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Abstract

Tumor progression modeling offers the potential to predict tumor-spreading behavior to improve 

prognostic accuracy and guide therapy development. Common simulation methods include 

continuous reaction-diffusion (RD) approaches that capture mean spatio-temporal tumor spreading 

behavior and discrete agent-based (AB) approaches which capture individual cell events such as 

proliferation or migration. The brain cancer glioblastoma (GBM) is especially appropriate for such 

proliferation-migration modeling approaches because tumor cells seldom metastasize outside of 

the central nervous system and cells are both highly proliferative and migratory. In glioblastoma 

research, current RD estimates of proliferation and migration parameters are derived from 

computed tomography or magnetic resonance images. However, these estimates of glioblastoma 

cell migration rates, modeled as a diffusion coefficient, are approximately 1–2 orders of magnitude 

larger than single-cell measurements in animal models of this disease. To identify possible sources 

for this discrepancy, we evaluated the fundamental RD simulation assumptions that cells are point-

like structures that can overlap. To give cells physical size (~10 μm), we used a Brownian 

dynamics approach that simulates individual single-cell diffusive migration, growth, and 

proliferation activity via a gridless, off-lattice, AB method where cells can be prohibited from 

overlapping each other. We found that for realistic single-cell parameter growth and migration 

rates, a non-overlapping model gives rise to a jammed configuration in the center of the tumor and 

a biased outward diffusion of cells in the tumor periphery, creating a quasi-ballistic advancing 

tumor front. The simulations demonstrate that a fast-progressing tumor can result from minimally 

diffusive cells, but at a rate that is still dependent on single-cell diffusive migration rates. Thus, 

modeling with the assumption of physically-grounded volume conservation can account for the 

apparent discrepancy between estimated and measured diffusion of GBM cells and provide a new 

theoretical framework that naturally links single-cell growth and migration dynamics to tumor-

level progression.
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Introduction

Tumor modeling is rapidly developing as an approach to understand and predict cancer 

progression [1–5]. Ideally, a tumor progression model would be consistent across a wide 

range of spatial-temporal scales [6] to predict how molecular-level perturbations, resulting 

from either mutation or therapeutic intervention, would affect tumor-level progression and, 

ultimately, patient outcome.

Many computational cancer models of progression have been established, each with variable 

predictability and applications. The simplest model describing tumor progression is an 

exponential growth model. While this type of model is helpful for predicting proliferative 

growth of benign tumors [7], it lacks spatial information and therefore does not capture the 

invasive behavior of malignant tumors. Similarly, other non-spatial models have been 

explored to describe tumor growth, such as the Gompertz model or a power law function [8], 

but have the same limitations of only describing changes in cell number and not tumor 

spread.

A common simulation method that captures spatial information is the reaction-diffusion 

(RD) partial differential equation approach [2]. In some cases, this approach also includes 

convection to account for chemotactic gradients, i.e. simulations are conducted using RD-

convection equations [9]. RD models are based on the continuity equation that describes 

mass transfer in a differential control volume and can be used to predict changes in particle 

concentration over space and time. Assuming the simplest case of exponential growth, this 

RD equation is written as

∂C
∂t = D∇2C + pC (1)

where C is the concentration of cells, D is the single-cell random motility coefficient (units: 

m2 s−1) modeled as random Fickian diffusion, and p is the net proliferation rate of cells 

(units: 1/s). A fundamental limitation of this approach is that it allows cancer cells to achieve 

unrealistically high concentrations, higher than the physical dimensions of a cell would 

allow (~10 μm radius). Following equation (1), in all cases when D ⩾ 0 m2 s−1, the tumor 

will grow exponentially without limit. Therefore, even in the extreme case of non-migrating 

cells (D = 0 m2 s−1), cells are able to continue proliferating. To address this problem, many 

have used the Fisher–Kolmogorov partial differential equation to describe tumor growth [9, 

10], which assumes logistic (i.e. sigmoidal) growth with a maximum carrying capacity, k, to 

limit proliferation when the local tumor cell concentration is too high to permit the creation 

of a new cell, so that equation (1) becomes
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∂C
∂t = D∇2C + p 1 − C

k . (2)

Models using this approach have been shown to recapitulate clinically-realistic tissue-level 

spreading behavior which is often estimated as a traveling wave with linear radial velocity 

[2, 7, 11]. These RD models typically do not account for volume exclusion; however an 

exception is the study by Gerlee and Nelander [12]. More sophisticated versions of the RD 

model can also account for the normal, non-cancerous cells in the tissues, as well as cells 

that could potentially be recruited by growth factor secretion [9].

Discrete particle or AB models are more complex approaches that simulate the spatio-

temporal dynamics of individual cells rather than mean tumor behavior. These approaches 

can include complex cellular-level dynamics such as acquisition of mutations or phenotypic 

changes [3]. While there are a variety of approaches to discrete particle modeling, including 

cellular automata models [11, 13, 14], Potts models [15–17], or AB models [18, 19] 

(reviewed in (20)), they all have the common attribute of simulating individual cells or cell 

clusters. Since simulating individual cells at realistic tumor quantities (N ≈ 109) [13] is 

computationally demanding, lattice models are often used to reduce computational demands 

(though this is not a requirement [21–23]).

AB models conducted on a lattice often simplify cell migration dynamics by limiting cell 

movement to only occur as a result of proliferation events based on the availability of a 

neighboring lattice site. When migration is included, cells seemingly ‘jump’ from one lattice 

site to another. One limitation of this approach is that it introduces an arbitrary length scale, 

namely the choice for the size of the lattice. Often lattice size is approximated as the 

dimensions of the cell [12, 24]; however, lattices can also be sub-cellular to capture more 

realistic cell morphologies or movements [25, 26]. Because AB models of cancer take 

increasingly more computational power as the cell numbers and number of nodes rise, AB 

lattice models with sub-cellular lattice sizes are not frequently applied to cancer (such as 

those mentioned above). Examples of AB lattice models are the model by Hatzikirou et al 
which includes cell motility modeled as a random walk on a lattice [11], and the model by 

Khain et al which used a discrete model to simulate in vitro scratch wound assays of glioma 

[27].

So-called ‘off-lattice’ AB models allow researchers to investigate the effects of stochastic 

dynamics of individual cells without the limitations of an arbitrary lattice scale. This type of 

approach is crucial for understanding the complexity of cell–cell and cell-substrate 

interactions such as cell–cell repulsion/attraction, cell pushing, or haptotaxis [28–31].

Another aspect of current AB tumor progression models is that they frequently employ a 

probabilistic switching between proliferative and migratory pheno-types, representing the 

so-called ‘go-or-grow’ dichotomy [12–14, 19,]. An example of an AB lattice model that 

incorporates phenotypic switching is the recent study by Waclaw et al [13]. While this 

switch may be substantiated by in vivo data [12], it also adds additional parameters which 

can be difficult to measure experimentally.
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More complex yet are hybrid continuum-discrete models that incorporate environmental 

variables such as tissue oxygenation or extracellular matrix concentration as a continuum 

(often modeled with RD equations) into the discrete cell framework [3, 20, 28]. Some of 

these models are quite sophisticated and simultaneously account for several variables that 

contribute to tumor progression. For instance, Alarcon et al used a hybrid model to 

incorporate the effects of vascularization, blood flow, growth factors, and cellular interaction 

of normal and cancerous cells into a discrete model of tumor cell growth [6]. Similarly, in a 

model of breast cancer growth, Kim et al simulated four distinct cell types—cancerous 

epithelial cells, normal epithelial cells, fibro-blasts, and myofibroblasts—at single-cell 

resolution and incorporated growth factor secretion and mechanical interactions between the 

tumor and surrounding tissues [22]. These hybrid models are highly complex and able to 

link cellular, or even subcellular, events to gross macro-level behavior. A summary of the 

various model types mentioned above is provided in table 1.

In simulating the specific case of the brain cancer glioblastoma (GBM), which is 

characterized by the invasive migration of primary tumor cells, it is especially important to 

consider the effects of cell migration on progression. This highly invasive tumor is 

characterized by exceptionally poor survival of the patient, which is largely attributed to the 

invasive cells which invariably lead to tumor recurrence and death [1, 2, 32, 33]. Even with 

current standard treatment of combined surgery, radiotherapy, and chemotherapy, invasive 

cells, which are not eliminated by these interventions, typically cause tumor recurrence in 3–

6 months [34, 35] and patients with GBM only survive approximately 15 months post-

diagnosis [36]. Previous studies that focused on simulating GBM progression recognized the 

importance of modeling its invasiveness. As such, nearly all models of GBM have used an 

RD framework to capture invasive cell behavior [20, 32, 37–39]. Exceptions are the AB 

model by Zhang et al that simulates ‘go-or-grow’ dynamics by including EGFR signaling in 

their lattice model [19] and the cellular automata model by Tektonidis et al that 

demonstrates that in vitro glioma spreading behavior can be recapitulated when including 

cell–cell repulsion and density dependent phenotypic switching [14].

The RD approach has been used in GBM research to validate the therapeutic benefit of 

surgical resection [33] or chemotherapy [40] by comparing expected tumor growth in the 

absence of treatment based on repeated computed tomography (CT) images to actual patient 

outcomes. Similarly, efficacy of various therapies has been proven by assuming continued 

linear growth based on pretreatment magnetic resonance (MR) images of patients’ GBMs in 

the absence of treatment and comparing to patients’ progression with treatment [20]. While 

many researchers have found such simulations to have predictive clinical power, the 

predictions are of mean cellular behavior and the physical dimensions of single cells, and 

their presumed inability to overlap, is not strictly enforced, potentially leading to a 

mechanistic disconnect between actual cell movements at the single-cell level and the tumor-

level progression dynamics.

Input parameters to the RD modeling approach such as proliferation rate and diffusion 

coefficient for GBM are commonly estimated from sequential CT or MRI scans using 

Fisher’s approximation [1, 39]. Briefly, Fisher’s approximation states that the growth of the 

tumor margin will be proportional to the square root of the product of proliferation rate and 
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diffusion coefficient (v = 2 pD). While there are limitations with MRI, mainly that it is an 

indirect measure of glioma cell location as discussed previously [41], it is currently the best 

clinical tool available for tracking in vivo tumor progression in humans, and it is not 

unreasonable to attempt to use these parameter estimates to simulate human GBM (table 2). 

However, more recently, ex vivo measurements of single-cell migration in animal models 

have emerged. In these studies, the trajectories of single fluorescently tagged cells within ex 
vivo brain slice cultures are measured by light microscopy, and the cell diffusion coefficient 

(also known as random motility coefficient) is calculated based on the mean squared 

displacement (MSD) via

D = MSD(t)
2dt (3)

where D is the diffusion coefficient, t is the time interval, and d is dimensionality of 

migration. A summary of experimentally measured values for D in the literature is given in 

table 3.

Interestingly, the values of glioma migration estimates based on tissue-level observations 

(table 2) are generally 1–2 orders of magnitude larger than those measured at the single-cell 

level in animal models (table 3). Such high diffusion values used in the RD models have 

been noted in the literature before. In their simulation of in vitro glioma growth, Stein et al 
found that more realistic input values for diffusion (40–800 μm2 h−1) resulted in poor 

agreement between in vitro growth and simulated growth, and, in fact mention that their 

model outputs would be in much better agreement with in vitro data if they increased 

diffusion coefficient by a factor of 10 [46]. Moreover, it has been noted that estimating D 
and p parameters based on Fisher’s approximation does not make independent predictions, 

but accuracy of the approximation improves as the number of cells is increased [47] (i.e. 

estimates made from bulk behavior). Therefore, we sought to understand the cause of this 

quantitative difference between parameter estimation and direct measurements by examining 

the assumptions of the RD approach. Particularly, we considered the unrealistic assumptions 

of the basic mass continuity equation, which assumes particles are present at low 

concentrations and occupy no volume (i.e. are point-like).

To evaluate these assumptions, we used a Brownian dynamics (BD) approach. Briefly, BD 

approaches describe the motion of diffusive particles by gradually incrementing time, 

assigning randomly selected displacement vectors based on mean diffusive behavior to each 

of N particles, and tracking the resulting particle positions over time [48]. Such methods 

have been used to simulate nanometer scale events such as protein folding [49] and filament 

assembly [50]. Altough cells are much larger by comparison, they have also demonstrated 

random walk migration behavior [51], hence we used the BD simulation method to simulate 

migration, growth, and division of individual cells in three different models:

1. A simple overlapping model in which individual cells can diffuse such that they 

occupy the same space and proliferate independently of the presence of nearby 

cells, consistent with many RD models [1, 20, 32, 33, 39, 40, 43]
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2. An overlapping model with a carrying capacity in which cells can diffuse 

freely, but proliferation is inhibited if cells are currently overlapping, consistent 

with other RD models [9, 20, 37, 52]

3. A physically realistic non-overlapping model in which cells may neither diffuse 

nor grow if the movement would result in an overlapping configuration.

Using these models, we explore how the inclusion of non-zero cell volume affects overall 

tumor progression rates, such that relatively low diffusion coefficients enable realistic tumor 

margin velocities, and are sufficient to explain the discrepancies between estimated and 

measured cell diffusivity.

Results

Comparison of glioma migration parameter estimates obtained from estimates of bulk tumor 

growth (table 2) to single cell migration parameters obtained by fluorescence microscopy 

(table 3) shows a disconnect between single-cell behavior and RD model-estimated 

diffusivity. Therefore, we first assessed whether the estimates for cellular diffusion used in 

RD models were physically realistic. Among the fastest cells are human embryonic 

mesenchymal stem cells, which have been shown to move along a 1D adhesive track at a 

velocity of 5.2 μm min−1 and are highly directional in their movements [53]. From this 

velocity and the relevant time scale of typical directional switching (~10 min), the 

theoretical diffusion coefficient of the ‘world’s fastest cell’ is approximately 8000 μm2 h−1. 

Moreover, the cell speed of 5.2 μm min−1 is approximately equivalent to the speed of actin 

polymerization, 0.21 μm s−1 (or 12.6 μm min−1) [54], and therefore is likely to be close to 

the upper limit for possible cell motility via actin-based motility. Consequently, any values 

of diffusion beyond this theoretical upper limit likely do not represent actual single cell 

behavior. While some of the estimates in table 2 are within this limit, many are extremely 

large, particularly for estimates of white matter migration. Therefore, we were motivated to 

reexamine the assumptions of the RD models of tumor spread used to estimate such large 

values.

One issue we noticed with adapting an RD framework to estimate tumor progression 

parameters was the assumption that the diffusing species (i.e. the cells) is present at low 

concentrations (i.e. is dilute). However, characteristically, tumor cell density is very high, 

with cells closely packed together. Therefore, we derived the diffusion coefficient for a 

concentrated tumor environment. At high concentrations, we assume that the gradient in 

chemical potential (i.e. cell–cell interactions) dominates cell movements instead of the 

concentration gradient. Estimating the chemical activity as increasing linearly with mole 

fraction with an intercept at 1 (to be consistent with the low concentration equation), we 

found that the apparent diffusion due to high cell concentration is at most twice the intrinsic 

diffusion (see full derivation in the supplement (stacks.iop.org/CSPO/4/015001/mmedia)).

Since the estimates of diffusion were much greater than twice the measured single-cell 

values and could not be explained by the low concentration assumption, we next examined 

the RD assumption that cells can be treated as points in space that occupy no volume. To 

investigate the consequences of this at the cell and tissue scales, we used a BD approach to 
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simulate how single-cell behavior relates to overall tumor progression with and without this 

assumption. Since the BD approach simulates single stochastic events, this method is 

computationally intensive compared to the RD approaches, and therefore one-dimensional 

(1D) simulations were used to explore basic dynamic features and regimes. Moreover, the 

primary issue with current diffusion estimates is the use of uncharacteristically large values 

for migration along white matter tracts, which can be described as a quasi-1D route of 

migration [55], therefore we believe the 1D model is potentially relevant to glioma disease 

progression along these routes, and possibly others such as in the perivascular space of blood 

vessels. This is not to say that 2D or 3D approaches are invalid for modeling glioma 

progression; on the contrary—in future models we aim to explore these dimensions as well, 

as they pertain to in vitro cell cultures and macro-scale glioma spreading.

Starting from a single initiating cell, in silico 1D tumors were grown for a duration of time 

long enough to generate the sixth generation of cells (assuming a constant growth rate and 

unimpeded division) and positions of all of the cells in the simulation were tracked over 

time. In total, three 1D models were analyzed. The first model, termed the simple 

overlapping model, captures the assumptions of the mass conservation equation (equation 

(1)) by allowing cells to migrate, grow, and divide without regard for the presence of 

neighboring cells occupying the same space. In other areas of literature the simple 

overlapping model is referred to as ‘branching Brownian motion’ [56]. The second model, 

the overlapping model with carrying capacity (overlapping + cc), exhibits similar rules to the 

simple overlapping model in terms of diffusive and growth behavior, but does not allow cell 

division to occur if the cell in question is overlapping with another cell (figure 1(A)), thus 

enlisting a local carrying capacity akin to the logistic growth term in the Fisher–Kolmogorov 

equation (equation (2)). The final model, the non-overlapping model, does not allow cells to 

occupy the same space at any point in their life-cycle, as diagramed in figure 1(B). A full 

description of these models is available in the methods section.

A non-overlapping BD model predicts a ‘jammed’ configuration and a correspondingly 
abrupt rise in tumor expansion rate

By directly comparing the outcomes of the three models, it is evident that the conservation 

of volume used in the non-overlapping model enhances tumor spreading, as shown in figure 

2(A) (see also supplemental figures 1–3 and supplemental movies 1–3). Moreover, 

proliferation is limited to the outer edge in the non-overlapping simulations (indicated by red 

dots) which is consistent with histological observations [11, 13]. The distribution of final 

cell positions can be approximated as Gaussian (normal) in the overlapping models, 

consistent with a diffusive model, whereas the final cell positions in the non-overlapping 

model exhibit an approximate uniform distribution, indicating non-diffusive behavior (figure 

2(B)). Moreover, the curvature in the cell MSD plots in figure 2(C) is approximately linear 

in the overlapping models, again indicating diffusive cell movements, while the non-

overlapping model MSD plot has upward curvature indicating nearly ballistic behavior. Plots 

of tumor radius over time (figure 2(D)) show that the overlapping models advance linearly 

with time. By contrast, the non-overlapping model tumor radius also increases linearly with 

time until it reaches a jammed configuration. After jamming, the speed of radial growth is 

increased (i.e. the slope is greater), consistent with previous AB modeling approaches of 
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glioma migration and proliferation [19], however this effect is captured here without the 

need to assume a ‘go or grow dichotomy’ and with physically-grounded rules for cellular 

movements. Together these data indicate that the non-overlapping model enhances tumor 

spreading compared to the overlapping models with the same input parameters.

Parameter sensitivity analysis reveals synergy between proliferation and migration in the 
non-overlapping BD model

In each of the three models, the input parameters affect the progression characteristics 

differently. As shown in figure 3(A), in both of the cell–cell interaction models (overlapping 

+ cc and non-overlapping) the ratio papp/p0 of the apparent proliferation rate, papp, to 

nominal proliferation, p0, is decreased as p0 is increased. As expected, the simple 

overlapping model shows no correlation with increased proliferation, which serves as a kind 

of positive control simulation. We note that the simple overlapping situation is clearly 

unrealistic as arbitrarily large numbers of cells can exist within a finite volume in this model; 

nevertheless, it is interesting to compare to the cell–cell interaction cases for reference. In 

the cell–cell interaction models, increasing input proliferation rate results in a relative 

decrease in the apparent proliferation, with the effect being stronger in the overlapping + cc 

case. Interestingly, the slope papp/p0 in the non-overlapping model is similar between 

different diffusion coefficient values, but this is not the case for the overlapping + cc model, 

especially at the lowest diffusivity values. This is likely because the small diffusivity values 

do not allow cells to move away from each other to generate sufficient space for a division 

event on the timescale of proliferation in the overlapping + cc model, while the non-

overlapping model generates space to allow division because movements which result in 

overlapping configurations are rejected.

When comparing the effects on apparent diffusion, as expected, the overlapping models 

allow cells to diffuse freely, so the apparent diffusion, Dapp, is equal to the nominal diffusion 

coefficient D0 at large values of D0 (figure 3(B)). For small values of D0, apparent diffusion 

is increased as p0 increases because the generation of a new cell artifactually moves the cell 

centroid the distance of one cell radius (10 μm) during one cell cycle, which is a significant 

contributor to the movement in this regime. What we observe in the non-overlapping model 

is that central cells at high concentrations are unable to move because they are prevented 

from overlapping. This results in a ‘jammed’ configuration where interior cells nearly stop 

diffusing. At the same time, exterior cells have freedom to move and are biased toward 

outward movements away from the center of the tumor, making apparent diffusion larger for 

those cells. In this model, the diffusion ratio (Dapp/D0) is not dependent on p0, but is 

strongly dependent on D0. At low D0, especially, the prevention of cell overlap can generate 

apparent diffusivity, Dapp, that reaches values up to 65 times that of D0, showing that the 

effect of jamming-induced ballistic behavior can largely account for the large discrepancy 

between single cell diffusion measurements and estimates of diffusion in literature.

Analysis of the tumor margin velocity of the three models shows a dependence of velocity 

on both proliferation and diffusion (figure 3(C)). However, the overlapping models show a 

reduced tumor margin velocity, especially at lower diffusion coefficients. Comparisons of 

the plots for the different models shows how a smaller input diffusion coefficient in the non-
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overlapping model can generate a tumor velocity similar to the overlapping + cc model at 

larger input diffusion (e.g. for the case of p0 = 100/month, D0 = 20 μm2 h−1 of the non-

overlapping model and D0 = 200 μm2 h−1 of the overlapping + cc model have the same 

tumor margin velocity). The ratio of velocities in the non-overlapping compared to the 

overlapping + cc model for all parameter values tested is shown in figure 4. Notice 

especially at low values of D0 and p0 that the added assumption of non-overlapping cells can 

generate significantly faster tumor margin velocities (i.e. the yellow-shaded region in figure 

4(B)). A comparison of the tumor velocity with the theoretical tumor margin velocity of 

Fisher’s Approximation was also conducted and is presented in supplemental figure 6.

The non-overlapping model predicts intratumoral gradients in apparent cell diffusion rate 
and clinically-relevant tumor margin sizes and jamming times

Using an AB approach allows motion statistics to be computed for individual cells as a 

function of position in the tumor, relative to the tumor edge, which makes testable 

predictions about the spatial dependence of cell trajectories. As shown in figure 5(A), the 

overlapping models show no pattern in instantaneous velocity, while the non-overlapping 

model shows a distinct quasi-ballistic front with a zero velocity core (figure 5(A)). Similarly, 

single cells in the overlapping models all have normalized instantaneous diffusion 

measurements centered around unity that do not vary with spatial position. In the non-

overlapping model, cells on the ballistic front display superdiffusive/convective behavior 

(with values over 1), while cells at the core display subdiffusive/confined diffusion behavior 

(figure 5(B)). The length of the convective front in the non-overlapping model varied with 

input parameters, as shown in figure 5(C). Ballistic front length was largest for low values of 

p0 and high values of D0, because as p0 increases, more cells become jammed. In general, 

the non-overlapping model predicts reasonable edge lengths that are of order 0.1–1 mm, 

corresponding to the approximate length scale of a diffuse GBM tumor margin [57]. 

Likewise, the time to reach a jammed configuration depends on the input parameters, as 

shown in figure 5(D). Jamming occurs more quickly with high proliferation inputs, and 

depends only slightly on diffusion inputs. In the p0 = 10/month situation, some simulations 

did not reach a jammed configuration in the time allotted for simulation, but would likely 

jam given sufficient time.

Overall, we find that the non-overlapping model requires much smaller diffusion coefficient 

values to reach the same rate of tumor spreading as the overlapping models because cells 

follow physical rules and are not permitted to occupy the same space, which in some cases 

results in the phenomenon of jamming and a ballistic advancing tumor front. Thus, this 

suggests that the discrepancy of diffusion coefficient values between bulk tumor estimates 

(table 2) and single-cell measurements from fluorescence microscopy (table 3) could 

possibly be explained by the fact that the current RD continuum modeling approaches do not 

account for the effect of incompressible tumor cell volume on spreading. Therefore, the RD 

models can fit the MRI data, but may require artificially large diffusion coefficients to do so.
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Discussion

Several models have been developed to describe tumor dispersion. However, many of these 

models, particularly those based on RD approaches, require unrealistically large values of 

individual cellular diffusion coefficients which are estimated from apparent spreading based 

on CT or MRI (compare tables 2 and 3). In fact, single-cell values for animal glioma 

migration observed by fluorescence microscopy and modeled as a random diffusive process 

are 1–2 orders of magnitude smaller than estimates used in many of these simulations. To 

understand the source of this discrepancy in diffusion coefficients between estimates and 

measurements, we evaluated the assumptions of the RD approach. We first tested the RD 

assumption that particles are present at low concentrations and showed that a high-

concentration correction based on thermodynamic activity coefficients only resulted in a 2-

fold larger apparent diffusion coefficient. Therefore, we also evaluated the assumption that 

cells can be modeled as volume-less points in space. Using a 1D BD modeling approach that 

accounts for single-cell stochastic movements, we found that the inclusion of volume has a 

significant impact on overall tumor spreading dynamics. Specifically, imposing a simple 

constraint that cells cannot occupy the same space led to the development of a ‘jammed’ 

configuration that generated a non-motile tumor core and a quasi-ballistic tumor periphery. 

This is consistent with other AB models that have investigated the effects of volume 

exclusion and found that it gives rise to a convective-like term [14, 30]. Additionally, the 

non-overlapping correction allows realistic diffusion input parameters to generate faster 

tumor spreading velocities, and thus we hypothesize that cell jamming contributes to overall 

tumor spreading in vivo.

What is interesting about the non-overlapping model is that it generates increased spreading 

behavior without the inclusion of a chemotaxis term [42] or the ‘go-or-grow’ dichotomy 

[37], in which cells are either proliferative or migratory. All cells in the non-overlapping 

model have the capacity to both proliferate and migrate, and a ballistic tumor front develops 

naturally from physical volume-exclusion principles. The advantage of this approach is that 

it is unnecessary to invoke a third parameter to represent the probabilistic switching between 

the proliferative (‘grow’) and migratory (‘go’) phenotypes, which has frequently been added 

empirically to generate realistic tumor growth [13].

In future studies, it should be possible to test the prediction that jamming has a significant 

impact on tumor spreading by comparing animal model behavior to computational model 

predictions. If jamming does significantly contribute to GBM spreading, the non-

overlapping model predicts that there would be a difference in motility between cells at the 

tumor edges and in the tumor core, which can be tested by measuring single-cell trajectories 

as well as cell location relative to the central tumor. Furthermore, the non-overlapping model 

predicts that the migration of cells at the edges would be biased in the outward radial 

direction. These predictions can potentially be assessed in ex vivo animal systems such as 

those used to measure single-cell diffusion coefficients [56, 58].

One potential limitation of the current model is that we characterize the effects of conserved 

volume in 1D, while real tumors progress in 3D. When exploring the behaviors of our model 

in 3D, we expect that jamming will contribute to tumor progression in that it will bias 
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migration radially outward; however, since cells are able to move in multiple directions to 

escape jamming, we expect that it will take more time to achieve a jammed configuration. 

As the tumor grows radially in 3D, the radius of curvature of the tumor surface, relative to 

the cell size, will become large and the surface will appear locally to be flat, similar to the 

1D Cartesian model presented here. Interestingly, our 1D model may have application to 

GBM tumor dissemination because GBM cells have been observed to migrate preferentially 

along linear tracts within the brain such as perivascular spaces [59] or white matter tracts 

[55, 58, 60–62]. Therefore 1D invasion could be a clinically relevant mode of tumor 

spreading in GBM that contributes to its extensive invasiveness, and the current model could 

describe tumor progression at this meso-scale, and provide a mechanistic link between the 

single cell growth/movement scale (micrometers/hours) and the clinical scale (millimeters/

months).

In terms of simulating GBM tumors, we also recognize that our model lacks the 

characteristic necrotic regions that are typical of GBM tumors. This could easily be 

incorporated into the model by the addition of oxygen consumption where more dense 

regions have to compete for resources and thus are more likely to become necrotic [3]. 

Furthermore, other models have demonstrated how the inclusion of oxygen consumption 

generates in silico tumors with more invasive, finger-like morphology [3, 34], frequently 

observed for GBM tumors. Even so, the presence of necrotic regions are unlikely to affect 

the advance of the tumor margin, as the proximal necrotic cells are presumably in an 

environment that does not permit cell proliferation or migration.

In comparison to RD modeling approaches to GBM, the non-overlapping model presented 

here has an advantage in that it can simulate single-cell events. This is important because 

predictive models of tumor behavior should ideally be physically and biologically consistent 

across multiple spatio-temporal scales, and RD approaches have been previously shown to 

fail to capture cell–cell interaction and clustering effects, particularly when the proliferation 

rate is significant compared to diffusion coefficient [18, 63], which is also when we would 

expect jamming to occur.

Although the BD approach used here is based on single cell events, it is perhaps not the 

optimal approach for generating patient predictions. A major disadvantage of BD approach 

is that it is computationally intensive, which may partly explain why the field has previously 

relied largely on RD approaches. For future studies we propose implementation of the 

concepts discovered here into more high-throughput computational models, perhaps by the 

inclusion of a convective term to an RD framework to simulate jamming effects, or by the 

addition of a concentration-dependent diffusion coefficient such as that used by Harko et al 
[7]. However, the model by Harko et al used a concentration-dependent D such that, as 

cellular concentration approaches cmax (a carrying capacity), D approaches infinity. In our 

model we see the opposite—as local concentration reaches its maximum, cells become 

jammed and can no longer move. Therefore, rather than applying the change empirically, it 

may be possible to derive an analytical solution [30, 64, 65] to the jamming dynamics 

observed in our simulations so that the model retains its relevance at both the cell and tissue 

scales. In addition, our simulations reveal an early onset of the jammed-ballistic behavior, 

which can be regarded essentially as a steady state that will remain locked-in indefinitely, 
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potentially making longer simulations unnecessary (supplemental figure 4). In the future it 

will be interest ing to integrate our modeling predictions of jammed movements, which 

allows for voids between cells and breaking off of cells at the edge, with recent modeling of 

jamming of epithelial cell monolayers, which models the subcellular interactions as sets of 

vertices that define shared edges between cells [68].

Conclusions

Many different approaches have been taken to the problem of predicting tumor growth 

outcomes. One common method has been to adapt the RD framework, used to solve 

molecular transport problems, to the realm of cancer cell proliferation and migration via a 

diffusion-like process. However, since in vivo single-cell measurements of diffusion and 

proliferation have not been reported for human GBM, the parameters for this type of model 

applied to GBM have been estimated using bulk tumor characteristics of tumor progression 

from in vivo imaging modalities such as MRI. Within animal models of the disease, 

however, direct measurements of single cell diffusivity are now available. Despite the 

different species, we would expect that cell-level measurements between animals and 

humans would be similar, as cell migration generally employs conserved actomyosin-

adhesion machinery [66], and yet there is a large discrepancy between single cell 

fluorescence microscopy measurements and estimation from MRI clinical data. Therefore, 

we re-evaluated the underlying assumptions of the RD framework and found a possible 

origin of this discrepancy, namely that the RD framework assumes individual particles do 

not occupy volume and therefore are permitted to overlap, while real cells clearly do occupy 

volume, and therefore overlapping configurations are physically unattainable.

In implementing this adjustment to the RD framework, we found that non-overlapping cells 

rapidly enter a jammed regime that produces slow-growing interior cells with subdiffusive 

migration characteristics and fast-growing peripheral cells with superdiffusive, ballistic, 

migration characteristics. The increased tumor spread due to jamming-induced convection at 

the periphery allows cells with nominally low diffusive characteristics to generate a fast 

progressing tumor that still depends strongly on diffusive cell movement on the local 

micrometer scale. Thus, the non-overlapping model helps to explain the apparent 

discrepancy between measured and estimated diffusion coefficients, and provides a more 

realistic in silico tumor simulator based on measurable parameters. In summary, we suggest 

that non-overlapping behavior should be implemented in future models of tumor progression 

to generate physically realistic and quantitatively accurate models that are predictive at 

multiple spatio-temporal scales.

Methods

1D BD simulation

Three distinct BD models were created using a variable time step Monte Carlo framework, 

which we refer to as the simple overlapping model, the overlapping plus carrying capacity 

(cc) model, and the non-overlapping model. Simulations were seeded with one initial ‘cell’ 

modeled as two completely overlapping spheres. Time (t) was incremented based on the 

nominal time increment (τ = 1 min) divided by the current number of cells, Ncells(t) as 
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shown in equation (3). This was to account for the fact that the probability of selecting any 

one particular cell is decreased proportionally by the current number of cells.

t(i + 1) = t(i) + τ
Ncells (i)

. (4)

At every iteration (i) of the simulation, a uniformly distributed random number was used to 

select a single cell j for movement.

j − 1 <  randi  ×  Ncells (i) < j . (5)

A second normally distributed random number was generated to determine the magnitude 

and direction of the movement of cell j based on the input diffusion coefficient, D, where 

xj(i) is the cell centroid position.

xi(i + 1) = x j(i) +  rand2  ×   2dDτ . (6)

In the non-overlapping model, movements were rejected if the location of the centroid at 

time t(i + 1) caused the cell volume to overlap with any neighboring cell volumes. The 

simulation would then attempt up to 100 times to find a suitable location to move, and if it 

failed to do so, would return to its previous position at time t. The number of attempts is an 

adjustable parameter based on the trade-off between accuracy and speed of simulation; in 

our simulations we chose to be relatively conservative in this regard, favoring accuracy over 

simulation speed. In the overlapping model, however, this overlap check was not performed 

and cells were permitted to occupy the same space when diffusing.

Another uniformly distributed random number was then used to select a cell for growth 

using equation (5) (above). To simulate cell growth, the two overlapping spheres, defining 

the volume of a single cell, gradually pushed apart such that, when unimpeded by other 

cells, the total cell volume increased linearly and volume was exactly doubled at time 1/p0, 

where p0 is the nominal proliferation rate. At each iteration, the growth volume was 

proportional to the time step determined in equation (4) (above).

V(i + 1) = V(i) + Vgrow (7)

Vgrow = p4
3πr3t . (8)

For every time point, the distance between two cell halves, or the centers of the two spheres 

which together represent a single cell (δ), was determined based on the total cell volume (as 
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determined in equation (7)) and the volume of the spheres’ overlapped region, known 

geometrically as the spherical cap (Vcap), where h is the cap height.

Vcell  = 2 4
3πr3 − 2Vcap  (9)

Vcap  = 1
3πh2(3r − h) (10)

δ = 2r − 2h . (11)

In the non-overlapping model, cells were only able to grow if the growth step did not result 

in overlap with any neighboring cells. In both the non-overlapping and overlapping + cc 

models, after the cell reached a volume of 2(4/3)πr3, where r = 10 μm, a check was 

performed to ensure the resulting daughter cell would not overlap any neighboring cells, and 

if the check was passed, the cell would divide and form 2 individual sets of completely 

overlapping spheres. This essentially imposed a physically-based, local carrying capacity 

limit where the probability of cell division decreases with increasing local cell density.

Data analysis

A minimum of 4 simulations per input parameter set was used for data analysis. Simulations 

were carried out to the number of iterations necessary for the initial cell to generate its sixth 

division event based on the nominal proliferation rate (i.e. the time it would have taken for 

cells to reach the 6th division if divisions were not impeded due to cell overlap). Apparent 

proliferation rate was calculated based on the actual number of division events that occurred 

within the given time. Apparent diffusion was calculated based on the MSD of individual 

cells over time, using equation (3), and MSD was calculated using the overlapping method 

[67]. Tumor velocities were calculated based on the distance of the most distal cells to the 

tumor center over time. Single-cell velocities were calculated as (x(t) – x(t − Δt))/Δt. The Δt 
value used to calculate instantaneous velocities was 8.3 h, consistent with typical brain slice 

imaging experiments. (See supplemental figure 5 for the effects of varying Δt.) Similarly, 

instantaneous diffusion coefficients were calculated as (x(t) – x(t − Δt))/Δt. (2Δt). The length 

of the ballistic front in the non-overlapping model was estimated based on the linear fitting 

of the instantaneous velocity plots. Values less than 10% of the maximum were eliminated 

from the fit to remove jammed cells and the ballistic front lengths were taken as the x-

intercept of the fit. Time to jamming was estimated based on when the center cell reached an 

instantaneous velocity of 0, with a tolerance of 10 nm/month, in the non-overlapping model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of overlapping + carrying capacity and non-overlapping models. (A) Overlapping + 

carrying capacity model diagram. Black boxes indicate the 1D space which cells were 

permitted to occupy. The initial cell, colored light blue, is able to diffuse and grow, indicated 

by the two spheres of the same color moving gradually apart. As time advances, the cell 

undergoes division, indicated by the arrival of a new cell color. When multiple cells are 

present (each distinct cell is represented by two spheres of the same color), cells are unable 

to divide if they are currently overlapping, which effectively imposes a local carrying 

capacity. The simple overlapping model (not shown) permits cell movements and cell 

division events without regard for the presence of other cells (i.e. lacks a carrying capacity). 

(B) Non-overlapping model diagram. Similar to (A), the same rules apply, except that 

individual cells are not allowed to overlap with each other. As mentioned above, the two 

overlapping circles of the same color in the diagram represent a single cell prior to division. 

Once divided, one of the two nascent daughter cells changes color (e.g. from light blue to 

red in the first division). In this model, cell division events are not accepted if the resulting 

daughter cells would overlap with any neighboring cells, thus influencing the observed 

proliferation.
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Figure 2. 
Spatio-temporal dynamics of the three BD tumor progression models. (A) Progeny trees of 

the three models using the same input parameters where D0 = 20 μm2 h−1 and p0 = 10 

divisions/month. Black curves indicate the trajectories of cells. Red dots indicate the time 

and position of a division event. On this time scale, unimpeded cell proliferation would 

generate exactly 6 generations of cells. Yellow arrow on the non-overlapping model 

indicates where jamming begins. (B) Distributions of cell locations at the end of a 

simulation (t = 0.6 months) were averaged over four simulations. The Gaussian distributions 

in the overlapping models are characteristic of diffusion, while the uniform distribution of 

the non-overlapping models indicates non-diffusive behavior. (C) Plots of average MSD over 

time for the cells within a single simulation. Since only the initiating cell lasts the duration 

of the entire simulation, only the beginning of the MSD plots are shown. At longer times, 

more variability is introduced because fewer data points exist. Linear behavior indicates a 

purely diffusive process, asymptotic behavior (i.e. concave down) indicates a subdiffusive 

process, and upward concavity (as in the non-overlapping model) indicates a superdiffusive/

ballistic process. (D) Tumor radius over time for multiple simulations evaluated at D0 = 20 

μm2 h−1 and p0 = 10 divisions/month in each model show the overlapping models progress 

linearly with time. The non-overlapping model progresses linearly, similar to the 

overlapping models, then the slope of the linear progression suddenly increases after the 

simulation reaches a jammed configuration, as indicated by the yellow arrow. Thus, the non-
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overlapping model predicts fundamentally distinct tumor progression dynamics, and faster 

growth for the same input parameter values, as compared to the overlapping models.
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Figure 3. 
Analysis of overall model behavior and parameter sensitivity. (A) Effect of proliferation and 

diffusion input values on proliferation ratio (papp/p0) in the three models. Colors indicate the 

input value for diffusion coefficient (D) in μm2 h−1. The plots display a negative trend in the 

models that account for cell–cell interactions (middle and right columns). (B) Effect of 

proliferation and diffusion input values on diffusion coefficient ratio (Dapp/D0) in the three 

models. The overlapping models (left and middle columns) show dependence on D0 and p0, 

particularly at low diffusion coefficient and high proliferation rate. This is due to the growth 

and division of cells at early time points, rather than diffusive movement, which generates an 

artifactual apparent movement, which appears as a significant boost in motility when the 

nominal diffusion coefficient is small. The non-overlapping model shows little dependence 

of apparent diffusion on proliferation, but does have a true boost in apparent diffusion due to 

jamming effects, particularly at low D0. (C) Tumor velocity as a function of both input 

parameters. In most cases, the overlapping + cc model progresses much slower than the non-

overlapping model, reflecting the abrupt rise in velocity due to jamming in the non-

overlapping case only. Thus, the analysis reveals synergy between proliferation and 

migration in the non-overlapping model to strongly enhance tumor growth rate, particularly 

at the lower diffusion coefficients consistent with single cell experimental measurements.
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Figure 4. 
Comparison of velocity values between the overlapping + cc and non-overlapping models. 

(A). Tumor margin velocities of the non-overlapping model with different parameter values. 

Values are averaged over multiple simulations (n = 4) and displayed in units of mm/month. 

(B) Velocities of the non-overlapping model and overlapping + cc model with the same set 

of parameters are compared. Values in the heatmap are calculated as the ratio of the average 

velocity of non-overlapping (n = 4) to the average velocity of overlapping + cc (n = 4) from 

the data presented in figure 3(C). Over a wide range of parameter space, the non-overlapping 

model predicts a much larger tumor margin velocity than the overlapping + cc model.
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Figure 5. 
Intratumoral spatial variation of single cell motion behavior. (A) Instantaneous velocities of 

individual cells within 4 simulations for each model evaluated after the sixth generation of 

cell division (total time = 432 h = 18 d = 0.6 months) with D0 = 20 μm2 h−1 and p0 = 10 

divisions/month. Single-cell velocities are plotted against location in the tumor, starting from 

the most distal cells. The non-overlapping case exhibits a spatial pattern of velocities, with 

the highest velocities at the tumor edge and decreasing toward the tumor center where cells 

are jammed. While the overlapping cases exhibit reasonable cell instantaneous velocities, 

they are spatially dependent, whereas the non-overlapping exhibits a nearly convective 

outward flow away from the center of the tumor. (B) Instantaneous diffusivity of individual 

cells within 4 simulations for each model evaluated under the same conditions as (A). 

Diffusion coefficients are plotted against location in the tumor, starting from the most distal 

cells. Again, the non-overlapping model predicts spatial variation in cell movement, with the 

greatest movement near the edge, whereas the overlapping models do not predict spatial 

variation. Note that the movement, while calculated here as a diffusion process, is more 

appropriately modeled as ballistic/convective movement. (C) The lengths of the ballistic 

front in the non-overlapping model simulations are displayed for all parameter combinations 

in the heatmap. Values for each set of parameters are averaged over 4 simulations. (D) 

Jamming times for all parameter combinations are displayed in the heatmap. Values for each 

set of parameters are averaged over 4 simulations. Black boxes indicate cases where 

jamming was not achieved within the allotted time (time to the sixth generation of cells if 

growth is unimpeded). Typical jamming times are on the order of days over a wide range of 
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parameters, indicating that the jammed state is reached quickly on the clinical time scale of 

months.
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