−j+1

and:

(M)2 = −(n− j0 + 1)j0
n+ 1

.

Proof. For all cases, we can easily show because it is enough to directly compute some intersection
numbers. �

In Lemma 4.1, if (−M ·Mj) = δj0,j, then the value of (M)2 is explicitly summarized in Table
3 depending on the values of n and j0:

Lemma 4.2. Assume that the singular point x is of type D5 on Sk.

(1) If (−M ·Mj) = δ1,j + δ2,j , then we have:

M = 2M1 + 2M2 + 3M3 + 2M4 +M5

and (M)2 = −4.
(2) If (−M ·Mj) = δ1,j , then we have:

M =
5

4
M1 +

3

4
M2 +

3

2
M3 +M4 +

1

2
M5

and (M)2 = −5
4 .
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Table 3. The value of (M)2 in Lemma 4.1

n\j0 1 2 3 4 5 6 7 8

1 −1
2

2 −2
3 −2

3

3 −3
4 −1 −3

4

4 −4
5 −6

5 −6
5 −4

5

5 −5
6 −4

3 −3
2 −4

3 −5
6

6 −6
7 −10

7 −12
7 −12

7 −10
7 −6

7

7 −7
8 −3

2 −15
8 −2 −15

8 −3
2 −7

8

8 −8
9 −14

9 −2 −20
9 −20

9 −2 −14
9 −8

9

(3) If (−M ·Mj) = δ3,j , then we have:

M =
3

2
M1 +

3

2
M2 + 3M3 + 2M4 +M5

and (M)2 = −3.
(4) If (−M ·Mj) = δ4,j , then we have:

M =M1 +M2 + 2M3 + 2M4 +M5

and (M)2 = −2.
(5) If (−M ·Mj) = δ5,j , then we have:

M =
1

2
M1 +

1

2
M2 +M3 +M4 +M5

and (M)2 = −1.
Proof. For all cases, we can easily show because it is enough to directly compute some intersection
numbers. �

Lemma 4.3. Assume that the singular point x is of type E6 on Sk.

(1) If (−M ·Mj) = δ1,j + δ2,j , then we have:

M = 2M1 + 2M2 + 3M3 + 3M4 + 4M5 +M6

and (M)2 = −4.
(2) If (−M ·Mj) = δ3,j + δ4,j , then we have:

M = 3M1 + 3M2 + 6M3 + 6M4 + 8M5 + 4M6

and (M)2 = −12.
(3) If (−M ·Mj) = δ1,j , then we have:

M =
4

3
M1 +

2

3
M2 +

5

3
M3 +

4

3
M4 + 2M5 +M6

and (M)2 = −4
3 .

(4) If (−M ·Mj) = δ3,j , then we have:

M =
5

3
M1 +

4

3
M2 +

10

3
M3 +

8

3
M4 + 4M5 + 2M6

and (M)2 = −10
3 .

(5) If (−M ·Mj) = δ5,j , then we have:

M = 2M1 + 2M2 + 4M3 + 4M4 + 6M5 + 3M6

and (M)2 = −6.
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(6) If (−M ·Mj) = δ6,j , then we have:

M =M1 +M2 + 2M3 + 2M4 + 3M5 + 2M6

and (M)2 = −2.

Proof. For all cases, we can easily show because it is enough to directly compute some intersection
numbers. �

Lemma 4.4. Assume that (−K
S̃
)2 = 1 and one of the following conditions holds:

(1) M =
∑n

j=1Mj and the dual graph of M is the same as in (4.1).

(2) n = 5, M = M1 +M2 + 2M3 + 2M4 +M5 and the dual graph of M is the same as in
(4.2).

(3) n = 6, M =M1 +M2 + 2M3 + 2M4 + 3M5 + 2M6 and the dual graph of M is the same
as in (4.3).

Then there exists a (−1)-curve E on S̃k such that E ∼ −K
S̃
k

−M and E is defined over k.

Proof. It is easily seen that (−K
S̃
k

−M)2 = −1 and (−K
S̃
k

−M · −K
S̃
k

) = 1. Moreover, in

the cases of (1), (2) and (3), we obtain (−K
S̃
k

−M ·Mj) = δj,1 + δj,n, (−KS̃
k

−M ·Mj) = δj,4

and (−K
S̃
k

−M · Mj) = δj,6, respectively (cf. Lemmas 4.1, 4.2(4) and 4.3(6)). Meanwhile,

(−K
S̃
k

−M ·M ′) = 0 for every (−2)-curve M ′ on S̃k other than the irreducible components of

M . Hence, by Lemma 2.8, there exists a (−1)-curve E on S̃k such that E ∼ −K
S̃
k

−M . In what

follows, we shall show that E is defined over k. Suppose that there exists an irreducible curve E′

other than E on S̃k such that E and E′ lie in the same Gal(k/k)-orbit. Then E′ ∼ −K
S̃
k

−M
since the divisor −K

S̃
k

−M is defined over k by the configuration of irreducible components of

M . Hence, we have 0 ≤ (E · E′) = (−K
S̃
k

−M)2 = −1, which is absurd. Thus, E must be

defined over k. This completes the proof. �

Lemma 4.5. Assume that b1, . . . , bn ∈ Z. Then the following assertions hold:

(1) (M)2 is a non-positive even integer.
(2) If the singular point x is of type An on S and bj ≥ 1 for any j, then (M)2 ≤ −2,

moreover, (M)2 = −2 if and only if bj = 1 for any j = 1, . . . , n.
(3) If the singular point x is of type An on S with n ≥ 3, b1, bn ≥ 1 and bj ≥ 2 for any

j = 2, . . . , n − 1, then (M)2 ≤ −4, moreover, (M)2 = −4 if and only if b1, bn = 1 and
bj = 2 for any j = 2, . . . , n − 1.

(4) If the singular point x is of type An on S with n ≥ 5, b1, bn ≥ 1, b2, bn−1 ≥ 2 and bj ≥ 3
for any j = 3, . . . , n−2, then (M)2 ≤ −6, moreover, (M)2 = −6 if and only if b1, bn = 1,
b2, bn−1 = 2 and bj = 3 for any j = 3, . . . , n− 2.

(5) If the singular point x is of type D5 on Sk and b1, b2, b4 ≥ 2, b3 ≥ 3 and b5 ≥ 1, then

(M)2 ≤ −4, moreover, (M)2 = −4 if and only if b1, b2, b4 = 2, b3 = 3 and b5 = 1.
(6) If the singular point x is of type E6 on Sk and b1, b2, b6 ≥ 2, b3, b4 ≥ 3 and b5 ≥ 4, then

(M)2 ≤ −4, moreover, (M)2 = −4 if and only if b1, b2, b6 = 2, b3, b4 = 3 and b5 = 4.

Proof. In (1), since any irreducible component of M is a (−2)-curve and any coefficient of M
is an integer, it is clear that (M)2 is an even number. We shall show that (M)2 is non-positive
according to the singularity type of x on Sk:

• Type An: we have:

(M)2 = −(b21 + b2n)−
n−1∑

j=1

(bj − bj+1)
2.(4.4)
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• Type D5: we have:

(M)2 = −1

2
(2b1 − b3)2 −

1

2
(2b2 − b3)2 − (b3 − b4)2 − (b4 − b5)2 − b25.(4.5)

• Type E6: we have:

(M)2 = −1

2
(2b1 − b2)2 −

1

2
(2b2 − b4)2

− 1

6
(3b3 − 2b5)

2 − 1

6
(3b4 − 2b5)

2 − 1

6
(2b5 − 3b6)

2 − 1

2
b26.

(4.6)

Therefore, for all cases, we see that (M)2 is non-positive. This completes the proof of (1).
In (2), (3) and (4), it is easy to show by (4.4).
In (5), if b5 > 1 then it is easy to see (M)2 < −4 by assumption and (4.5). Hence, we assume

b5 = 1 in what follows. Now, if b4 > 2, then we also see (M)2 < −4 by an argument similar to
the above. Hence, we also assume b4 = 2 in what follows. By sequentially replacing b4 in the
argument by b3, b2 and b1, we obtain the assertion.

In (6), it can be shown by an argument similar to (5) using (4.6) instead of (4.5). �

4.2. Construction of (−1)-curves on weak del Pezzo surface. In this subsection, let d be

the degree of S̃, let x1, . . . , xr′ be all singular points on Sk let Mi,1, . . . ,Mi,n(i) be all irreducible

components of the exceptional set σ−1(xi) for i = 1, . . . , r′. Here, we assume that x1 ∈ Sk is of
type An(1) with n(1) ≥ 2 (resp. either x1 ∈ Sk is of type An(1) with n(1) ≥ 4 or of type D5 or
E6) if d = 2 (resp. d = 1). Moreover, letting r be a positive integer with r ≤ r′, we also assume

that the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is one of the following graphs (4.7), (4.8) and (4.9):

◦
Mi,1

◦
Mi,2

· · · ◦
Mi,n(i)

for i = 1, . . . , r
(4.7)

◦M1,1

◦❖
❖❖❖

❖❖ M1,3
◦

M1,4
◦

M1,5
◦

M2,1
◦

M2,2
· · · ◦

M2,n

◦ ♦♦
♦♦♦

♦

M1,2

(4.8)

◦
M1,1

◦
M1,3

◦❖
❖❖❖

❖❖ M1,5
◦

M1,6
◦

M2,1
◦

M2,2
· · · ◦

M2,n

◦ ♦♦
♦♦♦

♦M1,4
◦

M1,2

(4.9)

Here, in (4.7), we shall assume (d, r) = (2, 2), (2, 1), (1, 3), (1, 2) or (1, 1). Furthermore, in (4.8)
(resp. (4.9)), we immediately obtain r = 2 and n(1) = 5 (resp. n(1) = 6) by the configuration
of curves, moreover, we shall assume d = 1 and put n(2) := n.

Let D be the divisor on S̃k given by one of the lists in Table 4 according to the above cases

of the dual graph and the pair (d, r). Here, the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.7)

(resp. (4.8), (4.9)) if the case of D is either (a), (b), (c), (d) or (e) (resp. (f), (g)). Moreover,
we assume n(1) ≥ 4 (resp. n(1) ≥ 6) if the case of D is either (b) or (d) (resp. (e)).

For all cases, we see (D)2 = −2 and (D · −K
S̃
k

) = 2 by construction, moreover, we have the

value of (D ·Mi,j), which is the following according to the cases:

(a): (D ·Mi,j) = δj,1 + δj,n(i) for i = 1, 2.
(b): (D ·Mi,j) = δj,2 + δj,n(1)−1.
(c): (D ·Mi,j) = δj,1 + δj,n(i) for i = 1, 2, 3.
(d): (D ·Mi,j) = δi,1(δj,2 + δj,n(1)−1) + δi,2(δj,1 + δj,n(2)) for i = 1, 2.
(e): (D ·Mi,j) = δj,3 + δj,n(1)−2.
(f): (D ·Mi,j) = δi,1(δj,1 + δj,2) + δi,2(δj,1 + δj,n) for i = 1, 2.
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Table 4. Divisor D in §§4.2

Case d r Irreducible decomposition of D

(a) 2 2 (−K
S̃
k

)−∑2
i=1

∑n(i)
j=1Mi,j

(b) 2 1 (−K
S̃
k

) + (M1,1 +M1,n(1))− 2
∑n(1)

j=1 M1,j .

(c) 1 3 2(−K
S̃
k

)−∑3
i=1

∑n(i)
j=1Mi,j

(d) 1 2 2(−K
S̃
k

) + (M1,1 +M1,n(1))− 2
∑n(1)

j=1 M1,j −
∑n(2)

j=1 M2,j

(e) 1 1 2(−K
S̃
k

) + 2(M1,1 +M1,n(1)) + (M1,2 +M1,n(1)−1)− 3
∑n(1)

j=1 M1,j

(f) 1 2 2(−K
S̃
k

)− (2M1,1 + 2M1,2 + 3M1,3 + 2M1,4 +M1,5)−
∑n

j=1M2,j

(g) 1 2 2(−K
S̃
k

)− (2M1,1 + 2M1,2 + 3M1,3 + 3M1,4 + 4M1,5 +M1,6)−
∑n

j=1M2,j

(g): (D ·Mi,j) = δi,1(δj,1 + δj,2) + δi,2(δj,1 + δj,n) for i = 1, 2.

The purpose of this subsection is that we show Proposition 4.9. For the following two lemmas,
we only treat the case (a) since other cases can be shown by a similar argument.

Lemma 4.6. dim |D| ≥ 0.

Proof. By the Riemann-Roch theorem and (D · D − K
S̃
k

) = 0, we have χ(S̃k,OS̃
k

(D)) =

χ(S̃k,OS̃
k

). Moreover, by the Serre duality theorem and the rationality of S̃k, we obtain

h2(S̃k,OS̃
k

(D)) = h0(S̃k,OS̃
k

(K
S̃
k

− D)) = 0. Thus, we have dim |D| = h0(S̃k,OS̃
k

(D)) − 1 ≥
χ(S̃k,OS̃

k

(D))− 1 = χ(S̃k,OS̃
k

)− 1 = 0 because of the rationality of S̃k. �

By Lemma 4.6, there exist two effective divisorsD(1) andD(2) on S̃k such that D ∼ D(1)+D(2)

and each irreducible component C1 (resp. C2) of D(1) (resp. D(2)) satisfies (C1 · −KS̃
k

) > 0

(resp. (C2 · −KS̃
k

) = 0). Note that D(2) is an effective divisor, which consists of (−2)-curves on
S̃k, since S̃k is a weak del Pezzo surface.

Lemma 4.7. (D(1))2 ≤ −2.

Proof. By D(1) ∼ D−D(2), we can write D(1) ∼ (−K
S̃
k

)−∑2
i=1

∑n(i)
j=1 bi,jMi,j −M ′, where bi,j

is an integer for i = 1, 2 and j = 1, . . . , n(i), and M ′ is an effective divisor consisting of (−2)-
curves {Mi,j}r<i≤r′, 1≤j≤n(i). By D

(2) ∼ D−D(1), we have D(2) ∼∑2
i=1

∑n(i)
j=1(bi,j−1)Mi,j+M

′.

Hence, we see bi,j ≥ 1 for i = 1, 2 and j = 1, . . . , n(i) since D(2) is an effective divisor. Thus, we

obtain (D(1))2 ≤ (−K
S̃
k

)2 +
∑2

i=1

(∑n(i)
j=1 bi,jMi,j

)2
≤ 2 + 2 · (−2) = −2 by Lemma 4.5(2). �

Remark 4.8. The proof of Lemma 4.7 uses Lemma 4.5(2). On the other hand, in the case of (b)
(resp. (d), (e), (f), (g)), we should use Lemma 4.5(3) (resp. both (2) and (3), (4), both (2) and
(5), both (2) and (6)) instead of Lemma 4.5(2).

The following proposition is the main result in §4 and will play an important role in §5:

Proposition 4.9. With the notation as above, the following assertions hold:

(1) D satisfies one of the following two conditions:

(A): There exist two (−1)-curves E1 and E2 on S̃k satisfying D(1) = E1 + E2 and (E1 ·
E2) = 0.

(B): There exists a (−1)-curve E on S̃k satisfying D(1) = 2E.

(2) If D satisfies the condition (A), then we have D ∼ D(1).
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(3) We write D(1) ∼ 2
d
(−K

S̃
k

)−∑r′

i=1

∑n(i)
j=1 bi,jMi,j, where each bi,j is a non-negative integer.

Then:
• For any i ≤ r, bi,j 6= 0 for some j.
• For each i, if bi,j 6= 0 for some j, then (E ·Mi,1 + · · ·+Mi,n(i)) = 1.

(4) If D is of the case (f) or (g), then D satisfies the condition (A).

(5) Assume that D satisfies (B), and write E ∼Q
1
d
(−K

S̃
k

) −∑r′

i=1Mi, where Mi is an

effective Q-divisor consisting of Mi,1, . . . ,Mi,n(i). Letting s be the number of Q-divisors
Mi as Mi 6= 0, then s ≤ 2. Hence, if D is of the case (c), then D satisfies the condition
(A).

(6) Assume that D satisfies the condition (A). If any irreducible component E of D(1) is

contained in Q[−K
S̃
k

] ⊕
(⊕r

i=1

⊕n(i)
j=1Q[Mi,j ]

)
, then each n(i) is one of the following

according to the case of D:
• In the case of (a), then {n(1), n(2)} = {5, 2} or {3, 3}.
• In the case of (b), then n(1) = 7.
• In the case of (c), then n(1) = 5 and {n(2), n(3)} = {2, 1}.
• In the case of (d), then (n(1), n(2)) = (7, 1), (5, 2) or (4, 4).
• In the case of (e), then n(1) = 8.
• In the case of (f), then n(2) = 3 (it is clear that n(1) = 5).
• In the case of (g), then n(2) = 2 (it is clear that n(1) = 6).

(7) Assume that D satisfies the condition (B). If the case of D is (a) or (d), i.e., r = 2, then

the irreducible component E of D(1) is contained in Q[−K
S̃
k

] ⊕
(⊕2

i=1

⊕n(i)
j=1Q[Mi,j ]

)

and each n(i) is as follows according to the case of D:
• In the case of (a), then (n(1), n(2)) = (3, 1).
• In the case of (d), then (n(1), n(2)) = (5, 1).

(8) Assume that D satisfies the condition (B). If the case of D is (b) or (e), i.e., r = 1, and

the irreducible component E of D(1) is contained in Q[−K
S̃
k

] ⊕
(⊕n(1)

j=1 Q[M1,j]
)
, then

each n(i) is as follows according to the case of D:
• In the case of (b), then n(1) = 5.
• In the case of (e), then n(1) = 7.

Proof. In (1), note that D(1) consists of at most two irreducible components by (D(1) ·−K
S̃
k

) = 2.

Hence, we see that this assertion follows from Lemma 4.7.
In (2), assuming that D satisfies the condition (A), we have (D(1))2 = −2. Hence, we see that

this assertion follows from Lemma 4.5 according to the case of D (cf. Remark 4.8).
In (3), this proof is a bit long and is needed a technical argument. Hence, we will present this

proof in §§4.3.
In what follows, we present the proof under the assumption that (3) is valid.
In (4), we only treat the case where D is of (f), the other cases are similar and left to the

reader. Suppose on the contrary that D satisfies the condition (B). In other words, there exists

a (−1)-curve E on S̃k such that D(1) = 2E. Then by (3) there uniquely exists j′ ∈ {1, . . . , 5}
and j′′ ∈ {1, . . . , n(2)} such that (E ·M1,j) = δj,j′ and (E ·M2,j) = δj,j′′ , respectively. Since

D(1) is a Z-divisor, j′ 6= 1, 2 by Lemma 4.2. (Note that we shall use Lemma 4.3, when we treat

the case (g) instead of the case (f). ) On the other hand, we write E ∼Q (−K
S̃
k

) −∑r′

i=1Mi,

where Mi is an effective Q-divisor consisting of Mi,1, . . . ,Mi,n(i). Then (Mi)
2 ≤ 0 by using

Lemma 4.5(1), moreover, (M1)
2 ≤ −2 and (M2)

2 < 0 by Lemmas 4.1 and 4.2. Hence, we have
−1 = (E)2 < 1 + (−2) = −1, which is absurd.
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In (5), by the assumption of E, we have:

−1 = (E)2 =
1

d
+

r′∑

i=1

(Mi)
2(4.10)

Here, if Mi 6= 0, we see (Mi)
2 ≤ −1

2 by (3) and Lemmas 4.1, 4.2 and 4.3 (see also Table 3).

Furthermore, (M1)
2 ≤ −2

3 by virtue of n(1) > 1. Hence, we have:

1

d
+

r′∑

i=1

(Mi)
2 ≤ 1

d
− 2

3
− (s− 1) · 1

2
(4.11)

Two formulas (4.10) and (4.11) imply s ≤ 2
d
+ 5

3 . Since s is an integer, we thus obtain s ≤ 2
and s ≤ 3 if d = 2 and d = 1, respectively. In what follows, we consider the case d = 1 and
suppose s = 3. Then we may assume Mi 6= 0 for i = 1, 2, 3. Notice that each singularity on Sk
corresponding to

∑n(i)
j=1Mi,j is of type An(i) for i = 1, 2, 3 by virtue of (1) and (4), moreover, note

n(1) ≥ 4. By looking for the triplet {(M1)
2, (M2)

2, (M3)
2} with (M1)

2+(M2)
2+(M3)

2 = −2 in
Table 3, the triplet is only {−5

6 ,−2
3 ,−1

2}, moreover, n(1) = 5 and {n(2), n(3)} = {2, 1}. Hence,
we may assume:

E ∼Q (−K
S̃
k

)−
5∑

j=1

6− j
6

M1,j −
2∑

j=1

3− j
3

M2,j −
1

2
M3,1.

However, this contradicts that D(1) = 2E is a Z-divisor.

In (6), assume that D satisfies the condition (A) and E ∈ Q[−K
S̃
k

]⊕
(⊕r

i=1

⊕n(i)
j=1Q[Mi,j]

)
.

Hence, we can write E ∼Q
1
2(−KS̃

k

) −∑r
i=1Mi by noticing (E · −K

S̃
k

) = 1, where Mi is an

effective Q-divisor generated by Mi,1, . . . ,Mi,n(i) for i = 1, . . . , r. Then we have:

−1 = (E)2 =
1

d
+

r∑

i=1

(Mi)
2.(4.12)

We shall look for the combination of the values of (M1)
2, . . . , (Mr)

2 such that the equality (4.12)
holds, using directly Table 3 and Lemmas 4.2 and 4.3 according to each case. As an example, we
will explain the case of (a). Note that the equality (4.12) means (M1)

2 + (M2)
2 = −3

2 by d = 2
and r = 2. Since (D ·Mi,j) = δj,1 + δj,n(i), we may assume that (E1 ·Mi,j) = δj,1 for i = 1, 2 by
virtue of (2) and (3). Hence, we shall look at the row of j0 = 1 in Table 3. Then it is easy to
see that the equality (4.12) holds if and only if {(M1)

2, (M2)
2} = {−5

6 ,−2
3} or {−3

4 ,−3
4}. This

means that {n(1), n(2)} = {5, 2} or {3, 3} by Table 3. The other cases are left to the reader
because these can be shown by an argument similar to the above argument.

In (7), assume that D satisfies the condition (B), in other words, there exists a (−1)-curve
E on S̃k such that D(1) = 2E. Then E ∈ Q[−K

S̃
k

] ⊕
(⊕2

i=1

⊕n(i)
j=1Q[Mi,j]

)
by virtue of (3)

and (5). In particular, we write E ∼Q (−K
S̃
k

) −∑2
i=1Mi, where Mi is an effective Q-divisor

generated by Mi,1, . . . ,Mi,n(i). Hence, we have:

−1 = (E)2 =
1

d
+

2∑

i=1

(Mi)
2.(4.13)

We shall look for the combination of the values of (M1)
2 and (M2)

2 such that the equality (4.13)
holds and |D − 2E| 6= ∅, according to each case. However, this argument can be shown by an
argument similar to (6) and is left to the reader.

In (8), this proof can be shown by an argument similar to (7) and is left to the reader. �

Now, we shall present the following example about the application of Proposition 4.9:
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Example 4.10. With the notation as above, assume further that d = 2 and S̃ is of A5+A2-type.

Let M1,1, . . . ,M1,5, M2,1 and M2,2 be all (−2)-curves on S̃k with the configuration as in (4.7).

Then we shall consider two divisors D1,5 and D3 on S̃k given by:

D1,5 := −KS̃
k

−
5∑

j=1

M1,j −
2∑

j=1

M2,j,

D3 := −KS̃
k

−M1,1 − 2(M1,2 +M1,3 +M1,4)−M1,5.

Notice that D1,5 and D3 are divisors as in (a) and (b) in Table 4, respectively. Hence, since
D1,5 satisfies the condition (A) by Proposition 4.9(1),(2) and (7), there exist two (−1)-curves
E1 and E5 on S̃k such that D1,5 ∼ D

(1)
1,5 := E1 + E5. Moreover, D3 satisfies the condition

either (A) or (B). However, D3 does not satisfy the condition (A). Indeed, otherwise, since

there exist two (−1)-curves E2 and E4 on S̃k such that D3 ∼ D
(1)
3 := E2 + E4. Hence, we

obtain the compositions τ : S̃k → V of successive contractions of E2 + E4, that of the images

of M1,2 +M1,4 and finally that of the images of M1,1 +M1,5 over k, so that the weighted dual

graphs of
∑5

j=1M1,j +
∑2

j=1M2,j +D
(1)
1,5 +D

(1)
3 and its image via τ are as follows, where “◦”,

“•” and “⋄” mean a (−2)-curve, a (−1)-curve and a 0-curve, respectively:

•
E1

◦
M1,1

◦
M1,2

•E2

◦
M1,3

◦
M1,4

•E4

◦
M1,5

•
E5◦ ❥❥❥

❥❥❥
❥❥❥

M2,2

◦
M2,1

◦ ❚❚❚❚❚❚❚❚❚
τ−→ ⋄

τ∗(E1)

◦❣❣❣❣❣❣❣❣❣❣❣❣❣

τ∗(M1,3)

2 ⋄❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

τ∗(E5)◦ ❥❥❥
❥❥❥

❥❥❥

τ∗(M2,2)
◦

τ∗(M2,1)

❚❚❚❚❚❚❚❚❚❚

Then (−KV )
2 = 8 and V contains two (−2)-curves τ∗(M2,1) and τ∗(M2,2). This is a contradic-

tion. Thus, D3 satisfies the condition (B). In other words, there exists a (−1)-curve E3 on S̃k
such that D

(1)
3 = 2E3. In particular, we know (E3 ·Mi,j) = δ1,iδ3,j . Since E1 + E5 and E3 are

defined over k, we see that S̃k contains a union defined over k of curves corresponding to the
following dual graph, where “◦”and “•” mean a (−2)-curve and a (−1)-curve, respectively:

•E1

◦ ❏❏❏❏
M1,1

◦
M1,2

◦
M1,3

•E3

◦
M1,4

◦
M1,5

• t
tt
t

E5

◦
❏❏

❏❏

M2,1 ◦ M2,2

◦tttt

4.3. Proof of Proposition 4.9(3). In this subsection, we shall prove Proposition 4.9(3). With

the notation as in Proposition 4.9(3), notice that E is a (−1)-curve on S̃k by Proposition 4.9(1).

Since D(1) ∼ D −D(2), we can write E ∼Q
1
d
(−K

S̃
k

)−∑r′

i=1Mi, where each Mi is an effective

Q-divisor generated by Mi,1, . . . ,Mi,n(i). In particular, we note Mi 6= 0 for every i = 1, . . . , r.

Lemma 4.11. Let D1 and D2 be two Q-divisors on S̃k generated by Mi,1, . . . ,Mi,n(i). If (D1 ·
Mi,j) = (D2 ·Mi,j) for any j = 1, . . . , n(i), then D1 = D2.

Proof. It is enough to show when we assume D2 = 0. We shall write D1 =
∑n(i)

j=1 bi,jMi,j for
some bi,j ∈ Q. By assumption, we have the following linear simultaneous equation:




(D1 ·Mi,1)
...

(D1 ·Mi,n(i))


 = A




bi,1
...

bi,n(i)


 =




0
...

0


 ,
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whereA is the intersection matrix with respect toMi,1, . . . ,Mi,n(i), i.e., A = ((Mi,j ·Mi,j′))1≤j, j′≤n(i).
Since it is well known that intersection matrix is negative definite ([23]), we obtain bi,j = 0 for
any j = 1, . . . , n(i), which means D1 = 0. �

Lemma 4.12. (E ·Mi,1 + · · · +Mi,n(i)) ≤ 1 for i = 1, . . . , r′.

Proof. Let ∆i,j be the Q-divisor, which is a Q-linear combination of Mi,1, . . . ,Mi,n(i), with

(∆i,j ·Mi,j′) = δj,j′ for j, j
′ = 1, . . . , n(i) on S̃k. Note that such a Q-divisor ∆i,j is certainly

exists and each coefficient of ∆i,j can be determined by Lemmas 4.1, 4.2 and 4.3. In particular,

any coefficient of ∆i,j is less than or equal to −1
2 . Hence, we have (∆i,j · ∆i,j′) ≤ −1

2 for any
j, j′ = 1, . . . , n(i), where the equal sign holds if and only if n(i) = 1. On the other hand, by
Lemma 4.11, we obtain:

Mi = (Mi ·Mi,j)∆i,j = (E ·Mi,j)∆i,j

for any j by virtue of (E−Mi ·Mi,j) = 0. Meanwhile, by using Lemma 4.5(1), we note (Mi)
2 < 0

ifMi 6= 0. Suppose that (E ·Mi,1+· · ·+Mi,n(i)) ≥ 2 for some i ∈ {1, . . . , r′}. Notice (E ·Mi,j) ≥ 0
for any j. If there exists j0 such that (E ·Mi,j0) ≥ 2, then we have:

(E)2 ≤ 1

d
+ (E ·Mi,j0)

2(∆i,j0)
2 ≤ 1− 2 = −1,

furthermore, we see (E)2 < −1 by virtue of n(i) ≥ 2 or both n(i) = 1 and i > 1. This is
absurd as (E)2 = −1. Otherwise, by hypothesis there exist two integers j1 and j2 such that
(E ·Mi,j1) = (E ·Mi,j2) = 1. By virtue of n(i) ≥ 2, we have:

(E)2 ≤ 1

d
+ (∆i,j1)

2 + (∆i,j2)
2 + 2(∆i,j1 ·∆i,j2) < 1− 1

2
− 1

2
− 1 = −1,

which is absurd as (E)2 = −1. �

Lemma 4.13. Assume that D satisfies the condition (B). For i = 1, . . . , r′, (E ·Mi,1 + · · · +
Mi,n(i)) ≥ 1 if Mi 6= 0.

Proof. Suppose (E ·Mi,1+ · · ·+Mi,n(i)) = 0 for some i ∈ {1, . . . , r′}. Then we note (E ·Mi,j) = 0
for any j = 1, . . . , n(i). Hence, we obtain Mi = 0 by Lemma 4.11. �

Proposition 4.9(3) can be shown as follows:

Proof of Proposition 4.9(3). The first assertion of Proposition 4.9(3) follows immediately from
the beginning of §§4.3. Hence, we shall prove the second assertion of this in what follows. In
this proof, we will consider two cases separately:

In the case that D satisfies the condition (A). In other words, there exists a (−1)-curve E′

on S̃k such that D(1) = E + E′ and E 6= E′. Furthermore, we see D ∼ E + E′ by Proposition
4.9(2). By construction of D, we see (E+E′ ·Mi,1+ · · ·+Mi,n(i)) = (D ·Mi,1+ · · ·+Mi,n(i)) = 2.
Hence, we obtain (E ·Mi,1 + · · · +Mi,n(i)) = (E′ ·Mi,1 + · · · +Mi,n(i)) = 1 for i = 1, . . . , r by
Lemma 4.12.

In the case that D satisfies the condition (B). In other words, we can write D(1) = 2E. Hence,
we obtain (E ·Mi,1 + · · ·+Mi,n(i)) = 1 for i = 1, . . . , r by Lemmas 4.12 and 4.13. �

5. Degree 2 or lower

In this section, we shall show Theorem 1.6. Unless otherwise stated, let S be a Du Val del

Pezzo surface over k with ρk(S) = 1 and of degree d ≤ 2 and let σ : S̃ → S be the minimal

resolution over k, so that S̃ is a weak del Pezzo surface of degree d over k.
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5.1. Base locus with respect to cylinder. In this subsection, we shall study the base locus
with respect to a cylinder on S.

Supposing that S contains a cylinder, say U ≃ A1
k × Z, where Z is a smooth affine curve

defined over k, the closures in S of fibers of the projection prZ : U ≃ A1
k×Z → Z yields a linear

system, say L , on S. By Lemma 2.15 we see that Bs(L ) consists of exactly one k-rational

point, say p, which is a singular point on Sk. On the other hand, Ũ := σ−1(U) ≃ U is a cylinder

on S̃ since Uk is smooth. The closures in S̃ of fibers of the projection prZ : Ũ ≃ A1
k × Z → Z

yields a linear system, say L̃ , on S̃. The purpose of this subsection is to show the following
proposition:

Proposition 5.1. With the notation and the assumptions as above, assume further that one of
the following conditions holds:

(1) d = 2 and the singular point p is of type An on Sk but not of type A−
n on S for some

n = 1, . . . , 6.
(2) d = 1 and the singular point p is of type An on Sk but not of type A−

n on S for some
n = 1, . . . , 8.

(3) d = 1 and the singular point p is of type D+
5 on Sk.

(4) d = 1 and the singular point p is of type E+
6 on Sk.

Then Bs(L̃ ) consists of only one k-rational point. In particular, p is not of type A++
n on S

except for only one case (d, n) = (2, 7).

In what follows, we shall prove Proposition 5.1. LetM1, . . . ,Mn be all irreducible components
of the exceptional set over k of σk at p such that the dual graph of M1, . . . ,Mn is that as in
(4.1), (4.2) or (4.3) according to the singularity type of p on Sk. Now, the following two lemmas
hold:

Lemma 5.2. Assume that the singular point p is of type An on Sk. Then:

(1) If d = 2, then there exists a curve C on S̃ such that C ∼ (−K
S̃
) − (M1 + · · · +Mn).

Hence, M1 + · · ·+Mn + C is a cycle.

(2) If d = 1 and n ≥ 3, then there exists a curve C on S̃ such that C ∼ 2(−K
S̃
) − 2(M1 +

· · · +Mn) + (M1 +Mn). Hence, M2 + · · ·+Mn−1 + C is a cycle.

Proof. In (1), let D be the divisor on S̃k defined by D := (−K
S̃
k

) − (M1 + · · · + Mn). By

construction, we have (D)2 = 0 and (D · −K
S̃
k

) = 2. Hence, we see dim |D| ≥ 1 by the

Riemann-Roch theorem. Thus, there exists a curve C on S̃k such that C ∼ D and C is defined
over k. Namely, (C ·Mj) = (D ·Mj) = δj,1 + δj,n. This completes the proof of (1).

In (2), it can be shown by the argument similar to (1). �

Lemma 5.3. Assume that d = 1 and the singular point p is of type D5 on Sk. Then there

exists a curve C on S̃k such that C ∼ 2(−K
S̃
k

) − (2M1 + 2M2 + 3M3 + 2M4 +M5). Hence,

M1 +M2 +M3 + C is a cycle.

Proof. This lemma can be shown by the argument similar to Lemma 5.2. �

Proof of Proposition 5.1. Let L̃ be a general member of L̃ . Since Bs(L ) = {p}, we see that

L̃ meets Mi for some 1 ≤ i ≤ n. By construction of L̃ , if L̃ meets two distinct irreducible

components Mi and Mj, then Bs(L̃ ) = Mi ∩Mj 6= ∅. In what follows, we thus assume that L̃
meets exactly one irreducible component, say Mi0 . Notice that Mi0 is defined over k. Let a and

b be two positive rational numbers such that da = (L̃ · −K
S̃
) and 2b = (L̃ ·Mi0).

Now, we notice that Bs(L̃ ) 6= ∅ if (L̃ )2 6= 0. Hence, we shall show (L̃ )2 6= 0 according to
the conditions (1)–(4) in Proposition 5.1 in what follows:
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In (1) or (2), by the configuration of a dual graph of M1 + · · · +Mn, we see that n is odd
and i0 is equal to ⌈n2 ⌉. In particular, Mi0 corresponds to the central vertex in this dual graph.

Thus, by Lemma 4.1, we have L̃ ∼Q a(−KS̃
)−bM , whereM =

∑i0−1
j=1 j(Mj+Mn+j−1)+ i0Mi0 .

Moreover, we obtain (L̃ )2 = da2 − 2i0b
2. Suppose that (L̃ )2 = 0. Note that i0 ≤ 4 because of

n ≤ 8. Hence, we obtain (d, i0) = (1, 2) or (2, 1) since a, b are rational numbers. In particular,

we have a = (3− d)b. However, the curve C on S̃k, which is that as in Lemma 5.2, then satisfies

(L̃ · C) = 0. This implies that the boundary of Ũk contains a cycle, which contradicts Lemma

2.12. Therefore, we see (L̃ )2 6= 0.
In (3), since p is of type D+

5 , note that M1 and M2 lie in the same Gal(k/k)-orbit, on the
other hand, M3,M4 and M5 are defined over k, respectively. Hence, i0 is equal to 3, 4 or 5.

Thus, by Lemma 4.2, we have L̃ ∼Q a(−KS̃
)− bM and (L̃ )2 = a2 + (M)2b2, where M is that

as in Lemma 4.2(3), (4) or (5) according to the number of i0. In particular, (M)2 = −3, −2
and −1 if i0 = 3, 4 and 5, respectively. Suppose that (L̃ )2 = 0. Then (M)2 = −1 since a, b are
rational numbers. Hence, we see i0 = 5 and a = b by Lemma 4.2(3), (4) and (5). However, the

curve C on S̃, which is that as in Lemma 5.3(1), then satisfies (L̃ ·C) = 0. This implies that the

boundary of Ũk contains a cycle, which contradicts Lemma 2.12. Therefore, we see (L̃ )2 6= 0.

In (4), since p is of type E+
6 , note thatM1 andM2 (resp. M3 andM4) lie in the same Gal(k/k)-

orbit, on the other hand, M5 and M6 are defined over k, respectively. Hence, i0 is equal to 5

or 6. Thus, by Lemma 4.3, we have L̃ ∼Q a(−K
S̃
) − bM and (L̃ )2 = a2 + (M)2b2, where M

is that as in Lemma 4.3(5) or (6) according to the number of i0. In particular, (M)2 = −6 and

−2 if i0 = 5 and 6, respectively. Thus, we see (L̃ )2 6= 0 since a, b are rational numbers. �

5.2. Proof of Theorem 1.6(1)–(3). In this subsection, we shall show Theorem 1.6(1)–(3). In
order to prove Theorem 1.6(1) and (2), we will use Table 5. In fact, in this proof, we mainly

consider the two morphisms over k. One is the minimal resolution σ : S̃ → S over k and the

other is the contraction τ : S̃ →Wd′ over k of the union of (−1)-curves, which can be determined

by the dual graph in Table 5 according to the type of S̃ (the detailed configuration of τ will be
treated in the following Lemmas 5.4, 5.5 and 5.7). By construction of τ , we will know that Wd′

contains a cylinder, whose boundary includes the exceptional set of τ . Hence, the pullback of

this cylinder by τ is also a cylinder in S̃, moreover, we will see that this boundary includes the
union of all (−2)-curves, which is clearly defined over k. Thus, the image of this cylinder via σ
is a cylinder in S, namely, we see that S certainly contains a cylinder.

In what follows, we shall state the notation in Table 5. Letting τ : S̃ →Wd′ be the morphism

as above depending on the type of S̃k, we then see that Wd′ is a weak del Pezzo surface. Then
“d′” and “Type of Wd′” in Table 5 mean the degree and the type of Wd′ according to the

type of S̃, respectively. On the other hand, “ρk(S̃)” in Table 5 means the Picard number of S̃

according to the type of S̃. Notice that this can be obtained by the Picard number ofWd′ , which
is explicitly given (see Table 1), and the construction of τ . Moreover, “Dual graph” in Table

5 means a dual graph on S̃k according to the type of S̃, where “◦” means a (−2)-curve, “•”
means a (−1)-curve and “

⊙
” means either “ • ◦ ” or “

•✐✐✐ •❯❯❯ ”, which can be determined

according to the type of S̃. Note that the union of curves on S̃k corresponding to all vertices
on this dual graph is certainly defined over k by the configuration of Wd′ (see Table 1) and the
construction of τ .

5.2.1. At first, we shall show Theorem 1.6(1).

Lemma 5.4. Let the notation be the same as above. If d = 2 and Sk has a singular point of
type D4, then S contains a cylinder.
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Table 5. Types of S̃ in Theorem 1.6(1) and (2)

d Type of S̃ ρk(S̃) Dual graph d′ Type of Wd′

2 D4 3, 4 or 5

◦
◦ ❄❄

⊙

◦⊙

◦ ⑧
⑧⊙

8 A1
2 D4 +A1 5 or 6

2 D4 + 2A1 5 or 7

2 D4 + 3A1 4, 6 or 8

2 A6 4
◦◦ ◦ ◦ ◦

•
◦

•
4 A2 + 2A1

2 A7 5 or 8
◦◦ ◦ ◦ ◦ ◦

•
◦

•
4 A3 + 2A1

2 D5 5 ◦ ◦ ◦ ⊙◦ ❖❖•
◦ ♦♦•

4 (A3)<

2 D5 +A1 6 4 A3 +A1

2 D6 7 ◦ ◦ ◦ ◦ ⊙◦ ❖❖•
◦ ♦♦

3 A5

2 D6 +A1 8 3 A5 +A1

2 E6 5 ◦ ◦
◦ ❖❖◦•
◦ ♦♦◦•

4 D4

2 E7 8
◦◦◦ ◦ ◦ ◦

•◦
3 E6

1 A8 5 or 9
◦◦◦ ◦ ◦ ◦

•
◦ ◦

•
3 3A2

1 D6 6 or 7

◦
◦ ❄❄◦

•
◦

◦⊙

◦ ⑧
⑧⊙

2 D4 +A1

1 D6 +A1 8 2 D4 + 2A1

1 D6 + 2A1 7 or 9 2 D4 + 3A1

1 D7 7 ◦ ◦ ◦ ◦
◦♦♦
•❖

❖
◦ ❖❖
◦ ♦♦

2 D5 +A1

1 D8 9 ◦ ◦ ◦ ◦ ◦
◦♦♦
•❖❖

◦ ❖❖
◦ ♦♦

2 D6 +A1

1 E7 8 ◦ ◦ ◦◦ ⊙◦ ❖❖◦•
◦ ♦♦

2 D6

1 E7 +A1 9 2 D6 +A1

1 E8 9
◦◦◦ ◦ ◦ ◦ ◦

•◦
2 E7

2 (A5)
′′ 4

◦◦ ◦ ◦
•
◦

•
4 3A1

1 (A7)
′′ 5

◦◦◦ ◦ ◦
•
◦ ◦

•
3 2A2 +A1

2 (A5 +A1)
′′ 5

◦◦◦ ◦ ◦
•
◦

•
4 4A1

Proof. Let x be a singular point of type D4 on Sk. Note that x is k-rational on Sk by Lemma 2.9.

Moreover, we see that S̃ is of D4 +nA1-type for n = 0, 1, 2, 3 and S̃(k) 6= ∅ by the configuration

of curves in S̃k (see also Table 5). Let Ẽ be the union of reduced curves corresponding to three

subgraphs
⊙ ◦ in the dual graph in Table 5. Notice that Ẽ is defined over k. Then we
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obtain the birational morphism τ : S̃ → W8 over k such that W8 is a k-form of the Hirzebruch

surface F2 of degree 2 and the direct image τ∗(Ẽ)k is the disjoint union of three closed fibers,

say F1, F2 and F3, of the P1-bundle W8,k ≃ F2 → P1
k
. In particular, we see W8 ≃ F2 by using

Lemma 2.6 because of S̃(k) 6= ∅ (see also §3). Hence, Ũ := S̃\Ẽ is certainly the cylinder on

S̃ since Ũ ≃ F2\(M ∪ F1 ∪ F2 ∪ F3) ≃ A1
k × C(2) (for the definition of C(2), see Notation and

Conventions), where M is the (−2)-curve on F2. Therefore, we see that S contains a cylinder

σ(Ũ) ≃ Ũ . �

Lemma 5.5. Let the notation be the same as above. If d = 2 (resp. d = 1) and Sk has a
singular point of type A6, A7, D5, D6, E6 or E7 (resp. type A8, D6, D7, D8, E7 or E8), then
S contains a cylinder.

Proof. Let x be a singular point of the type of the one of the above list on Sk. Note that x

is k-rational on Sk by Lemma 2.9. Let Ẽ be the union of the (−1)-curves corresponding to all

vertices • in the Table 5 according to the type of S̃. Notice that Ẽ is defined over k and Ẽk is

either irreducible or disjoint. Hence, we obtain the contraction τ : S̃ →Wd′ of Ẽ defined over k,
so that Wd′ is a weak del Pezzo surface of degree d′ ∈ {2, 3, 4}, where d′ is determined according

to the type of S̃. If d′ ∈ {3, 4}, then Wd′ contains a cylinder, whose boundary includes τ∗(Ẽ),

by the argument in §3 (see also Table 1). Thus, the pullback of this cylinder by τ , say Ũ , is

a cylinder in S̃ such that this boundary includes the union of all (−2)-curves on S̃k, which is

defined over k. Therefore, we see that S contains a cylinder σ(Ũ) ≃ Ũ . If d′ = 2, then Wd′ is

one of the list in Table 5 and contains a cylinder, whose boundary includes τ∗(Ẽ), by the above
argument. Namely, the above argument can work as well even if d′ = 2. This completes the
proof. �

Remark 5.6. We shall state some remarks on Lemma 5.5 (cf. Remark 3.8). Let x be the same
as in Lemma 5.5 and assume d = 2. Then:

(1) If the singular point x is of type A6, E6 or E7 on Sk, then S always contains the affine

plane A2
k (compare the fact that the Du Val del Pezzo surface over C with Picard rank

one and of degree 2 contains C2 if and only if this surface has a singular point of type
E7, see [22]).

(2) If the singular point x is of type A7 on Sk, then S̃ need not be k-rational but always
contains a cylinder (compare the fact in [10]).

Theorem 1.6(1) follows from Lemmas 5.4 and 5.5.

5.2.2. Secondly, we shall show Theorem 1.6(2). With the notation as above, assume further

that S̃k has a singular point x of type (A9−2d)
′′ (see §§2.1, for this definition). Note that x is k-

rational on Sk by Lemma 2.9. Notice that S̃ is only (A5)
′′ or (A5+A1)

′′-type (resp. (A7)
′′-type)

if d = 2 (resp. d = 1).

Lemma 5.7. With the notation and the assumptions as above, assume further that S̃ is of
(A9−2d)

′′-type. Then S contains a cylinder if and only if x not of type A++
9−2d on S.

Proof. Assume that S contains a cylinder U ≃ A1
k×Z, where Z is a smooth affine curve defined

over k. Then S̃ contains a cylinder Ũ := σ−1(U) ≃ U . The closures in S̃ of fibers of the

projection prZ : Ũ ≃ A1
k × Z → Z yields a linear system, say L̃ , on S̃. By Proposition 5.1,

Bs(L̃ ) 6= ∅. Thus, x is not of type A++
9−2d on S by the assumption and Lemma 2.15.

Conversely, assume that x is not of type A++
9−2d on S. Let M be the (−2)-curve on S̃k

corresponding to the central vertex on the dual graph with the minimal resolution at x. Notice

that M is defined over k, moreover, M has a k-rational point by the assumption. Let Ẽ be
the union of the (−1)-curves corresponding to two vertices • in the Table 5 according to the
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type of S̃. Notice that Ẽ is defined over k and Ẽk is disjoint. Hence, we obtain the contraction

τ : S̃ → Wd+2 of Ẽ defined over k, so that Wd+2 is a weak del Pezzo surface of degree d + 2
and τ∗(M)k is a (−2)-curve. Moreover, since M has a k-rational point, so does the image via τ .
Hence, Wd+2,k contains a (−2)-curve with a k-rational point. This implies that Wd+2 contains

a cylinder, whose boundary includes τ∗(Ẽ), by using Theorem 1.5 (see also Table 1). Thus, the

pullback of this cylinder by τ , say Ũ , is a cylinder in S̃ such that this boundary includes the

union of all (−2)-curves on S̃k, which is defined over k. Therefore, we see that S contains a

cylinder σ(Ũ) ≃ Ũ . �

In what follows, we deal with the case that S̃ is not of (A9−2d)
′′-type. Then notice that d = 2

and S̃ is of (A5 +A1)
′′-type.

Lemma 5.8. With the notation and the assumptions as above, assume further that d = 2 and

S̃ is of (A5 +A1)
′′-type. Then S contains a cylinder if and only if x not of type A++

5 on S.

Proof. Let M1,1, . . . ,M1,5 and M2,1 be the (−2)-curves on S̃k with the configuration as in (4.7).
By the configuration, M1,3 and M2,1 are defined over k. By using Proposition 4.9, there exist

two (−1)-curves E2 and E4 on S̃k such that (Ei ·M1,j) = δi,j and (Ei ·M2,1) = 0 for i = 2, 4
and j = 1, . . . , 5, moreover, the union and E2 + E4 are defined over k (cf. Example 4.10). Let

τ : S̃ → W8 be the compositions of successive contractions of a disjoint union E2 + E4, that of
the images of M1,2 +M1,4 and finally that of the images of M1,1 +M1,5. By construction, τ is
defined over k and W8 is a k-form of the Hirzebruch surface F2 of degree 2.

From now on, we prove this lemma. Assume that S contains a cylinder. Let y be the singular
point of type A1 on Sk. Then we know that either x is not of type A++

5 on S or y is not of type

A++
1 on S by the similar argument to Lemma 5.7. In what follows, we may assume that y is not

of type A++
1 on S. In other words,M2,1 has a k-rational point, hence, so does τ∗(M2,1). Namely,

W8 ≃ F2. Hence, there exists a unique closed fiber of the P1-bundle F2 → P1
k passing through

this k-rational point. Let F be the pullback of this fiber by τ . Note that the configuration of
the dual graph of

∑5
j=1M1,j +M2,1 +E2 + E4 + F is as follows, where “◦”, “•” and “⋄” mean

a (−2)-curve, a (−1)-curve and a 0-curve, respectively:

⋄F

◦M2,1

◦
M1,3

◦
M1,2

◦
M1,1

•E2

◦
M1,4

◦
M1,5

•E4

In particular, the intersection point of M1,3 and F is k-rational, namely, M1,3(k) 6= ∅. This
implies that x is not of type A++

5 on S.
Conversely, assume that x is not of type A++

5 on S. By putting M := M1,3, we see that S
contains a cylinder by the similar argument to Lemma 5.7. �

Theorem 1.6(2) follows from Lemmas 5.7 and 5.8.

5.2.3. Finally, we shall show Theorem 1.6(3) by using [6]:

Proof of Theorem 1.6(3). This proof can be shown by an argument similar to [10, Remark 10].
Indeed, supposing that S contains a cylinder U , by ρk(S) = 1 we see that Sk admits an (−KS

k
)-

polar cylinder Uk (see, e.g., [6, Definition 1.3], for the definition), which is a contradiction to [6,
Theorem 1.5]. �

Remark 5.9. If d = 1 and Sk has a singular point of type D4, then we see that S does not

contain any cylinder by Theorem 1.6(3) since S̃ is only of 2D4, D4 + A3, D4 + 3A1, D4 + A2,
D4 + 2A1, D4 +A1 or D4-type.
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5.3. Proof for the “only if” part of Theorem 1.6(4). In this subsection, we shall show the
“only if” part of Theorem 1.6(4). Assume that S does not satisfy any condition on singularities
of (1), (2) nor (3) in Theorem 1.6 and contains a cylinder, say U . Letting L be the linear system
on S, which is the same as in §§5.1, by Lemma 2.15 we then see that Bs(L ) = {p} such that
p is a singular point on S, which is k-rational. In order to show the “only if” part of Theorem

1.6(4), we shall prove that the singular point p is of type A−
n , D

−
n or E−

n . Letting L̃ be the

linear system on S̃, which is the same as in §§5.1, by Proposition 5.1 we see that Bs(L̃ ) consists
of only one k-rational point, say p̃. In other words, the singular point p is not of type A++

n on
S for any n. In what follows, suppose that the singular point p on S is one of the following
according to the degree d:

• d = 2: type A+
1 , A

+
2 , A

+
3 , A

+
4 or (A+

5 )
′,

• d = 1: type A+
1 , A

+
2 , A

+
3 , A

+
4 , A

+
5 , A

+
6 , (A

+
7 )

′, D+
5 or E+

6 .

Meanwhile, we will prove Lemmas 5.12, 5.14 and 5.15, which contradict the above hypothesis.
Now, we shall treat the following Lemmas 5.10 and 5.11, which will play a crucial role to show
Lemmas 5.12 and 5.14:

Lemma 5.10. Assume that L̃ ∼Q a(−K
S̃
)− bM for some positive rational numbers a and b,

whereM is an effective Q-divisor on S̃ and consists of some irreducible components of exceptional
set of σ. Let α, β and γ be three positive rational numbers satisfying a ≥ αb, β = −(M ·M0),
and γ = −(M)2, where M0 is an irreducible component of Mk passing through p̃. Then the
following hold:

(1) If d = 2, then the following four inequalities do not hold simultaneously:




α− u > 0

α− u− v ≥ 0

2αu+ βv − γ ≥ 0

4u2 + 4uv + 2v2 − γ ≤ 0

(5.1)

for any rational numbers u, v with u ≥ 0.
(2) If d = 1, then the following four inequalities do not hold simultaneously:





α− u > 0

α− u− v ≥ 0

αu+ βv − γ ≥ 0

4u2 + 4uv + 4v2 − 3γ ≤ 0

(5.2)

for any rational numbers u, v with u ≥ 0.

Proof. We only show (1), because (2) can be shown by the argument similar to (1).
Suppose that there exist u ∈ Q≥0 and v ∈ Q such that the all inequalities (5.1) hold simulta-

neously. By virtue of α − u > 0, α − u− v ≥ 0, b > 0 and a ≥ αb, we then see a− ub > 0 and
1− vb

a−ub
≥ 0. Hence, we have:
(

L̃ ·K
S̃
+

vb

a− ubM0 +
1

a− ubL̃
)

=
1

a− ub
{
−2a(a− ub) + βvb2 + (2a2 − γb2)

}

=
b

a− ub(2ua+ βvb− γb).
(5.3)

By virtue of au ≥ αub and 2αu+ βv − γ ≥ 0, we have:

b

a− ub(2ua+ βvb− γb) ≥ b2

a− ub(2αu+ βv − γ) ≥ 0.(5.4)

Notice that the rational map Φ
L̃

: S̃ 99K Z is not a morphism since Bs(L̃ ) = {p̃}, where Z
is the smooth projective model of Z. Let ψ : S̄ → S̃ be the shortest succession of blow-ups of p̃
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and its infinitely near points such that the proper transform L̄ := ψ−1
∗ (L̃ ) of L̃ is free of base

points. Note that, p̃ ∈ M0 and (L̄ · M̄0) = 0 by construction of L̃ , where M̄0 is the proper
transform ψ−1

∗ (M0) of M0. Letting {Ēi}1≤i≤n be the exceptional divisors of ψ with Ēn the last
exceptional one, which is a section of ϕ̄ := Φ

L̃
◦ ψ, we have:

KS̄ +
vb

a− ubM̄0 +
1

a− ubL̄ = ψ∗
(
K

S̃
+

vb

a− ubM0 +
1

a− ubL̃
)
+

n∑

i=1

ciĒi(5.5)

and

(L̄ · Ēi) =

{
0 (1 ≤ i ≤ n− 1)

1 (i = n)
(5.6)

for some rational numbers c1, . . . , cn. Note that the general member of L̄ is a general fiber of
the P1-fibration ϕ̄. Hence, we have:

−2 = (L̄ ·KS̄)

=

(
L̄ ·KS̄ +

vb

a− ubM̄0 +
1

a− ubL̄
)

=
(5.5)

(
L̄ · ψ∗

(
K

S̃
+

vb

a− ubM0 +
1

a− ubL̃
))

+

n∑

i=1

ci(L̄ · Ēi)

=
(5.6)

(
L̃ ·K

S̃
+

vb

a− ubM0 +
1

a− ubL̃
)
+ cn

Thus, (S̃, vb
a−ub

M0 +
1

a−ub
L̃ ) is not log canonical at p̃ by (5.3) and (5.4). Furthermore, since

1− vb
a−ub

≥ 0 and 1
a−ub

> 0, we have:

(L̃ )2 > 4(a− ub)2
(
1− vb

a− ub

)
⇐⇒ 0 > 2a2 − 4(2u+ v)ab+ {4u(u+ v) + γ} b2.(5.7)

by using a variant of Corti’s inequality (see Lemma 2.10). On the other hand, we have:

2a2 − 4(2u+ v)ab+ {4u(u + v) + γ} b2 = 2 {a− (2u+ v)b}2 − (4u2 + 4uv + 2v2 − γ)b2 ≥ 0,

by 4u2 + 4uv + 2v2 − γ ≤ 0. It is a contradiction to (5.7). �

Note that the following Lemma 5.11 is the special case of Lemma 5.10:

Lemma 5.11. Let the notation and the assumption as in Lemma 5.10. If d = 2 and d = 1,
then we obtain α2 < γ and 3α2 < 4γ, respectively.

Proof. Suppose otherwise. If d = 2 (resp. d = 1), then we see that the four inequalities (5.1)
(resp. (5.2)) hold for (u, v) = ( γ

2α , 0) (resp. (u, v) = ( γ
α
, 0)). This is the contradiction to Lemma

5.10. �

Now, we show Lemmas 5.12, 5.14 and 5.15. For these lemmas, letM1, . . . ,Mn be all irreducible
components of the exceptional set over k of σk at p such that the dual graph of M1, . . . ,Mn is
as in (4.1), (4.2) or (4.3) according to the singularities of p on Sk.

Lemma 5.12. With the notation and the assumptions as above, the following assertions hold:

(1) If d = 2, then the singular point p is not of type A+
1 , A

+
3 , A

+
4 nor (A+

5 )
′ on S.

(2) If d = 1, then the singular point p is not of type A+
1 , A

+
2 , A

+
3 , A

+
5 , A

+
6 nor (A+

7 )
′ on S.

Proof. Suppose that the singular point p on S is one of the list in Lemma 5.12. We shall write

m := ⌈n2 ⌉ for simplicity. By noting Bs(L̃ ) = {p̃}, we see (L̃ ·Mi) = 0 for any i other than i = m
(resp. i = m, m + 1) if n is odd (resp. even). Indeed, if n is odd (resp. even), then p̃ lies on

Mm (resp. the intersection point of Mm and Mm+1). Hence, we can write L̃ ∼Q a(−KS̃
)− bM
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Table 6. Values of α, β and γ in Lemma 5.12

d Singularity Irreducible decomposition of M α β γ

2 A+
1 M1 1 2 2

2 A+
3 M1 + 2M2 +M3 2 2 4

2 A+
4 M1 + 2M2 + 2M3 +M4 2 1 4

2 (A+
5 )

′ M1 + 2M2 + 3M3 + 2M4 +M5 3 2 6

1 A+
1 M1 2 2 2

1 A+
2 M1 +M2 2 1 2

1 A+
3 M1 + 2M2 +M3 2 2 4

1 A+
5 M1 + 2M2 + 3M3 + 2M4 +M5 3 2 6

1 A+
6 M1 + 2M2 + 3M3 + 3M4 + 2M5 +M6 3 1 6

1 (A+
7 )

′ M1 + 2M2 + 3M3 + 4M4 + 3M5 + 2M6 +M7 4 2 8

for some a, b ∈ Q>0, where M =
∑m−1

j=1 j(Mj +Mn−j+1) +m(Mm + · · ·+Mn−m+1) by Lemma
4.1.

Let β and γ be two rational numbers defined by β := −(M ·Mm) and γ := −(M)2. Moreover,

let α be the positive number defined by α := (M ·E), where E is the (−1)-curve on S̃k according
to the degree d and the singularity type of p on Sk as follows:

• (d,Singularity) = (2, A3), (2, A4), (1, A5), (1, A6): By using Proposition 4.9, we take a

(−1)-curve E on S̃k such that (Mj · E) = δm,j (see also Example 4.10).
• (d,Singularity) = (2, A1), (1, A3): Notice that Sk allows a singular point other than p by
the assumption of Theorem 1.6(4). If Sk admits a cyclic singular point other than p, then

we take a (−1)-curve E on S̃k such that (Mj · E) = δm,j by an argument similar to the

above. Otherwise, since d = 1 and S̃ is of D5 +A3-type by the assumption of Theorem

1.6(4), it is known that there exists a (−1)-curve E on S̃k such that (Mj ·E) = δ2,j (see,
e.g., [22, Figure 1]), so that we take such a (−1)-curve E.
• (d,Singularity) = (2, (A5)

′), (1, (A7)
′): By the configuration of singularity of p, we can

take the (−1)-curve E such that (Mj ·E) = δm,j .
• (d,Singularity) = (1, A1), (1, A2): We take the (−1)-curve E as in Lemma 4.4(1).
Namely, (M1 · E) = 2 (resp. (M1 · E) = (M2 · E) = 1) if p is of type A+

1 (resp.
type A+

2 ) on S.

By construction of α, we see that a ≥ αb because of 0 ≤ (L̃ · E) = a− αb. Here, the values of
α, β and γ are summarized in Table 6 according to the degree d and the singularity type of p on
Sk. For all cases except for (d,Singularity) = (2, A1), (1, A3), we thus obtain a contradiction to
Lemma 5.11. In what follows, we consider the remaining cases. In the case of (d,Singularity) =
(2, A1), setting (u, v) := (0, 1), the inequalities (5.1) hold simultaneously, which contradicts
Lemma 5.10(1). In the case of (d,Singularity) = (1, A3), setting (u, v) := (1, 1), the inequalities
(5.2) hold simultaneously, which contradicts Lemma 5.10(2). �

Remark 5.13. If the pair of the degree d and the singular point p on Sk is (2, A2) (resp. (1, A4)),
there is actually no rational numbers pair (u, v) such that the inequalities (5.1) (resp. (5.2))
hold simultaneously. We will deal with these cases later (see Lemma 5.15).

Lemma 5.14. With the notation and the assumptions as above, if d = 1 then the singular point
p is not of type D+

5 nor E+
6 on S.

Proof. Suppose that the singular point p is of type D+
5 or E+

6 on S. By Proposition 5.1, Bs(L̃ )
consists of only one k-rational point, say p̃. Note that p̃ ∈M3∪M4∪M5 but p̃ 6∈M1∪M2 (resp.
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Table 7. Effective Q-divisor M in Lemma 5.14

Singularity Position of p̃ Irreducible decomposition of M Range of t

D+
5 M3 ∪M4 tM1 + tM2 + 2tM3 + 2M4 +M5 1 ≤ t ≤ 3

2

D+
5 M5 M1 +M2 + 2M3 + 2M4 + tM5 1 ≤ t ≤ 2

E+
6 M5 ∪M6 tM1 + tM2 + 2tM3 + 2tM4 + 3tM5 + 2M6 1 ≤ t ≤ 4

3

Table 8. Value and range of γ in Lemma 5.14

Singularity Position of p̃ Range of t γ Range of γ

D+
5 M3 ∪M4 1 ≤ t ≤ 3

2 4t2 − 8t+ 6 2 ≤ γ ≤ 3

D+
5 M5 1 ≤ t ≤ 2 2t2 − 4t+ 4 2 ≤ γ ≤ 4

E+
6 M5 ∪M6 1 ≤ t ≤ 4

3 6t2 − 12t+ 8 2 ≤ γ ≤ 8
3

p̃ ∈M5∪M6 but p̃ 6∈M1∪M2∪M3∪M4) provided that p is of type D+
5 (resp. type E+

6 ). Thus,

we can write L̃ ∼Q a(−KS̃
)− bM for some a, b ∈ Q>0 by Lemmas 4.2 and 4.3, where M is the

effective Q-divisor and is given as in the Table 7 depending on one parameter t and according to
both the singularity type of p on Sk and the position of p̃. Let γ be the positive rational number

defined by γ := −(M)2. The value of γ and its range are summarized in Table 8 depending on
one parameter t and according to both the singularity type of p on Sk and the position of p̃

by easy computation. Let E be the (−1)-curve on S̃ that as in Lemma 4.4(2) or (3) according

to the singularity type of p on Sk. Noting that 0 ≤ (L̃ · E) = a − 2b, we shall put α = 2. If

γ ≤ 3, then we have 3α2 = 12 ≥ 4γ, which contradicts Lemma 5.11. Hence, we suppose γ > 3
in what follows. Then p is of type D5 on Sk and lies on M5 by Table 8. In particular, we see
1 ≤ t ≤ 2. We shall put β := −(M ·M5) = 2t − 2 and (u, v) := (−t2 + 3t − 1, 2t − 3). Noting
u = −t2 + 3t− 1 > 0, we have:

α− u = 2− (−t2 + 3t− 1) =

(
t− 3

2

)2

+
3

4
> 0,

α− u− v = 2− (−t2 + 3t− 1)− (2t− 3) = (t− 2)(t− 3) ≥ 0,

αu+ βv − γ = 2(−t2 + 3t− 1) + (2t− 2)(2t − 3)− (2t2 − 4t+ 4) = 0

and

4u2 + 4uv + 4v2 − 3γ = 4(−t2 + 3t− 1)2 + 4(−t2 + 3t− 1)(2t− 3) + 4(2t− 3)2 − 3(2t2 − 4t+ 4)

= 2(t− 2)2(2t2 − 8t+ 5)

≤ 2(t− 2)2{2t2 − 8t+ 5 + (2t− 1)}
= 4(t− 2)3(t− 1)

≤ 0.

This implies that the inequalities (5.2) hold simultaneously, which contradicts Lemma 5.10(2).
�

Finally, we treat the case that p is of type A+
6−2d on S. If p is of type A6−2d on Sk, then the

type of S̃ is one of the following:

• d = 2 and A5 + A2, A4 + A2, A3 + A2 + A1, 3A2, A3 + A2, 2A2 + A1, A2 + 3A1, 2A2,
A2 + 2A1, A2 +A1 or A2-type.
• d = 1 and 2A4, A4+A3, A4+A2+A1, A4+3A1, A4+A2, A4+2A1, A4+A1 or A4-type.

In particular, all singular points other than p on Sk are of type An for some various possible
values of n. Noting the above argument, we obtain the following lemma:
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Lemma 5.15. With the notation and the assumptions as above, then the singular point p is not
of type A+

6−2d on S for d = 1, 2.

Proof. Suppose that the singular point p is of type A+
6−2d on S. If d = 2 and S̃ is of A2-type, then

S̃ is a weak del Pezzo surface of degree 2 with ρk(S̃) = 2. Hence, S̃ is k-minimal by Proposition

2.7(2) and contains the cylinder Ũ . However, it is a contradiction to Proposition 2.7(3). In what
follows, we shall treat other cases and consider the cases of d = 2 and d = 1 separately.

In the case d = 2: Let x1, . . . , xr be all singular points on Sk other than p, and letMi,1, . . . ,Mi,n(i)

be the irreducible components of the exceptional set on S̃ of the minimal resolution at xi for

i = 1, . . . , r such that the dual graph of
∑r

i=1

∑n(i)
j=1Mi,j is as in (4.7). By using Proposition

4.9, for i = 1, . . . , r, there exist two (−1)-curves Ei,1 and Ei,2 on S̃k such that Ei,1 + Ei,2 ∼
(−K

S̃
k

)− (M1 +M2)−
∑n(i)

j=1Mi,j. Then the dual graph of M1 +M2 +Ei,1 +Ei,2 +
∑n(i)

j=1Mi,j

is as follows (cf. Example 4.10), where “◦” and “•”mean a (−2)-curve and a (−1)-curve on S̃k,
respectively:

•Ei,1

◦❥❥❥❥❥❥❥❥❥

M1
◦
M2

•❚❚
❚❚❚

❚❚❚
❚

Ei,2◦
Mi,1

· · · ◦
Mi,n(i)

◦

for i = 1, . . . , r. Notice that (Ei,1+Ei,2·Ei′,1+Ei′,2) = −2δi,i′ since (−KS̃
−M1−M2)

2 = 0. Write

m(i) := ⌈n(i)2 ⌉ for simplicity. Let τ : S̃ → V be the sequence of contractions of (−1)-curves and
subsequently (smoothly) contractible curves in Supp

(∑r
i=1

(
Ei,1 + Ei,2 +

∑n(i)
j=1Mi,j

))
such

that the direct image of Ei,1 + Ei,2 +
∑n(i)

j=1Mi,j by τ is equal to τ(Mi,m(i)) (resp. τ(Mi,m(i)) +

τ(Mi,m(i)+1)) if n(i) is odd (resp. even). In other words, all curves in the following dual graph
are contracted by τ for i = 1, . . . , r:

•
Ei,1

◦
Mi,1

· · · ◦
Mi,m(i)−1

◦
Mi,n(i)−m(i)+2

· · · ◦
Mi,n(i)

•
Ei,2

if m(i) > 1;

•
Ei,1

•
Ei,2

if m(i) = 1.

By construction, τ is defined over k and V is a smooth del Pezzo surface with ρk(V ) = 2 endowed
with a structure of Mori conic bundle π : V → B over k such that each τ∗(Mi,m(i))k is included

in a union of some closed fibers of πk. Moreover, p̃ is a k-rational point on S̃, so is its image via

τ . Thus, B ≃ P1
k by Lemma 2.6. In particular, we obtain Pic(V )Q = Q[−KV ] ⊕ Q[F ], where

F is a general fiber of π. Let {ei,j}1≤i≤r, 1≤j≤m(i)−1 be the total transforms of all irreducible
components on the exceptional set satisfying (ei,j · Mi,j) < 0 by τ for i = 1, . . . , r and j =
1, . . . ,m(i) − 1, moreover, we set ei,0 := Ei,1 + Ei,2. Note that each ei,j is defined over k, is
uniquely determined and satisfies (−K

S̃
· ei,j) = 2. Hence, we obtain:

Pic(S̃)Q ⊆ Q[−K
S̃
]⊕Q[F̃ ]⊕




r⊕

i=1

m(i)−1⊕

j=0

Q[ei,j ]


 ,

where F̃ is a total transform of F by τ . In particular, we can write:

L̃ ∼Q a(−KS̃
) + bF̃ +

r∑

i=1

m(i)−1∑

j=0

ci,jei,j

for some a, b, ci,j ∈ Q. By construction, we obtain that Mi,j +Mi,m(i)−j+1 ∼ ei,j − ei,j−1 for

j = 1, . . . ,m(i)− 1 and Mi,m(i) (resp. Mi,m(i) +Mi,m(i)+1) is linearly equivalent to F̃ − ei,m(i)−1
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if n(i) is odd (resp. even). Moreover, we notice (F̃ )2 = (ei,j · F̃ ) = 0 for any i, j. Hence, we

have ci,j = 0 by virtue of (L̃ ·Mi,j) = 0 for any i, j. On the other hand, since Ei,1 +Ei,2 ∼ ei,0,
we have a > 0 by virtue of 0 ≤ (L̃ · ei,0) = 2a and 0 < (L̃ )2 = 2a(a + 2b). Moreover, we have

b > 0 by virtue of 0 < (L̃ ·M1 +M2) = b(F̃ ·M1 +M2). Thus, we see L̃ ∼Q a(−KS̃
) + bF̃ as

a, b > 0, however, we obtain a contradiction by applying [28, Lemma 4.9].

In the case d = 1: By Lemma 4.4(1), there exists a (−1)-curve E0 on S̃ such that (E0 ·Mi) =

δ1,i + δ4,i. Hence, we have the contraction τ0 : S̃ → W2 of E0 defined over k such that W2 is a
weak del Pezzo surface of degree 2, moreover, this condition is as above case of d = 2. Thus, by

an argument similar to the above case with d = 2, there exists a 0-curve F̃ on S̃ such that we
can write:

L̃ ∼Q a(−KS̃
) + bF̃ + c0E0

for some a, b, c0 ∈ Q. By the configuration of τ0, we see (F̃ · E0) = 0 and M1 +M4 ∼ F̃ − 2E0.

Hence, we have c0 = 0 by virtue of 0 = (L̃ ·M1+M4) = 2c0. Moreover, by an argument similar
to the above case with d = 2 we see a, b > 0, which is a contradiction by applying [28, Lemma
4.9]. �

As we already mentioned, the “only if” part in Theorem 1.6(4) follows from Lemmas 5.12,
5.14 and 5.15.

5.4. Assumption for the “if” part of Theorem 1.6(4). In this subsection, in order to
prove the “if” part in Theorem 1.6(4), we shall observe the assumption of this precisely. In
other words, the purpose of this subsection is to show the following proposition:

Proposition 5.16. Let S be a Du Val del Pezzo surface of the degree d ≤ 2 over k with ρk(S) = 1

not satisfying any condition (1), (2) nor (3) in Theorem 1.6, and let σ : S̃ → S be the minimal
resolution over k. If Sk has a singular point, which is k-rational, of type A−

n , D
−
n or E−

n on S,

then the type of S̃ is one of the following:

• d = 2: A5+A2, 2A3+A1, 2A3, A3+3A1, 3A2, (A5)
′, (A3+2A1)

′′, A2+3A1, (A3+A1)
′,

A3 or A2-type.
• d = 1: A7 +A1, E6 +A2, D5 +A3, A5 +A2 +A1, 2A4, (A7)

′, D5 + 2A1, A5 +A2, E6,
(A5 +A1)

′, D5, A5 or A4-type.

In what follows, we will prove Proposition 5.16. Let the notation and assumption be the same
as in Proposition 5.16. Then we can take a singular point x0 on Sk, which is k-rational, of type
A−

n , D
−
n or E−

n . Let r be the number of all singular points other than x0 on Sk, which are
k-rational, and let x1, . . . , xr be the singular points other than x0 on Sk, which are k-rational.
We shall consider two cases according to the degree d of S separately.

At first, we shall treat the case d = 2. Then we may assume that x0 is of type A−
n on S for

some 2 ≤ n ≤ 5 since S does not satisfy any condition (1) nor (3) in Theorem 1.6. Moreover,
note that all singular points other than x0 on Sk are also necessarily of type An′ for some various
possible values of n′. We obtain the following two lemmas:

Lemma 5.17. Let the notation and the assumptions be the same as above. If r > 0, then S̃ is
of A5 +A2, 2A3 +A1, 2A3, A3 + 3A1 or (A3 +A1)

′-type.

Proof. Let n(i) be the number such that the singular point xi is of type An(i) for i = 1, . . . , r.
Here, we may assume n(1) ≥ n(2) ≥ · · · ≥ n(r) by replacing the subscripts i = 1, . . . , r as
needed. Let {Mi,j}1≤j≤n(i) be all irreducible components of the exceptional set of the minimal
resolution at xi for i = 0, 1, . . . , r with the configuration as in (4.7), where n(0) := n, and let D

be the divisor on S̃k defined by D := (−K
S̃
k

)−∑1
i=0

∑n(i)
j=1Mi,j. Notice that D is defined over

k. Since the divisor D is as in (a) in Table 4, we see that D satisfies the condition on divisors
of either (A) or (B) by Proposition 4.9(1).
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Assume that D satisfies the condition (A). In other words, there exist two (−1)-curves E1

and E2 on S̃k such that D ∼ E1 + E2 (see Proposition 4.9(2)). Hence, the dual graph of∑1
i=0

∑n(i)
j=1Mi,j + E1 + E2 is as follows, where “◦” and “•” mean a (−2)-curve and a (−1)-

curve, respectively:

•E1

◦♦♦♦♦♦♦

M0,1
· · · ◦

M0,n

•❖
❖❖❖

❖❖

E2

◦❖
❖❖❖

❖❖

M1,1

· · · ◦
M1,n(1)

◦♦♦♦♦♦♦

Since the singular point x0 is of type A−
n on S with n ≥ 2, we see that E1 and E2 are defined

over k, respectively. This implies that the two Q-divisors E1 and E2 are included in Pic(S̃)Q =

Q[−K
S̃
] ⊕

(⊕1
i=0

⊕n(i)
j=1Q[Mi,j]

)
since ρk(S) = 1. Hence, the pair (n, n(1)) is (5, 2), (2, 5) or

(3, 3) by Proposition 4.9(6). If (n, n(1)) = (5, 2) or (2, 5), then all singular points on Sk are

only x0 and x1 since there are at most seven (−2)-curves on S̃k by Lemma 2.9. Namely, S̃ is
of A5 + A2-type. If (n, n(1)) = (3, 3), then there exists at most a singular point of type A1 on

Sk other than x0 and x1 by a similar argument using Lemma 2.9. Namely, S̃ is then of 2A3 or
2A3 +A1-type.

Assume that D satisfies the condition (B). Then the pair (n, n(1)) is (3, 1), by Proposition
4.9(7). In particular, we see r = 1. Otherwise, supposing r ≥ 2 and taking the divisor (−K

S̃
k

)−
∑2

i=1

∑n(i)
j=1Mi,j on S̃k, which is the divisor as in (a) in Table 4, we have n(2) = 3 by the

argument similar to the above, however, it is a contradiction to n(1) ≥ n(2). Hence, if there
exists a singular point on Sk other than x0 and x1, then there exist exactly two singular points

of type A1 on Sk, which lie in the same Gal(k/k)-orbit. Indeed, there is no A3 +mA1-type of S̃

for m ≥ 4 by the classification of types of weak del Pezzo surfaces. Namely, S̃ is then of A3+A1

or A3 + 3A1-type. �

Lemma 5.18. Let the notation and the assumptions be the same as above. If r = 0, then the
following assertions hold:

(1) x0 is not of type A4 on Sk. Namely, n = 2, 3 or 5.

(2) S̃ is not of A2 + 2A1-type.

(3) S̃ is of (A5)
′, (A3 + 2A1)

′′, A3, 3A2, A2 + 3A1 or A2-type.

Proof. In (1), supposing that the singular point x0 is of type A4 on Sk, let {Mj}1≤j≤4 be all irre-
ducible components of the exceptional set of the minimal resolution at x0 with the configuration

as in (4.7) and let D be the divisor on S̃k defined by D := (−K
S̃
k

)− (M1 + 2M2 + 2M3 +M4),

which is the divisor as in (b) in Table 4. Notice that D is defined over k. By Proposition
4.9(1) and (8), we see that D satisfies the condition (A). In particular, by Proposition 4.9(2),

there exist two (−1)-curves E2 and E3 on S̃k such that D ∼ E2 + E3. Hence, the dual graph

of
∑4

j=1Mj + E1 + E2 is as follows, where “◦” and “•” mean a (−2)-curve and a (−1)-curve,
respectively:

◦
M1

◦
M2

• ♦♦
♦♦♦

♦

E2

◦
M3

•❖
❖❖❖

❖❖

E3

◦
M4

Since the singular point x0 is of type A−
4 on S by assumption, E2 and E3 are defined over

k, respectively. This implies that the two Q-divisors E1 and E2 are included in Pic(S̃)Q =

Q[−K
S̃
]⊕

(⊕4
j=1Q[Mj]

)
since ρk(S) = 1. However, it is a contradiction to Proposition 4.9(6).
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In (2), supposing that S̃ is of A2 + 2A1-type, let y1 and y2 be two singular points of type A1

on Sk, let M0,1 and M0,2 (resp. M1,1, M2,1) be all irreducible components of the exceptional set
of the minimal resolution at x0 (resp. y1, y2) with the configuration as in (4.7) and let Di be

the divisor on S̃k defined by Di := (−K
S̃
k

)− (M0,1 +M0,2)−Mi,1, which is the divisor as in (a)

in Table 4 for i = 1, 2. By Proposition 4.9(1) and (7), we see that Di satisfies the condition (A),

for i = 1, 2. In particular, by Proposition 4.9(2), there exist two (−1)-curves Ei,1 and Ei,2 on S̃k
such that Di ∼ Ei,1+Ei,2. Hence, the dual graph of M0,1+M0,2+M1,1+M2,1+

∑2
i=1

∑2
j=1Ei,j

is as follows, where “◦” and “•” mean a (−2)-curve and a (−1)-curve, respectively:

◦M1,1

•♦♦♦♦♦♦

E1,1
◦

M0,1

◦
M0,2

•
E2,1

◦❖
❖❖❖

❖❖

M2,1

•❖
❖❖❖

❖❖

E1,2

◦ •
E2,2

◦♦♦♦♦♦♦

Since the singular point x0 is of type A−
2 on S by assumption, M0,1 is defined over k. Hence, so

is the union E1,1 + E2,1. This implies that the Q-divisor E1,1 + E2,1 is contained in Pic(S̃)Q =

Q[−K
S̃
]⊕

(⊕2
j=1Q[M0,j]

)
⊕

(⊕2
i=1 Q[Mi,1]

)
since ρk(S) = 1. Hence, we have:

E1,1 + E2,1 ∼Q (−K
S̃
)− 1

3
(2M0,1 +M0,2)−

1

2
M1,1 −

1

2
M2,1

by Lemma 4.1 combined with the above graph, however, by the above formula, we then obtain
−2 = (E1,1 + E2,1)

2 = −5
3 , which is absurd.

In (3), if x0 is the only singular point of Sk, then we see that S̃ is of (A5)
′, A3 or A2-type

by the assumptions and (1). In what follows, assume that there exists a singular point y on Sk
other than x0. Since r = 0, there exists a singular point y′ other than y on Sk such that y and y′

are included in the same Gal(k/k)-orbit. Moreover, since there are at most seven (−2)-curves on
S̃k by Lemma 2.9, the singular point y is of type A1 or A2 on Sk. If y is of type A2 on Sk, then

all singular points on Sk are only x0, y and y′, namely, S̃ is then of 3A2-type. In what follows,

we can thus assume that any singular point on S̃k other than x0 is of type A1. Then S̃ is of

An+sA1-type for some integer s. In particular, we precisely see that S̃ is then of (A3+2A1)
′′ or

A2 + 3A1-type by the classification of types of weak del Pezzo surfaces combined with (2). �

Next, we shall treat the case of d = 1. Notice that the singular point x0 is of type D−
5 , E

−
6 or

A−
n for some 2 ≤ n ≤ 7, since S does not satisfy any condition on singularities of (1) and (3) in

Theorem 1.6. If the singular point x0 is of type D−
5 or E−

6 on S, then we obtain the following
lemma by the argument similar to Lemma 5.17:

Lemma 5.19. With the notation and the assumptions as above, assume further that Sk has a

singular point, which is k-rational, of type D−
5 or E−

6 on S, then the type of S̃ is one of the
following according to the number of r:

(1) r > 0: D5 +A3 or E6 +A2-type.
(2) r = 0: D5 + 2A1, D5 or E6-type.

Proof. By assumption of this lemma, we may assume that the singular point x0 is of type D−
5

or E−
6 on S. We only treat the case where the singular point x0 is of type D−

5 , the other cases
are similar and left to the reader.

In (1), let {Mi,j}1≤j≤n(i) be all irreducible components of the exceptional set of the minimal
resolution at xi for i = 0, 1 with the configuration as in (4.8), where n(0) := 5, and let D be the

divisor on S̃k defined by D := 2(−K
S̃
k

)− (2M0,1 +2M0,2 +3M0,3 +2M0,4 +M0,5)−
∑n(1)

j=1 M1,j ,

which is the divisor as in (f) in Table 4. Notice that D is defined over k. By the argument
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similar to Lemma 5.17, we see that n(1) = 3. In particular, all singular points on Sk are only

x0 and x1 since there are at most eight (−2)-curves on S̃k by Lemma 2.9. Namely, S̃ is then of
D5 +A3-type.

In (2), if there exists a singular point other than x0 on Sk, then there exist exactly two

singular points of type A1 on Sk, which lie in the same Gal(k/k)-orbit, by a similar argument

using Lemma 2.9. Namely, S̃ is then of D5 or D5+2A1-type. Indeed, there is no D5+3A1-type

of S̃. (We also note that there is no E6 + 2A1-type of S̃. ) �

In what follows, we shall treat the case that Sk does not allow any singular point, which is

k-rational, of type D−
5 or E−

6 . Thus, the singular point x0 is of type A−
n for some 2 ≤ n ≤ 7.

By the argument similar to Lemmas 5.17 and 5.18, we obtain the following two lemmas:

Lemma 5.20. Let the notation and the assumptions be the same as above. If r > 0, then the

type of S̃ is one of the following according to the number of r:

(1) r ≥ 2: A5 +A2 +A1-type.
(2) r = 1: A7 +A1, A5 +A2, 2A4 or (A5 +A1)

′-type.

Proof. Let {Mi,j}1≤j≤n(i) be all irreducible components of the exceptional set of the minimal
resolution at xi for i = 0, 1, . . . , r with the configuration as in (4.7), where n(0) := n.

In (1), let D be the divisor on S̃k defined by D := 2(−K
S̃
k

) −∑2
i=0

∑n(i)
j=1Mi,j , which is the

divisor as in (c) in Table 4. Notice that D is defined over k. By the argument similar to Lemma
5.17, we see that (n, n(1), n(2)) = (5, 2, 1) or (2, 5, 1). In particular, all singular points on Sk are

only x0, x1 and x2 since there are at most eight (−2)-curves on S̃k by Lemma 2.9. Namely, S̃
is then of A5 +A2 +A1-type.

In (2), at first, we assume that n ≥ 4. Let D be the divisor on S̃k defined by D := 2(−K
S̃
k

)+

(M0,1 +M0,n)− 2
∑n

j=1M0,j −
∑n(1)

j=1 M1,j, which is the divisor as in (d) in Table 4. Notice that

D is defined over k. By the argument similar to Lemma 5.17, we see that (n, n(1)) = (7, 1),
(5, 2) or (4, 4) (resp. (5, 1)) if D satisfies the condition (A) (resp. (B)). In particular, all singular
points on Sk defined over k are only x0 and x1 by a similar argument using Lemma 2.9. Namely,

S̃ is then of A7+A1, A5+A2, 2A4 or (A5+A1)
′-type. Here, note that there is no A5+3A1-type

of S̃ by the classification of types of weak del Pezzo surfaces.
On the other hand, if n < 4, then we have n(1) ≥ 4 since S does not satisfy the condition on

singularities of (3) in Theorem 1.6. The same argument as above applies with the role of i = 0
and i = 1 exchanged. �

Lemma 5.21. Let the notation and the assumptions be the same as above. If r = 0, then the
following assertions hold:

(1) x0 is not of type A2, A3 nor A6 on Sk. Namely, n = 4, 5 or 7.

(2) S̃ is not of A5 + 2A1 nor A4 + 2A1-type.

(3) S̃ is of (A7)
′, A5 or A4-type.

Proof. In (1), since r = 0, for any singular point y other than x0 on Sk, there exists a singular

point y′ other than y on Sk such that y and y′ are included in the same Gal(k/k)-orbit. Moreover,

since there are at most eight (−2)-curves on S̃k by Lemma 2.9, the singular point y is of type
A1, A2 or A3 on Sk. Hence, we see that n ≥ 4 since S does not satisfy the condition of (3) in
Theorem 1.6.

Supposing that the singular point x0 is of type A6 on Sk, let {Mj}1≤j≤6 be all irreducible
components of the exceptional set of the minimal resolution at x0 with the configuration as

in (4.7). Letting D be the divisor on S̃k defined by D := 2(−K
S̃
k

) − (M1 + 2M2 + 3M3 +

3M4 + 2M5 +M6), which is the divisor as in (e) in Table 4 and is defined over k, we obtain a
contradiction by the argument similar to Lemma 5.18(1).
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In (2), otherwise, let y1 and y2 be two singular points of type A1 on Sk, let {M0,j}1≤j≤n (resp.
M2,1, M3,1) be all irreducible components of the exceptional set of the minimal resolution at

x0 (resp. y1, y2) with the configuration as in (4.7). Letting D be the divisor on S̃k defined by
D := 2(−K

S̃
k

)−∑n
j=1M0,j−M1,1−M2,1, which is the divisor as in (c) in Table 4 and is defined

over k, we obtain a contradiction by the argument similar to Lemma 5.18(1).
In (3), by the classification of types of weak del Pezzo surfaces combined with the assumption

n ≥ 4, S̃ is of An + sA1-type for some integer s = 0 or 2. Moreover, we precisely see that S̃ is
then of (A7)

′′, A5 or A4-type by (2) and a similar argument using Lemma 2.9. �

Proposition 5.16 follows from Lemmas 5.17, 5.18, 5.19, 5.20 and 5.21.
Conversely, for any type of weak del Pezzo surface in the list of Proposition 5.16, there exists

certainly a Du Val del Pezzo surface S over k with ρk(S) = 1 admitting a singular point of

type A−
n , D

−
n or E−

n such that its minimal resolution S̃ is of this type. Indeed, we can explicitly

construct a birational morphism τ : S̃ → F2 over k and the contraction σ : S̃ → S of all
(−2)-curves, so that S is the Du Val del Pezzo surface of Picard rank one (see also §§5.5, for

detailed constructions of such morphisms τ). Here, S̃ is a weak del Pezzo surface such that

its Picard number is the number, which is summarized in “ρk(S̃)” in Table 9 according to the

type of S̃. Furthermore, the singularity types of all singular points on Sk, which are k-rational,

are summarized in “k-rat. sing. ” in Table 9 according to the type of S̃. As an example, in the
case d = 2 and of 3A2-type, Sk has three singular points of type A2. If ρk(S) = 1, then one

is k-rational and of type A−
2 on S, however, the others lie in the same Gal(k/k)-orbit, namely

ρk(S̃) = ρk(S) + 4 = 5.
At the end of this subsection, we shall present the notation in Table 9. The meanings of

“k-rat. sing. ” and “ρk(S̃)” have already been presented. “Dual graph” in Table 9 means the

dual graph corresponding to the union of all (−2)-curves and some (−1)-curves on S̃. Here, “◦”
and “•”mean a (−2)-curve and a (−1)-curve, respectively. For all types of S̃ in the list in Table

9, the union of the (−1)-curves on S̃ corresponding to all vertices • in Table 9 certainly exists
and is further defined over k. The existence of these curves can be shown by using Propositions

2.7(1) and 4.9 with suitable choices of divisors on S̃k. These dual graphs will be used for the

construction of cylinders on the surfaces S̃ in §§5.5.

5.5. Proof for the “if” part of Theorem 1.6(4). Let the notation and assumptions be the

same as in Proposition 5.16. Then the type of S̃ is one of those in Table 9. In this subsection,
we shall show the “if” part of Theorem 1.6(4). In other words, we will explicitly construct a
cylinder on S according to the type in the list in Table 9.

Lemma 5.22. With the notation and assumptions as in Proposition 5.16, assume further that
one of the following conditions holds:

• d = 2 and S̃ is of one of those in the list of Table 9;

• d = 1 and S̃ is of A7 +A1, D5 + 2A1, (A7)
′, D5 + 2A1, E6 or D5-type.

Then S contains a cylinder.

Proof. In the case of d = 2, let N be the union of all (−2)-curves on S̃. At first, we shall deal

with the cases in which S̃ is of (A5)
′, (A3 + A1)

′ and A3-type. For these cases, we can take a

birational morphism τ : S̃ → W4, which is the compositions of the successive contractions of the
(−1)-curves corresponding to the vertices • in the dual graph in Table 9 and that of the proper
transform of the branch components such that all curves corresponding to vertices with no label

in the dual graph in Table 9 are contracted by τ , according to the type of S̃, whereW4 is a weak
del Pezzo surface of degree 4 and of (2A1)<-type over k. Note that, by construction, τ is defined
over k. Moreover, the image of the reduced curves corresponding to all vertices of this dual graph
via τ is the union of eitherM1+M2+Γ orM1+M2+Γ1+Γ2, whereM1 andM2 are (−2)-curves
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Table 9. Types of S̃ in the “if” part of Theorem 1.6(4)

d

Type

Dual graph d

Type

Dual graph(k-rat. sing.) (k-rat. sing.)

ρk(S̃) ρk(S̃)

2

A5 +A2 ◦
M
◦
C3

• ◦ · · ·︸ ︷︷ ︸
5-vertices

◦
2

2A3 +A1

◦
F

◦
M

◦
C2

• ◦ ◦ ◦
•◦

(A−
5 , A

−
2 ) (A−

3 , A
−
3 , A

+
1 )

8 8

2

2A3

◦
M
◦
F
◦
C2

• ◦ ◦ ◦
• ❖❖ •♦♦

2

A3 + 3A1

◦
F

◦
M

◦
C2

•♦♦ ◦
•❖❖ ◦

•◦
(A−

3 , A
−
3 ) (A−

3 , A
+
1 )

7 6

2

3A2

◦
M
◦
C3

•♦♦ ◦ ◦
•❖❖ ◦ ◦ 2

(A5)
′

◦
M1

◦
Γ1

◦
•
◦
Γ2

◦
M2

(A−
2 ) (A−

5 )

5 6

2

(A3 + 2A1)
′′

◦
M
◦
F
◦
C2

•♦♦ ◦
•❖

❖
◦

• ❖❖ •♦♦
2

A2 + 3A1

◦
C3

•♦♦ ◦
• ◦
•❖

❖
◦

◦
M

(A−
3 ) (A−

2 )

5 4

2

(A3 +A1)
′

◦
Γ

◦
M1

◦
M2

•◦
2

A3

◦
M1

◦
Γ
◦
M2

• ❖❖ •♦♦
(A−

3 , A
+
1 ) (A−

3 )

5 4

2

A2 ◦
M
◦
C3

• ♦♦· · ·︸ ︷︷ ︸
6-vertices

••❖❖ 1

A7 +A1

◦ ◦ ◦ ◦◦◦◦
•◦ • Ẽ

(A−
2 ) (A−

7 , A
+
1 )

3 9

1

E6 +A2

◦
5○

◦
4○
◦
3○
◦
L3

◦
2○

◦
L1

•
9○
◦
8○
◦
7○

1

D5 +A3

◦◦ ◦ • ◦ ◦ ◦
◦◦ • Ẽ

(E−
6 , A

−
2 ) (D−

5 , A
−
3 )

9 9

1

A5 +A2 +A1 •
10○
◦
9○
◦
8○

◦
7○
◦
6○

◦
3○

◦
2○

◦
1○

•
5○

◦
4○

1

2A4 ◦
8○

◦
1○

◦
7○
◦
6○

•
13○
◦
12○
◦
11○
◦
10○
◦
9○

(A−
5 , A

−
2 , A

+
1 ) (A−

4 , A
−
4 )

9 9

1

(A7)
′

◦ ◦ ◦ ◦◦◦◦
• Ẽ 1

D5 + 2A1

◦
F

◦
M

◦
C2

•♦♦ ◦
•❖❖ ◦

◦◦ •Ẽ
(A−

7 ) (D−
5 )

8 7

1

A5 +A2 •
10○
◦
9○
◦
8○

◦
7○
◦
6○

◦
3○

◦
2○

◦
1○

• ❄❄
5○

•
⑧⑧

4○

1

E6

◦ ◦ ◦◦◦
◦ • Ẽ

(A−
5 , A

−
2 ) (E−

6 )

8 7

1

(A5 +A1)
′

•
5○

◦
4○

◦
3○

◦
7○
◦
6○

◦
2○

◦
1○

1

D5

◦ ◦◦
◦◦ • Ẽ

(A−
5 , A

+
1 ) (D−

5 )

7 6

1

A5

•
4○

◦
⑧⑧

3○

•
❄❄

5○

◦
7○
◦
6○

◦
2○

◦
1○

1

A4
◦
1○

◦
8○
◦
7○
◦
6○(A−

5 ) (A−
4 )

6 5
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onW4,k, Γ is a 0-curve on W4,k, and Γ1 and Γ2 are (−1)-curves on W4,k meeting transversally at

a point. Notice that these curves onW4,k are in one-to-one correspondence to these vertices with

a label of this dual graph. Since two (−2)-curves on W4,k admit a k-rational point respectively,

W4 contains a cylinder, which contains τ∗(N) in its boundary (see also §§3.2). Thus, S̃ contains

a cylinder Ũ , which contains N in its boundary. Therefore, we see that S contains a cylinder

σ(Ũ) ≃ Ũ .
In what follows, we shall deal with the remaining cases. For all remaining cases, we can take

a birational morphism τ : S̃ → F2, which is the compositions of the successive contractions of
the (−1)-curves corresponding to the vertices • in the dual graph in Table 9 and that of the
proper transform of the branch components such that all curves corresponding to vertices with

no label in the dual graph in Table 9 are contracted by τ , according to the type of S̃. Note that,
by construction, τ is defined over k. Moreover, the image of the reduced curves corresponding
to all vertices of this dual graph via τ is the union of either M + F + C2 or M + C3, where
M is the (−2)-curve on F2, F is a closed fiber of the P1-bundle F2 → P1

k and Cn is a rational
curve on F2 with Cn ∼ M + nF for n = 2, 3. Notice that these curves on F2 are in one-to-one
correspondence to these vertices with a label of this dual graph. For all cases, F2 contains a
cylinder, whose boundary includes the above union of curves, by Lemma 2.14. Thus, we see
that S contains a cylinder by an argument similar to the above.

In (2), for all cases, the dual graph in Table 9 corresponding to the type of S̃ contains a vertex

with a label written Ẽ. This vertex corresponds to a (−1)-curve on S̃k, which is defined over

k. Letting Ẽ be this (−1)-curve on S̃, we can take the contraction τ : S̃ → W2 of Ẽ over k, so
that W2 is a weak del Pezzo surface of degree 2, whose type is one of those in the list in Table

9, moreover, the point τ(Ẽ) lies on a curve, which corresponds to a vertex with no label in the
dual graph in Table 9 according to the type of W2. Thus, we see that S contains a cylinder by
using (1). �

In order to deal with all remaining cases, we shall recall how to construct cylinders in del
Pezzo surfaces with Du Val singularities found in [6, §§4.2–4.3]. More precisely, we construct

two birational morphisms g : Š → S̃k and h : Š → P2
k
over k (but not necessarily defined over

k) in such a way that there exists a suitable cylinder U in P2
k
, which would be preserved via

g ◦ h−1 : P2
k
99K S̃k and (g ◦ h−1)(U)∩ Supp(N) = ∅, where N is the union of all (−2)-curves on

S̃k. In particular, Sk contains the cylinder (σ ◦ g ◦ h−1)(U). In the following lemmas (Lemmas
5.23, 5.25 and 5.26), in order to show that above argument is still working well over k, we shall
prove that g and h are defined over k. In the proofs for Lemmas 5.25 and 5.26, we look at the
corresponding dual graphs in Table 9 and [6, Table 1]. We note that the numbering something
like i○ in Table 9 corresponds to that in [6, Table 1].

Lemma 5.23. Let the notation and assumptions be the same as in Proposition 5.16. If d = 1

and S̃ is of E6 +A2, A5 +A2 +A1, 2A4 or A5 +A2-type, then S contains a cylinder.

Proof. For all cases, we see that any (−2)-curve on S̃k is defined over k by the configuration
of singular points on Sk (see also Table 9). In particular, any point meeting two (−2)-curves
on S̃k is also defined over k. Then we can construct a birational morphism g : Š → S̃k, whose

Š is that as in [6, §§4.2] according to the type of S̃, defined over k. Indeed, we shall consider
a sequence of some blow-ups at some k-rational points starting at an intersection point of two

(−2)-curves on S̃k (according to the type of S̃) and including infinitely near points such that we

obtain the configuration of “Construction” in [6, Table 1] according to the types of S̃. Moreover,
we immediately have a birational morphism h : Š → P2

k
, which plays same role as h in [6, §§4.2].

This h is clearly defined over k. Therefore, we see that S contains a cylinder. �
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Remark 5.24. In Lemma 5.23, if S̃ is of E6 +A2, A5 +A2 +A1 or 2A4-type, then we could have

also inferred the same result from the fact that g : Š → S̃k and h : Š → P2
k
are clearly defined

over k, where g and h are those as in [6, §§4.2]. Indeed, for these types, all (−1)-curves and

(−2)-curves on S̃k are defined over k since ρk(S̃) = ρk(S̃k) = 9.

Lemma 5.25. Let the notation and assumptions be the same as in Proposition 5.16. If d = 1

and S̃ is of (A5 +A1)
′ or A5-type, then S contains a cylinder.

Proof. Let Mi be the smooth rational curve on S̃k corresponding to the vertex with a label

written i○ in the weighted dual graph of Table 9. There exists a (−1)-curve Ẽ on S̃k, which is

defined over k, such that (Ẽ ·Mi) = δ1,i+ δ6,i by Lemma 4.4(1). Hence, we obtain the birational

morphism τ : S̃ →W4 over k with the reduced exceptional divisor M4+M5+ Ẽ, so that W4 is a
weak del Pezzo surface of degree 4 and of (2A1)<-type. Notice that τ∗(M2)k and τ∗(M7)k (resp.
τ∗(M1)k and τ∗(M6)k) are (−2)-curves (resp. (−1)-curves) on W4,k. By Proposition 2.7(1), we

know that τ∗(M7)k meets exactly four (−1)-curves such that one is τ∗(M6)k. Let E be the union
of three (−1)-curves meeting τ∗(M7)k other than τ∗(M6)k on W4,k. Noting that E is defined

over k, so is τ−1
∗ (E). Moreover, τ−1

∗ (E)k consists of three (−1)-curve on S̃k corresponding to
curves with a label written 8○, 9○, 10○ in [6, Table 1]. Thus, we can construct two birational

morphisms g : Š → S̃k and h : Š → P2
k
, which play same role as in g and h in [6, §§4.2], defined

over k (see the following weighted dual graph):

(A5 +A1)
′-type : ◦

M1 ◦
M2 ◦

M3

•
M5

◦
M4

◦
M7

•☞
☞
•
✷✷

•︸ ︷︷ ︸
τ−1
∗ (E)

◦
M6 g←− ◦1○ ◦2○ ◦−3

3○

•
5○

◦
4○

◦
L1 •

L2 ◦−4

7○

•☞
☞

8○
•
✷✷

10○
•
9○

◦6○ h−→ ◦
1

h∗(L1) ◦
1

h∗(L2)

A5-type : ◦
M1 ◦

M2 ◦
M3

•☞
☞

M4

•
✷✷

M5

◦
M7

•☞
☞
•
✷✷

•︸ ︷︷ ︸
τ−1
∗ (E)

◦
M6 g←− ◦1○ ◦2○ ◦−3

3○

•☞
☞

4○
•
✷✷

5○

◦
L1 •

L2 ◦−4

7○

•☞
☞

8○
•
✷✷

10○
•
9○

◦6○ h−→ ◦
1

h∗(L1) ◦
1

h∗(L2)

Here, in the above graph, the numbering something like i○ corresponds to that in [6, Table
1] and vertices “◦” and “•”, whose weights are omitted, mean a (−2)-curve and a (−1)-curve,
respectively. Therefore, we see that S contains a cylinder. �

Lemma 5.26. Let the notation and assumptions be the same as in Proposition 5.16. If d = 1

and S̃ is of A4-type, then S contains a cylinder.

Proof. Let Mi be the (−2)-curve on S̃ corresponding to the vertex with a label written i○ in

the dual graph of Table 9. There exists a (−1)-curve Ẽ on S̃k, which is defined over k, such

that (Ẽ · Mi) = δ1,i + δ6,i by Lemma 4.4(1). Hence, we have the contraction τ1 : S̃ → W2

of Ẽ over k, so that W2 is a weak del Pezzo surface of degree 2 and of A2-type. Notice that
τ1,∗(M7)k and τ1,∗(M8)k (resp. τ1,∗(M1)k and τ1,∗(M6)k) are (−2)-curves (resp. (−1)-curves)
on W2,k. By Proposition 2.7(1), we know that τ1,∗(M8)k meets exactly six (−1)-curves such

that one is the τ1,∗(M1)k. Let E be the union of five (−1)-curves meeting τ1,∗(M8)k other

than τ1,∗(M1)k on W2,k. Noting that E is defined over k, so is τ−1
1,∗ (E). Moreover, τ−1

1,∗ (E)k
consists of five (−1)-curves on S̃k corresponding to curves with a label written 9○– 13○ in [6,
Table 1]. On the other hand, we have the contraction τ2 :W2 → F2 of τ1,∗(M1) +E over k. Set

M := τ∗(M7), F0 := τ∗(M6) and C3 := τ∗(M8), where τ := τ2 ◦ τ1 : S̃ → W2 → F2. Then we see
Pic(F2) = Z[M ] ⊕ Z[F0] and C3 ∼ M + 3F0 (cf. Lemma 5.22(1)). Since (F0 · C3) = 1, F0 and
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C3 meet transversely at a point, say p, which is k-rational. Moreover, we see that there exists
a unique curve C2 on F2 such that C2 ∼M + 2F and i(C2, C3; p) = 3, where i(C2, C3; p) is the
local intersection multiplicity at p of C2 and C3. Notice that C2 is defined over k. Moreover,
τ−1
∗ (C2), which is also defined over k, corresponds to the curve with a label written 5○ in [6,

Table 1]. Thus, we can construct two birational morphisms g : Š → S̃k and h : Š → P2
k
, which

play same role as in g and h in [6, §§4.2], defined over k (see the following weighted dual graph):

◦
M1 ◦

M8

•☞
☞
•
✷✷

• ③
③③

•
❉❉

❉

•︸ ︷︷ ︸
τ−1

1,∗ (E)

◦
M7 ◦

M6 g←− ◦
1○

−3
◦
3○ ◦

4○

•
5○

◦
2○

−3
•
L1 ◦

L2 ◦−6

8○

•☞
☞

10○
•
✷✷

12○
• ③

③③

9○
•

❉❉
❉

13○
•
11○

◦
7○ ◦

6○ h−→ ◦
1

h∗(L1) ◦
1

h∗(L2)

Here, in the above graph, the numbering something like i○ corresponds to that in [6, Table
1] and vertices “◦” and “•”, whose weights are omitted, mean a (−2)-curve and a (−1)-curve,
respectively. Therefore, we see that S contains a cylinder. �

The “if” part of Theorem 1.6(4) follows from Proposition 5.16 and Lemmas 5.22, 5.23, 5.25
and 5.26.

6. Examples

In this section, we shall present some examples of Du Val del Pezzo surfaces of Picard rank
one and canonical del Pezzo fibrations.

At first, we treat some examples of Du Val del Pezzo surfaces of Picard rank one over k,
moreover, we shall discuss whether these surfaces contain or not a cylinder.

Example 6.1. Put ζ := −1+
√
−3

2 and let S be the cubic surface over Q defined by:

S :=
(
12z2w − 2x3 − y3 − 4w3 + 6xyw = 0

)
⊆ P3

Q = Proj(Q[x, y, z, w]).

Then S
Q

has exactly three singular points [ 3
√
2ζ i : 3

√
4ζ2i : 0 : 1] ∈ P3

Q
of type A1 for i = 0, 1, 2

(see also Remark 6.2). Let σ : S̃ → S be the minimal resolution over Q. Then there exists the

blow-down τ : S̃ → S6 over Q such that S6 is a smooth del Pezzo surface of degree 6. Hence,
S6,Q has six (−1)-curves, say {Ei}1≤i≤6. Moreover, the proper transform of these (−1)-curve by
τ ◦ σ−1 are defined by the following equations:

3
√
2ζ ix = y, x = ±

3
√
2

3
ζ i(ζ − 1)z +

3
√
2ζ iw

for i = 0, 1, 2. Since all (−1)-curves on S6,Q lie in the same Gal(Q/Q)-orbit, S6 is Q-minimal, in

particular, we obtain ρQ(S6) = 1. By construction of σ and τ , we also obtain ρQ(S) = 1. Thus,
S does not contain a cylinder by Theorem 1.5. Indeed, SQ does not allow any singular point

which is Q-rational (see also Tables 1 and 2). On the other hand, we know that SQ contains a

cylinder by [6, Theorem 1.5]. This implies that any cylinder on SQ is not defined over Q.

Remark 6.2. Let S and ζ be those as in Example 6.1 and let A be the square matrix of order 4
defined by:

A :=




3
√
2 3
√
2ζ 3

√
2ζ2 0

3
√
4 3
√
4ζ2 3

√
4ζ 0

0 0 0 3

1 1 1 0


 ∈ GL(4;Q).
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Then we obtain the projective transformation ϕA : P3
Q

∼→ P3
Q
associated to A and we see:

ϕ−1
A (SQ) =

(
w2(x+ y + z) + xyz = 0

)
⊆ P3

Q
= Proj(Q[x, y, z, w]).

It is easily to see that ϕ−1
A (SQ) has exactly three singular points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 :

0] ∈ P3
Q
, which are of type A1.

Example 6.3. Let S be the complete intersection of two quadrics over R in P4
R as follows:

S :=
(
x2 + y2 + wv = zw + wv + vz = 0

)
⊆ P4

R = Proj(R[x, y, z, w, v]).

Then S is a Du Val del Pezzo surface of degree 4 such that SC has exactly three singular points
p± := [1 :±

√
−1:0 :0 :0] and p := [0 :0 :1 :0 :0] in P4

C, which are of type A1. Since p+ and p− lie
in the same Gal(C/R)-orbit, we see ρR(S) = 1 (see also Table 1). Hence, S contains a cylinder
if and only if p is of type A+

1 on S, by Theorem 1.5. However, p ∈ S is actually of type A++
1 ,

that is, S does not contain any cylinder. Indeed, the exceptional set by the minimal resolution
at p does not have any R-rational point since it can be written locally as follows:

(u2 + v2 + 1 = 0) ⊆ A2
R = Spec(R[u, v])

for some two parameters u and v. Meanwhile, this example can not be constructed if the base
field of S is a C1-field (see Example 6.5).

Example 6.4. Let S be the del Pezzo surface over k of degree 2 defined by:

S :=
(
λw2 + x2y2 + xz3 = 0

)
⊆ P(1, 1, 1, 2) = Proj(k[x, y, z, w]),

where λ ∈ k\{0}. Then Sk has exactly two singular points p1 := [1 : 0 : 0 : 0], p2 := [0 : 1 : 0 : 0] ∈
P(1, 1, 1, 2), which are k-rational and of type A2 and (A5)

′, respectively. Namely, ρk(S) = 1 (see

also Table 9). Let σ : S̃ → S be the minimal resolution over k. By Example 4.10, we see that

S̃k contains reduced curves, whose union is defined over k, corresponding to the following dual

graph, where “◦” and “•” mean a (−2)-curve and a (−1)-curve on S̃k, respectively:

•
◦ ❏❏❏❏

◦ ◦ ◦ ◦
• t

tt
t

◦
❏❏

❏❏

◦
◦tttt

By Theorem 1.6(4) combined with the above dual graph, S contains a cylinder if and only if p1
is of type A−

2 on S. By easy computation, we see that the exceptional curve by the minimal
resolution at p1 ∈ S can be written locally as follows:

M := (λu2 + v2 = 0) ⊆ A2
k = Spec(k[u, v]).

for some two parameters u and v. Note that p1 ∈ S is of type A−
2 if and only if M is reducible.

Therefore, S contains a cylinder if and only if the element
√
−λ ∈ k with (

√
−λ)2 = −λ is

included in k.

In what follows, we treat three examples of canonical del Pezzo fibrations defined over C.

Example 6.5. Let f : X → Y be a canonical del Pezzo fibration of degree 3 or 4 over a curve Y
and let Xη be the generic fiber of f . For simplicity, we put S := Xη and k := C(Y ). Assuming

that Sk has a singular point x of type A1, which is k-rational, and let σ : S̃ → S be the minimal

resolution at x. Since x is defined over k, so is the exceptional curve E := σ−1(x). Note that
Ek is a (−2)-curve. Now, we see that E has a k-rational point since k = C(Y ) is a C1-field by

the Tsen’s theorem. In other words, the singular point x is always of type A+
1 on S (compare

Example 6.3). Therefore, by Theorem 1.5 combined with the above observation, we obtain that
f admits a vertical cylinder if and only if X

η,C(Y )
allows a singular point defined over C(Y ).
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Example 6.6. Note that the classification of Du Val del Pezzo surfaces of Picard rank one over
C is well-known, in particular, the degree of a Du Val del Pezzo surface of Picard rank one with
a singular point over C is 1, . . . , 6 or 8 (see, e.g., [22]). Let S be a Du Val del Pezzo surface of
Picard rank one with degree d ∈ {1, . . . , 6, 8} over C such that Sing(S) 6= ∅, let Y be an algebraic
variety over C and let X be the direct product S × Y . Then the second projection f : X → Y
is a canonical del Pezzo fibration of degree d. Let Xη be the generic fiber of f . For simplicity,
put k := C(Y ). Then all (−1)-curves and (−2)-curves on Xη,k are defined over k. Therefore, f

does not admit any vertical cylinder if and only if d = 1 and Xη,k allows only singular points of

types A1, A2, A3 or D4 by Theorems 1.4, 1.5 and 1.6. This condition is actually equivalent to
the condition that S does not contain a cylinder (see [1, Theorem 1.6]).

Example 6.7. Let O be a discrete valuation ring of the rational function field C(t) such that
the maximal ideal of O is generated by t, and let X be the 3-fold variety defined by:

X := (tnw2 + x2y2 + xz3 = 0) ⊆ PO(1, 1, 1, 2) = Proj(O[x, y, z, w]),

where n ∈ Z. Then we obtain the structure morphism f : X → Spec(O). Letting η be the
generic point on Spec(O), the generic fiber Xη of f can be written as follows:

Xη = (tnw2 + x2y2 + xz3 = 0) ⊆ PC(t)(1, 1, 1, 2) = Proj(C(t)[x, y, z, w]).

By Example 6.4, Xη is a Du Val del Pezzo surface over C(Y ) with ρC(t)(Xη) = 1 and of degree

2, moreover, Xη contains a cylinder if and only if
√−tn ∈ C(t). Hence, f is a canonical del

Pezzo fibration of degree 2, furthermore, f admits a vertical cylinder if and only if n is even.
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