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Abstract

Given the morass of available data, ranking and best match queries are often used to find records 

of interest. As such, k-NN queries, which give the k closest matches to a query point, are of 

particular interest, and have many applications. We study this problem in the context of the 

financial sector, wherein an investment portfolio database is queried for matching portfolios. 

Given the sensitivity of the information involved, our key contribution is to develop a secure k-NN 

computation protocol that can enable the computation k-NN queries in a distributed multi-party 

environment while taking domain semantics into account. The experimental results show that the 

proposed protocols are extremely efficient.
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1 Introduction

Nearest neighbor (NN) queries are an extremely important data analysis tool, and have been 

used in numerous domains. Indeed, they have been identified (in the form of k-NN 

classification) as one of the top 10 algorithms in data mining [17], though they can also be 

used for other applications such as regression, content retrieval, and structure prediction. 

While the typical use of k-NN does not worry about the sensitivity of the data, k-NN is also 

applicable in many cases where the data may be private, and the organization interested in 

querying is different from the organization holding the data.

Consider the financial environment, wherein we have several organizations (such as 

Ameritrade, Charles Schwab, etc.) which possess financial data about individuals, including 

their current stock positions, transactional history, etc. Now, a regulating agency such as the 

SEC may be interested in finding individuals who have a certain stock position, or have 

indulged in particular type of transactional behavior. Since perfect match is often difficult, 

best match queries are used to find the closest individuals of interest. Alternatively, a 
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financial advisor service might want to provide recommendations based on similar stock 

positions or transactional behavior. Typically, since financial data is extremely sensitive, the 

organizations may be unwilling or even (legally) unable to allow unfettered access to this 

data. However, in certain cases, there may be a lot of value associated to be obtained through 

computing the best match queries. For example, one can identify trading behavior of 

investors from their portfolio structures as shown by [3]; this kind of information is 

invaluable for numerous organizations e.g. State Exchange Commission (SEC) in the United 

States. Similar problems exist in the field of medicine, finance, and homeland security.

In this paper, we address this specific problem. We consider the scenario where several 

organizations possess independent portfolio databases, each record of which contains 

financial stock positions for a single portfolio. Together, these databases comprise the global 

database which contains the portfolios of all entities, though no third party exists which 

knows this global database in its entirety. Another organization, called the querier, would 

like to query this global database to retrieve the k portfolios that are the most similar to a 

particular query portfolio that it possesses. All of the organizations would like to protect the 

privacy of their information, while still enabling the computation. There has been some work 

addressing this problem in the past, especially in the context of outsourcing [7, 16]. Our 

proposed solution improves on the state of the art by providing a way to incorporate the 

domain semantics and is significantly more efficient. Our solution is also applicable in the 

outsourcing environment where an organization may want to outsource its database in 

encrypted form and still enable best match queries. Furthermore, our solution can be 

extended to provide top-k results based only on private ranking criteria (without reference to 

a specific query point) in an even more efficient fashion. It is worth noting that while the 

problem has been formulated in the context of financial domain, our approach is quite 

general and can be used to solve k-NN and top-k query problems in any domain. Overall, 

our key contributions are:

1. We introduce the notion of semantic distance which is useful in taking domain 

semantics into account while computing k-nearest neighbor queries.

2. We propose an extremely efficient multi-party protocol to compute k-NN queries 

that is robust to semi-honest adversaries.

3. We show how the protocol can be adapted to the outsourced data model and used 

for k-NN based classification without leaking any additional information.

2 Problem Statement

In this paper, we build a protocol for overcoming the privacy problem for situations where 

organizations (or people) are interested in finding the best matches for a query over 

distributed data. As discussed earlier, we formulate the problem in the context of the 

financial domain i.e., finding investment portfolios from a distributed database, which best 

match a given query portfolio in a dynamic and semantic aware environment, while also 

providing confidentiality and security-privacy guarantees to the parties involved in the 

protocol. We consider a database  is horizontally distributed among n parties P1,

…, Pn such that for all i ∈ [n] and  the database fragment  is kept by Pi 
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where . Each party Pi collects the same features of information but for 

different entities. These parties could be banks, hedge-funds, mutual-funds, or other 

institutions. Another party Q is interested in performing a k-NN query, which also 

incorporates structure and semantics, on this distributed data without revealing its query, 

while the parties owning data being queried want to avoid disclosure of their data except for 

the legitimate output of the query. Thus, the problem can be formally defined as follows:

Definition 1 (Distributed Secure k-NN query: DS-kNN)

Given a database , which is horizontally distributed among n parties with party 

Pi having fragment , a querier Q wants to privately find semantic distance 

(definition 3) based k-NN in  to its query q ∈  for N, M, n ∈ , where n ≥ 2.

Definition 2 (Security/Privacy)

A protocol Π computes DS-kNN query securely if it reveals nothing but k-NN records to Q 
with leakage  to all other parties with negligible probability in security parameter – a 

function, μ (m), is negligible in m if  for all sufficiently large m and 

polynomial p (m).

Hence definition 2 ensures that data owners do not learn anything about the query beyond 

what they already know or infer from leakage, and Q learns nothing about  beyond what it 

already knows and can infer from the output and leakage.

Adversarial Model

We assume all parties to be non-colluding and semi-honest (i.e., honest-but-curious) 

adversaries, who communicate over a secure channel. However, restriction on collusion 
among the data owners can be relaxed to the collusion of at least α data owners, where α ≤ 
n (total number of data owners). We can accomplish this (without any major change in the 

proposed protocol) by employing additive homomorphic encryption with threshold α, which 

for decryption will require α parties each performing partial decryption on an encrypted 

message.

3 Proposed Approach

We first introduce a notion of semantic awareness for distance metrics that can capture the 

desired level of granularity and structure for measuring similarity. For example, standard 

distance metrics such as Euclidean distance fails to capture structural and semantic 

information such as the industry or sector a stock belongs to, market capitalization, risk and 

type of the stock, etc. Consider an investor who would like to find similar portfolios, while 

incorporating portfolio structure and/or commodity relationships with regards to a particular 

categorization model (e.g., the industry classification of stocks [1]). Such a categorization 

model would typically be built by domain experts. We assimilate the categorization model 

into the distance metric, denoted sem_dist, which we term as the semantic distance. This 

enables the integration of semantic information representing the true interest of the querier, 
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while evaluating similarity among portfolios (or records). We now formalize the notion of 

semantic aware distance and then discuss how it will be calculated in a secure (and privacy-

preserving) manner.

Definition 3

Semantic Distance between two points X, Y ∈  is Euclidean distance between their linear 

projection in space , where l, M, ∈  and the projection is guided by a given 

categorization model (map, W), and is formalized as follows.

Here,  specifies the category cl ∈  to which the stock sj ∈ S should be mapped 

with  and S being set of all the categories and set of all stocks respectively. C ⊆  is the set 

of categories, for which sem_dist is to be calculated, whereas wlj in  gives 

the number of units of cl equivalent to one unit of sj. We also define signed-distance(X, Y) at 

a category level (cl) to be .

Tuple (map, W) defines categorization model. map gives the relationship among 

commodities e.g., Industrial Classification Benchmark (ICB) [1] provides a classification for 

stocks based on the sector and industry; equivalently map could specify the categorization 

based on market capitalization or some other type. W, here, could denote a weight factor to 

estimate equivalent worth of a stock in an industry or sector. In general, sem_dist allows 

for a richer query specification, which is very helpful. For example, sem_dist allows 

accounting for risk and/or diversity of each portfolio, while calculating distance between a 

portfolio and a query portfolio. Here we show, using an example, the effectiveness of 

semantic distance. Consider Table 1a, which contains three portfolios p1, p2 and p3. Each 

portfolio specifies the number of stocks of AAV, RDC, ICD, GTT and NOW held in it. The 

stocks in Table 1a are from Oil and IT sectors. Table 1b gives the conversion factor per share 

of a stock to equivalent dollar value in a sector. Now, consider an investor who wants to find 

a portfolio from Table 1a, which is the closest in terms of its value at sector level. If 

Euclidean distance is directly used, then the results are not meaningful, as can be seen from 

the results in Table 1c; i.e., according to Euclidean distance, p2 and p3 are equally close 

(similar) to p1, whereas we notice that in term of the value of portfolio at sector level, p1 

should be closer to p2 as compared to p3, since in contrast to p3, where only 15 shares of 

stocks are held in IT sector, p1 and p2 both hold 10 shares of stocks in Oil sector and 5 

shares of stocks in IT sector. On the other hand if we use semantic distance then the results 

corroborate with our intuition and the semantic meaning of the query asked by the investor; 

this can be seen from the calculated distances in Table 1d. Though the calculated Euclidean 

distance is spatially correct, it fails to capture a lot of domain, structural and semantic 

information.
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We stress that the proposed protocol is also able to calculate secure DS-kNN query based on 
simple Euclidean distance measure. In semantics distance formulation, this can be 

accomplished by a , which is bijective, and setting W to identity matrix of 

dimension |S| × |S|. This will essentially calculate the Euclidean distance between two 

points.

3.1 DS-kNN Query Protocol

Before presenting the details of the approach to compute the k closest portfolios as per the 

problem definition above, we first present the underlying assumptions, the notation used, 

and a few preliminaries. N, S and  are known to all the parties including querier. 

Furthermore, each data owner (Pi) knows the size (Nj ∀j ∈ [n]) of all databases fragments 

. The database can be viewed as a matrix. In rest of the paper by parties/party we mean 

parties/party owning data, whereas Q is referred to as querier. Additive homomorphic 

encryption (AHE) e.g., Paillier allows addition of two encrypted values and multiplication of 

encrypted value with a plain-text value. The plain text values on which AHE operates come 

from ; let us say for a given security parameter λ AHE accepts plain-text values from P(λ) 

such that ∀x ∈ P(λ), x < Λ, where Λ ∈ . We divide P(λ) into two halves where lower half 

is positive and upper half is negative (i.e. contains additive inverses of lower half). Whenever 

a text is decrypted it is converted to equivalent negative or positive value; additive inverse of 

an encrypted value x i.e., Epk[x], is Epk[x]Λ−1. As for the decimal values we can decide for a 

precision up to a decimal point d, then multiply each plain-text value with 10d and convert it 

to an integer value. λ ∈  is picked in such a manner that the finally computed plain-text 

value in encrypted form is always within the range. We also employ garbled circuit [19] for 

secure comparison.

The basic idea in DS-kNN is for data owners to encrypt the portfolio database and send it to 

Q, who calculates signed-distances w.r.t. its query, q, in encrypted form (Algorithm 1), and 

uses them to collaboratively calculate semantic distances in form of random shares with a 

data owner (Algorithm 1). A distributed rank query is then carried out to identify the indices 

of k portfolios with the smallest distances (Algorithm 2). Finally, Q retrieves portfolios, 

corresponding to the indices identified above, from the portfolio database.

We now discuss the details. In Algorithm 1 we outline the algorithm for DS-kNN, where a 

party Pt is picked at random from data owners to initiate the protocol. Pt can be picked by 

each party generating a random number ri from [n] and then calculating  mod (n 
+ 1) using secure sum [6]. Pt generates public-private (pk, sk) key pair of AHE and sends it 

to all data owners and pk to Q. Pt also picks two parties Pl and Pl′ randomly and lets all the 

parties know who they are. Next, every Pi first permutes its database, and creates encrypted 

shares  and . Note that these are homomorphically 

encrypted additive random shares of . Now Pi sends EPi to Pl and ERi to Pl′. This ensures 

that every database is split into two parts and thus prevents the leakage of any information to 

other parties or to Q. Pl and Pl′ put all of these shares together and permute them using a 

common random seed  (which can be done by having Pl and Pl′ each pick a random number 

and send it to the other and then compute the XOR of both random numbers). These 
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encrypted permuted shares (denoted EP and ER) are then sent to Q. At this point, Q also 

randomly permutes the received shares of the database to avoid linkage attack by data 

owners. Q can reconstruct the database by adding together the received shares of database in 

encrypted form. Q then proceeds to calculate signed-distance in encrypted form according to 

its specified (map, W) and C. This steps consists of addition of encrypted values and their 

multiplication by values in plain-text (weights), which can be done in encrypted form thanks 

to the additive homomorphism.

Algorithm 1

DS-kNN

Input:  at Pi ∀[n], security parameter and database of portfolios

Input: At Q: q, query; (map, W), categorization model; k, number of NN; m

Output: Q gets k-NN portfolios

1:  Generate random seed, si, at Pi ∀i ∈ [n]

2:  All data owners, P1, …, Pn, together pick t uniformly from [n]

3:  Pt generates (pk, sk), key pair, for AHE and shares it with all data owners, and pk with Q

4:  Pt picks l from [n] and l′ from [n] \ {l} uniformly and sends (l, l′) to all data owners

5:  for each Pi ∀i ∈ [n] do

6:

  Generate a matrix  of random numbers:  {Ni is the size of }

7:
  Permute the database 

8:
  Create encrypted random shares of 

9:   Send EPi to Pl and ERi to Pl′

10:
 Pl sets  {seed  is picked together by Pl and Pl′}

11:
 Pl′ sets 

12:  Pl and Pl′ respectively send EP and ER along with t to Q

13:
 Q permutes EP and ER using random seed 

14:  Q sets qenc = Epk[q](Λ−1)

15:  Q initializes matrices, T and DQ, of sizes N × |C| and N × 1, to have Epk[0]’s and 0’s resp.

16:  Pt initializes Dt as matrix of 0’s with size N × 1

17:  for each i ∈ [N] do

18:   for j ∈ {1,…, |S|} do

19:

   Q sets 

20:   for l ∈ {1 … |C|} do

21:    Q generates random numbers r and g and sets TQ[i, l] = −r2 + g

22:    Q sets vr = Epk [T[i, l]]·Epk [r](Λ−1) and vg = Epk[T[i, l]]2r·Epk(g)(Λ−1)

23:    Q sends (vr, vg) to Pt

24:    Pt sets Tt[i, l] = Dsk[vr]2 + Dsk[vg] {Dsk decrypts to equivalent +ive/−ive value}
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25:    Q sets DQ[i] = DQ[i] + TQ[i, l]

26:    Pt sets Dt[i] = Dt[i] + Tt[i, l]

27:  Q and Pt interactively find indices of k-smallest distances: I ← k-Smallest (DQ, Dt, k)

28:  return portfolios corresponding to I to Q by getting their random shares decrypted from Pt

Next, these signed distances need to be squared. This is accomplished by Q generating 

random numbers, r and g for each signed-distance, vi,l. Q sets its random share for the 

squared signed-distance to be , and sends Pt, Epk[vi,l − r] and Epk[2rvi,l − g]. Pt 

decrypts the received encrypted messages, converts them to appropriate negative or positive 

values as explained in preliminaries and sets its share to be . It is 

obvious that . Summing all shares of squared signed-distances of a portfolio 

will give the share of square of semantic distance for the portfolio. Thus Q and Pt can 

compute their shares for the distance for each portfolio since 

. At this point, the square of semantic distance 

between each portfolio and the query has been randomly split between Q and Pt. For the 

sake of efficiency we do not compute the square root of squared semantic distance. 

However, this does not impact correctness of the protocol. Henceforth, Q and Pt engage in 

an interactive protocol to compute the k smallest distances corresponding to k-NN 

portfolios. To find the k-smallest entries from the split distance vectors we develop a novel 

protocol k–Smallest that can accomplish this both securely and efficiently. We first 

present the simple-k-smallest (SKS) protocol, that efficiently computes the k-smallest 

entries without worrying about security. For a given a vector V containing unique values, v, 

and , the k-smallest values can be found as follows:

– 1: Set  and divide V into Vg = {v ∈ V : v > μ} and Vle = V \ Vg

– 2: If |Vle| > k, set V = Vle and go to step 1

– 3: If |Vle| ≤ k then set V = Vg,  and k = k − |Vle|

– 4: if k ≠ 0 go to step 1, terminates otherwise

Algorithm 2

k-Smallest(DQ, Dt, k)

Input: At Q: DQ, at Pt: Dt, such that DQ and Dt are random shares of the squared distances

Input: At Q, Pt: k, the number of closest records desired

Output: At Q: I, the array containing indices of smallest elements in DQ + Dt

1:  At Q: ∀i, VQ[i] = DQ[i] × |DQ|

2:  At Pt: ∀I, Vt[i] = [Dt][i] × |Dt| + i

3:  while k > 0 do

4:   Q sets (μQ, ℓ) = (mean(VQ), |VQ|), and Pt sets (μt, ℓ) = (mean(Vt), |Vt|)

5:   for i ∈1 … ℓ do

6:    Q sets UQ[i] = (VQ[i] − ⌊μQ⌋); Pt sets Ut[i] = (−Vt[i] + ⌊μt⌋)
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7:    if UQ[i] ≤ Ut[i] {At Q, Pt: Yao Comparison} then

8:

    Remove ith element from VQ and Vt and add to  and  at Q and Pt respectively

9:   for j ∈ {Q, t} do

10:

   if then

11:

    set 

12:    else

13:

    For each element in , add to I the index of corresponding element in Dj

14:

     

15:  return I

SKS terminates, since each iteration reduces size of V. Note that, only the correct distances 

are added to the output in step 3 since the distances in Vle are guaranteed to be smaller than 

the ones in Vg. SKS works very well for our problem setting and can easily be extended to 

be secure. Though any point in V instead of arithmetic mean can be used to split V without 
affecting correctness of the algorithm, choice of arithmetic mean as a split point is quite 
effective as long as subsets (of different sizes) of data are not highly skewed to the left for 
small values of k. This assumption does hold in real world data. Specifically, we show 

through empirical analysis that portfolio distances for real world stock market data [3] are 

but slightly skewed to left. We used portfolio data of hundred thousand individuals, which 

was collected over the period of three years from Swedish stock market [3]. We calculated 

the mean distance and variance for the mean distance over samples of various sizes (i.e., 

number of portfolios). Figure-1a depicts the percentile for mean distance and average 

percentiles for mean distances. It can be seen that mean distance is consistently at percentile 

60. Figure-1b depicts the variance for the above calculated percentile for mean distance, and 

the average variance, which asserts that percentile for mean distance does not vary much. 

The complexity of SKS for such a distribution will be O(|V|) regardless of value for k. In the 
case where data is highly skewed or follows exponential distribution or leakage function is 
different a randomly picked data points can be used as a split point instead.

Now we focus on devising a secure and distributed SKS so that it can be carried out on 

random shares of distances without violating the privacy. It is easy to see that if the first step 

of SKS can be performed in a secure and distributed form (note, in our case, DQ and Dt 

together give V), the remaining steps can be performed locally at Q and Pt.

SKS requires the distances in vector to be unique i.e. ∀i ∈ [N], DQ[i] + Dt[i] is unique. This 

is necessary, not only to guarantee that the protocol terminates but also to ensure security. In 

essence, if distances were non-unique, it could have been possible that all of the distances 

were same, thus resulting in Vle = V for all iterations. Since, in our case, uniqueness does 

not generally hold; therefore, we use a perturbation mechanism to achieve uniqueness. This 
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can be accomplished by scaling the distance of portfolio pi by N, and translating it by i. In 

the protocol, k–smallest, it is carried out as follows: Q multiplies DQ[i] with N while Pt 

multiplies Dt[i] with N and adds i to it (lines 1–2 of algorithm 2) (Note: 

), which will together gives us N × (DQ[i] + Dt[i]) + i. Next we need to 

devise a secure and distributed protocol to compute mean and identify indices of DQ or Dt 

for which distances (DQ[i] + Dt[i]) are greater than the mean. If we let mean distance to be μ 

= μQ + μt, where  and  then

The above observation tells us that result of comparing the distance for a record against the 

mean distance can be equivalently obtained by comparing the difference between random 

share and the mean of random shares. Note that since Q and Pt can locally compute this 

difference, the parties can simply use a secure comparison [19] (the garbled circuit 

approach) to compute the first step of SKS in a secure manner. Furthermore, Since we are 

using a finite integer field, it is possible that μQ and μt are fractional, and hence outside the 

field. To avoid this we use the output of floor-function on μQ and μt and employ the 

following comparison instead: DQ[i] − ⌊μQ⌋ > −Dt[i] + ⌊μt⌋, but it does not affect the 

performance of algorithm 2 since 0 ≤ μ−(⌊μQ⌋ + ⌊μt⌋) < 2. Since the remaining steps are 

local, both parties can calculate k-smallest entries securely and identify their corresponding 

indices in DQ or Dt.

Result Extraction—Using above found indices Q can identify and obtain k-NN portfolios 

from the encrypted database. Let I contain the indices of k-smallest distances and ∀j ∈ I, 

and  be the corresponding records in EP and ER then for all j, Q asks Pt for decryption of 

, where γj is uniformly picked vector of size |S| from an 

appropriate domain and ⊗ gives coordinate-wise product of two vectors. It is 

straightforward to compute Epk[φj] for homomorphically encrypted values and the original 

record tj from φj i.e., tj = φj − γj. Thus completing the protocol for computing sem_dist 

based k-NN for horizontally fragmented database in a privacy preserving fashion.

3.2 Extensions

We can easily extend the protocol devised above to work for the outsourced data model. It 

can also be used for k-NN classification. Both of these are briefly described below.

Outsourcing Case—Our protocol can very simply be applied for the case where the 

computation of data owners is transferred to the cloud in a secure manner. Parties can pick 

non-colluding, semi-honest and untrusted servers C1 and C2 to take responsibilities of Pl and 

Pl′ respectively except for creation random shares of their databases and their encryption. 

All the responsibilities of Pt for distance and k-smallest computation along with decryption 

for result retrieval phase are handed to one of the servers. Once responsibilities have been 

assigned to C1 and C2, following the protocol stated in DS-kNN will compute k-NN 

securely in cloud.
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k-NN Classification Case—The proposed protocol also has the ability to carry out k-NN 

classification with a very small modification. Let us say there are G classes with labels {1, 2,

…, G}. We append each database fragment with G new columns and name them 1, 2,…, G. 

For each row with class label g only column g of the appended G columns will have the 

value 1, and value 0 for the others. Now all the steps outlined in DS-kNN are carried on the 

database with appended columns, except for the result retrieval step; furthermore, appended 

columns are not used for k-NN computations. Once Q has identified k-NN records in 

encrypted database, it computes a vector , where ∀g ∈ [G],  contains k minus the sum 

of values in column g of k-NN records i.e., k minus the number of votes for each class; thus 

smaller the value , higher the number of votes for class g. Next, Q permutes , creates 

random shares of values in  and send them to Pt, after which both Q and Pt follow k-

smallest protocol withG k = 1. At the end of k-smallest Q is able to identify the class 

of its instance q.

4 Complexity Analysis

Let N be the number of portfolios in database  horizontally distributed among parties P1,

…Pn, where each record is of dimension M = |S|. The asymptotic computational complexity 

of DS-kNN is O(N2) = O(NM, N × |C| + N2) since in the worst case there will be O(NM) 

encryption and O(N × |C|) decryption operations along with O(N2) secure comparison by 

data owners, whereas querier will perform O(N × |C|) arithmetic operations on encrypted 

values and O(N2) secure comparisons; furthermore, in most of the application scenarios M, |

C|, k ≪ N.

It is important to note that in real world data for portfolios require only O(N) comparison to 

find k smallest entries as shown in Figure 1 and is explained in section 6. Moreover, |C| 
would also be much smaller as compared to |S| because thousands of stocks are traded in the 

market. So for all practical purposes asymptotically complexity for our problem will be 

O(NM) Following the same reasoning as above the asymptotic communication complexity 

of DS-kNN will also be O(NM).

With respect to the communication complexity, it may appear that the cost of transferring the 
entire database over is excessive. While this is true in terms of the communication itself, 
both the monetary and time cost of doing this is negligible, since currently available 

bandwidth and speed are quite high e.g, currently ISPs are providing 1000 Mbps connection 

to residential users and small businesses, which allows an encrypted database of million 

rows and ten attributes to be transferred in matter of few seconds. On the other hand, in 

many cases cost and the time required for secure operations are significantly higher than that 

of required for data transfer. Additionally, many of the secure protocols including [7, 12] 

require transferring complete database between/among the parties. Therefore, we believe 

that this cost is reasonable.

5 Security Analysis

In this section we analyze the security of DS-kNN under the framework of definition 2. We 

want to show the following:
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DS-kNN is secure if probabilistic polynomial time simulators  and 

 can respectively simulate the view of  and Q 

during the execution of DS-kNN.

This means that if  is provided with Pi’s input  and leakage  (which gives (J, j1,

…,jJ, N1,…, Nn, |C|)), and  with Q’s input (m, q, (map, W)) and output (  i.e. k-NN 

records) along with  (which gives (J, j1,…, jP, N, S)) then these simulators will have the 

same view as their respective parties; thus asserting that DS-kNN reveals no extra 

information and does fulfill the security definition 2. In the output of leakage functions J is 

the total number of iterations taken in Algorithm 2 corresponding to  and q, jℓ is the 

percentile of mean distance in ℓth iteration, whereas rest of the symbols are same as defined 

previously.

Let us analyze  for the situation where j = t and also j ∈ {l, l′} (l, l′ and t are as per 

specification in Algorithm 1) since such a party, Pj, will receive the biggest set of 

intermediate messages, in all other cases parties receive less information. Pj’s view consists 

of its input , random shares  of database fragments, random 

shares  of distances at category level, random seeds , random-tape (rj ∈ 
{0,1}p(m)) and . Pj’s view can easily be generated by  based on m,  and  that are 

provided to , it can generate ,  and 

 using uniform distribution. Thus Pj’s view, 

, is computationally indistinguishable from ’s 

view, , in polynomial time, otherwise pseudo-random 

generator, which is assumed to be secure, can be broken which is used to create random 

shares and seeds. It is straightforward that for all other cases a party’s view will consist of 

less information than that of Pj’s view; hence  will be able to generate Pi’s view.

The case for , is also very similar in that respective inputs, output, and leakage is 

provided to , except for the difference that Q receives encrypted database 

instead of random share of a database, but since AHE is (semantically) secure – meaning EP 

is computationally indistinguishable from  (i.e. generated uniformly)– 

can generate a view using m, q, (map, W) and  that is indistinguishable from Q’s view. 

Thus proving that DS-kNN is secure.

Note that the defined leakage reveals information, usually known in our application scenario. 
If one wants to hide this information then following is one way to accomplish this. Instead 

of mean distance, randomly picked distances can be used for the purpose of comparison to 

find k-smallest distances; dummy portfolios with sentinel values can be added to hide size of 

database; extra columns can be added for dummy coordinates, mapping to which can be 

provided through a secure and modified bloom filter. |C| can be hidden by adding dummy 

signed-distances with value zero. Though such measures will stop the leakage, they will 

significantly reduce the efficiency of the protocol.
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6 Experimental Evaluation

We implemented DS-kNN in Java. The platform used for testing is asymmetric in terms of 

its computational power. The querier machine had a 2.2 GH core-i7 processor and 16 GB 

RAM whereas each of the database owners was a Xeon E5-2680 v2, with 10 cores running 

at 2.80GHz, and 96 GB RAM. For AHE and garbled circuit we employed the 

implementation available at [2] with key size 1024 and [9] with a key size of 512 

respectively. The default values for parameters are set based upon domain semantics. 

Specifically, even though 2k–3k stocks are traded on the stock exchange, only a few hundred 

of them are most often traded; thus we set |S| to be 100. |C| is set to be 10 because ICB [1] 

classification taxonomy segregates stocks to 10 industries at the top level. As for k, it is set 

to 1, which represents the worst case for Algorithm 2. Lastly, N is set to be 1000. For each 

experiment, only one parameter is varied, while keeping the rest constant. Experiments 

described below were carried out with synthetic data. The results on real data are described 

later.

Figures 3a–3c report time taken for distance computation by Q and Pt, with varying N, |S| 

and |C| respectively. Time for all of these experiments grows linearly except for Pt w.r.t. |S|. 

This is because of the fact that distance computation time for Pt depends on |C| and N, but 

not on |S|. Let us now look at the performance of Algorithm 2, which only depends upon N. 

Figure 2a plots the computation time taken by Algorithm 2 for varying values of N. Again, 

the computation time scales linearly w.r.t. N. Figure 2b plots the computation time with 

respect to varying k. It is interesting to note that the time taken is roughly constant, and thus 

the time taken by our approach is actually independent of k.

We also compare our work with Elmehdwi et al. [7] for outsourcing case. Figure 1c 

compares the complete time taken by DS-kNN and SRkNN [7]. For the sake of fair 

comparison results are computed for same parameters and equivalent processing power. It 

can be seen that DS-kNN outperforms existing state of the art by an order of magnitude. 

Additionally, our implementation is in Java and uses threading only for decryption at Pt, 

whereas implementation in [7] uses the openMP parallelization framework. Thus with an 

equivalent implementation, our results can be further improved.

Performance on real data

We obtained Swiss stock market data for year 2009–2011, which is a collection of portfolios 

of around 100k individuals for 300 stocks; the data was previously used in [3]. We only 

evaluated the performance of k-smallest protocol because time for distance computation 

is independent of data distribution. We randomly picked a subset of the data and choose one 

portfolio from it as the query portfolio, and computed the number of actual comparisons 

required by the k-smallest protocol for k = 1. Figure 2c plots the number of comparisons 

carried out for different values of N (the number of portfolios) along with a reference line 

for 2N. The two lines are almost perfectly in lock-step, which demonstrates the efficiency 

and suitability of our algorithm for real world data. However, in the worst case, it is still 

possible that in each iteration only one distance will be removed resulting in O(N2) total 

comparisons.

Asif et al. Page 12

ICT Syst Secur Priv Prot (2017). Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7 Related Work

Privacy-preserving data mining has received a lot of attention [15]. Given the numerous 

practical applications of privacy-preserving k-NN search, various protocols have been 

developed to address this problem. [5, 14] present solutions to the problem of computing k-

NN, where the data is fragmented among different parties, while also preserving privacy. [4] 

uses a semi-trusted third party to find best k matches. In [12] Qi et al. introduce a single-step 

protocol for k-NN search, whereas [8] proposed a secure k-NN searching protocol based on 

PIR for location-based services. However, none of the above work is appropriate for 

computation over encrypted data. [10] solves recommendation problem using Self-

Organizing Map for clustering and k-NN based collaborative filtering, but reveals query to 

data owner. Zang et. al. in [20] employ homomorphic encryption for finding k-NN in 

distributed setting, but in contrast to our work it reveals distances, partial access pattern to 

the parties. In [18], the query along with k-NN distances is exposed and the output is less 

accurate. [11] makes use of untrusted third party and reveals query to parties. Although 

semantic distance can be applied here, the categorization model will be revealed to data 

owners. Shaneck et. al [13] provide a solution that reveals partial access pattern while being 

slower than our proposed protocol. Not only is our protocol straightforwardly extensible to 

provide outsourcing and k-NN classification, but it also allows for incorporation of semantic 

distance, while still being comparatively very efficient as compared to state of the art [7].

8 Conclusion and Future Work

In this paper we have presented a secure approach to computing k-nearest neighbor queries 

for horizontally distributed data. Our approach is an order of magnitude faster than the 

existing state of the art. It is also applicable in the outsourcing environment, and can be used 

to compute top-k queries, as well as k-NN based classification. In the future, we plan to 

develop solutions that are resilient to stronger adversaries, some of which may collude as 

well.
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Fig. 1. 
Empirical analysis
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Fig. 2. 
k-smallest (Algorithm 2) computation time
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Fig. 3. 
Distance computation time for Q and Pt
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Table 1

Example illustrating Semantic Distance Effectiveness

(a) Portfolios

AAV RDC ICD GTT NOW

p1 0 10 0 5 0

p2 5 0 5 0 5

p3 0 0 0 15 0

(b) Weights for Categories

AAV RDC ICD GTT NOW

OIL 80 30 50 0 0

IT 0 0 0 100 50

(c) Euclid distance

p1 p2 p3

p1 0

p2 0

p3 0

(d) Semantic Distance

p1 p2 p3

p1 0

p2 0

p3 0
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