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The increasing amount of data and the growing complexity of problems has resulted in an ever-growing reliance on cloud
computing. However, many applications, most notably in healthcare, finance or defense, demand security and privacy which
today’s solutions cannot fully address. Fully homomorphic encryption (FHE) elevates the bar of today’s solutions by adding
confidentiality of data during processing. It allows computation on fully encrypted data without the need for decryption, thus
fully preserving privacy. To enable processing encrypted data at usable levels of classic security, e.g., 128-bit, the encryption
procedure introduces noticeable data size expansion - the ciphertext is much bigger than the native aggregate of native data
types. In this paper, we present MemFHE which is the first accelerator of both client and server for the latest Ring-GSW
(Gentry, Sahai, and Waters [17]) based homomorphic encryption schemes using Processing In Memory (PIM). PIM alleviates
the data movement issues with large FHE encrypted data, while providing in-situ execution and extensive parallelism needed
for FHE'’s polynomial operations. While the client-PIM can homomorphically encrypt and decrypt data, the server-PIM
can process homomorphically encrypted data without decryption. MemFHE’s server-PIM is pipelined and is designed to
provide flexible bootstrapping, allowing two encryption techniques and various FHE security-levels based on the application
requirements. We evaluate MemFHE for various security-levels and compare it with state-of-the-art CPU implementations
for Ring-GSW based FHE. MemFHE is up to 20kx (265x) faster than CPU (GPU) for FHE arithmetic operations and provides
on average 2007x higher throughput than [36] while implementing neural networks with FHE.

1 INTRODUCTION

Fully homomorphic encryption (FHE) allows us to apply functions of arbitrary complexity on encrypted data
(ciphertext) without the need to decrypt it. This eliminates the need for private key exchanges and decrypting
data at the server, raising the bar on security and privacy: This is really critical in areas like healthcare, finance,
insurance, etc, which deal with extremely sensitive information but rely on cloud for computing needs [28, 5, 29, 8].
However, computing on encrypted data comes at a huge data and computation cost, resulting in large performance
and memory overheads. For example, encrypting an integer in homomorphic domain may explode its size from
meagre 4B to more than 20KB. Moreover, homomorphically multiplying two FHE encrypted integers may
require 10s of millions of operations. Further, computing with encrypted data may limit the complexity of
the function that can be evaluated for a set of encryption parameters. The work in Gentry [16] proposes a
procedure, called bootstrapping, to reduce the growth of noise during function evaluation in FHE domain,
allowing FHE to perform more complex operations. However, it is extremely expensive and increases the latency
of evaluating a homomorphic function by 100-1000X. Recent proposals in [12, 7, 4] make bootstrapping faster and
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Table 1. Generations of Fully Homomorphic Encryption

Gen. | Encrypt-Level | Security | Compute Support | Public Key | Latency/BS | BS Count | Op Accuracy | Type of Apps Schemes
1 Lattice Based ++ Add, mul Largest 1000x 1x - - Gentry’09
2 Integer + Limited predefined ops Large 10x 1x Approximate Statistical CKKS, BGV, B/FV
3+ Bit/Integer* e Any arbitrary op Small 1x 10000x Exact Any FHEW, TFHE

BS: Bootstrapping

computationally less expensive. Unfortunately, bootstrapping still remains expensive and is the major limiting
factor while using FHE to evaluate real workloads. The encryption keys used in such schemes may reach up to
GBs in size, adding to the huge capacity and data transfer bottleneck of FHE.

The works in [33, 34, 40, 11, 43, 48] proposed CPU and GPU implementations of RGSW-based FHE schemes [12,
38, 6]. However, they cannot scale enough to provide the speedup needed to make FHE feasible. Most operations
in these schemes are based on polynomials and vectors, which are difficult to accelerate due to the limited
parallelism and data access provided by current systems. Other hardware-acceleration work in [10, 49, 47, 46]
accelerate previous generation schemes which are not truly FHE and support limited functionality. Processing
in-memory is an excellent match for the FHE since it provides extensive parallelism, bit-level granularity, and an
extensive library of compatible operations which dramatically improving both performance and energy efficiency
[30, 13, 14, 26]. It addresses the issue of large data movement by processing data in memory where it is stored. We
use Resistive RAM (RRAM) which has low energy requirements, high switching speed, is scalable, and compatible
with the CMOS fabrication process.

In this paper, we present the first latest generation end-to-end acceleration of FHE cryptosystem based on
[38]. Unlike previous HE proposals, which supported a library of functions, the latest RGSW-based cryptosystem
allows computing arbitrary functions on encrypted data. Our proposed MemFHE has two main components,
the client and the server PIM accelerators. The client PIM accelerator runs ultra-efficient in-memory operations
to not only encode and decode data but also enables ring learning with errors (RLWE) to encrypt and decrypt
data. The encrypted data (ciphertext), along with an encrypted version of secret key, are sent to the server PIM
accelerator for processing. Server PIM receives the ciphertext from multiple clients and performs operations
on ciphertext to generate output. To enable this, server PIM uses PIM-enabled bootstrapping which keeps the
accumulated noise low so that the output ciphertext can be decrypted by the intended client. This ciphertext is
sent back to the client. In MemFHE, only the client has the means to decrypt the output ciphertext and access the
unencrypted data.

To summarize, our specific contributions are:

e We present the first end-to-end acceleration of fully homomorphic encryption in memory. Our design
accelerates both the encryption/decryption and the full FHE computation pipelines. MemFHE employs
ciphertext-level and operation level parallelism combined with operation-level pipelining to achieve orders
of magnitude of performance improvement over the traditional systems. Unlike previous work, we show
how PIM can be used to accelerate an application with high data dependency and little data-level parallelism.
Our pipelining increases latency of the un-pipelined design by 3% while providing > 1000x throughput
improvement.

e Our server PIM design includes fast bootstrapping, key switching, and modulus switching in memory.
It distributes the key memory units to reduce the instances of data contention. It sequentially processes
different inputs in different pipeline stages for the best processing throughput.

e We accelerate the bottleneck process of bootstrapping by using a highly pipelined architecture. Our
bootstrapping introduces parallel accumulation units, which supports two different types of bootstrapping
techniques. We propose a novel implementation for the core bootstrapping operation, Number Theoretic
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Transform (NTT). Unlike existing works, our NTT doesn’t require any special interconnect structure.
Moreover, it is flexible and can process many NTT stages without needing extra hardware.

e Our client PIM design includes encryption and decryption. MemFHE enables encryption efficiently in
memory by exploiting bit-level access and accelerates dot product with a new in-memory implementation.

o We evaluate MemFHE for various security-levels and compare it with state-of-the-art CPU implementations
for Ring-GSW based FHE. MemFHE is up to 20kx (265X) faster than CPU (GPU) for FHE arithmetic
operations and provides on average 2007X higher throughput than [36] while implementing neural networks
with FHE.

2 BACKGROUND AND MOTIVATION
2.1 FHE Schemes

Many fully homomorphic encryption schemes have been developed over the past decade. Table 1 summarizes
different “generations" of FHE schemes. The first generation include the original design from [16] and its
subsequent optimizations. However, they have limited homomorphic capacity due to rapid noise growth during
evaluation, restricting the evaluation to few gates at a time. Second generation schemes reduce the noise growth
from linear to logarithmic and are based on more standard hardness assumptions. However, they are slow,
requiring minutes for simple gate operations (HElib-IBM [25]).

The third generation schemes use weaker hardness assumptions to minimize the bootstrapping time and
provide slower noise growth [17, 12, 6]. The work in [38] presented a framework to enable fast bootstrapping
for such schemes under different security assumptions. While being the most general, supporting arbitrary
functions, allowing many bootstrapping iterations without the need to decrypt, and providing providing control
over security-levels, these schemes bootstrap individual boolean gates. They may be slower overall when
implementing multi-bit operations. Recent works [21, 56, 36] have shown efficient extension of these schemes for
multi-bit operations. Work in this direction promises to deliver faster bootstrapping and better overall application
latencies, while providing the ability to perform functions of arbitrary complexity.

2.2 FHEW Cryptosystem

FHE in the West (FHEW) cryptosystem [38] is based on the latest generation of FHE schemes, namely FHEW
[12] and TFHE [7], and evaluates logic functions on encrypted data, i.e. ciphertexts, by evaluating look-up tables
(LUTs). This is a foundational work toward realizing the full potential of FHE with more efficient encryption
(less data size explosion), and faster bootstrapping for the same level of security as the previous generation
schemes. It operates at bit-level, where each data bit is encrypted into pair consisting of a polynomial and an
integer using a secret key, s, with learning-with-error (LWE) scheme. The encryption is performed for given
application parameters, g and n, where n is the degree of the polynomial. All operations and data are taken
modulus q. The typical values of n and g, presented in Section 9, results in a bit of data being encrypted into
a 0.5-1kb ciphertext. In some cases, FHEW further breaks the ciphertext integers (including each polynomial
coefficient) into d, numbers, each with base B,, to control the growth rate of noise. This further increases the
ciphertext size. FHEW operates on LWE-encrypted ciphertexts, utilizing two different encrypted versions of s,
EKp and EKs. The encrypted keys may have memory footprint in GBs.

FHEW employs cyclotomic ring-based encryption technique, namely RGSW [17], to operate on the ciphertexts.
For each function, like NOR or XOR, that should be applied on the input ciphertexts, FHEW stores a corresponding
FHE function in the LUTs. For example, an AND operation between two bits in plaintext, translates to simple
addition of their corresponding ciphertexts, followed by AND-specific coefficient mapping. This is followed by
bootstrapping, which reduces the noise accumulated in the output ciphertext due to function implementation. If
not bootstrapped, the output ciphertext may become undecryptable. Most operations in bootstrapping happen over
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the polynomial part of output ciphertext, using the encrypted version EKp of s. The ciphertext undergoes several
accumulation iterations during bootstrapping. Bootstrapping works on parameters with similar functionality as
that of LWE encryption but have different values, namely N, Q, By, and d,. Here, all operations in accumulation
happen on integers that have each been decomposed into d, digits with base B,. The final accumulation output
is a pair of polynomials of degree N and modulus Q. The final output ciphertext, with reduced noise, is extracted
out of accumulation result. It is further treated with EKs encrypted version of s to convert it back to the original
LWE-encrypted domain. This process is called key-switching. The key-switched ciphertext is decrypted to get
the output.

Apart from the large memory requirements of different FHEW components, the iterative nature and high
polynomial degrees of FHEW operations makes it a slow and a memory-intensive process. Most data operations in
FHEW are applied over polynomials which have a large compute and memory transfer bottleneck [40]. Efficient
polynomial multiplication converts the polynomial into the frequency domain with number theoretic transform
(NTT). The digit-decomposed computations of FHEW (i.e. breaking integers into d, or d, digits), required back-
and-forth polynomial conversions between normal (coefficient) and NTT domain. Cumulatively, these operations
make the implementation of FHEW on CPUs/GPUs very slow. Moreover, the huge memory requirement of the
third generation FHEW cryptosystem, restricts the development of an effective FPGA/ASIC implementations.
In contrast, MemFHE presents the first memory-centric architecture for FHEW cryptosystem. While MemFHE
benefits from the large memory density due to its memory-centric approach, processing in memory further
enables efficient computations, extreme parallelism, and significantly reduced data movement.

2.3 Resistive RAM-based Processing in Memory

Many PIM techniques using RRAM have been proposed recently which implement bitwise operations, arithmetic,
and search operations in memory [30, 24, 22, 18, 27], with support for varying bit-widths and data types including
binary, integer, fixed point, and floating point. They use the switching-based RRAM processing in memory logic,
where operations are governed by the voltage applied at the memory bitlines [30, 22]. The work in [22, 23]
implement addition and multiplication using the bitwise operations. A b-bit addition is implemented with b serial
1-bit additions, which are further implemented with operations like AND, OR, and XOR. Where, a multiplication
operation is implemented by first generating partial products using bitwise AND and then adding them using
1-bit additions. RRAM based PIM may not be completely reliable. However, digital PIM uses single level cells
(SLCs) that have been verified to work reliably even with 10-15 % variations in the voltage/resistance [42]. The
reliability benefits of SLCs outweigh the added memory-cell requirements for SLCs, e.g. 2x area vs 10* higher
endurance [42]. Moreover, FHE parameters consider injection of noise during computation. One can model
RRAM’s computational unreliability and errors as noise, while selecting FHE parameters.

2.4 Challenges in Designing a PIM-based Accelerator for FHE

While the huge memory and bandwidth requirements make FHE a good candidate for PIM, a PIM-based FHE
accelerator encounters certain challenges. As discussed above, NTT is a bottleneck operation in FHEW. However,
its implementation requires a specialized hardware to allow complex data movement characteristics of NTT. Such
a hardware would further make the PIM architecture complex and less-efficient when designed for generality. In
this work, our scheme eliminates the dependence on such complex circuits/designs.

In addition to this, certain arithmetic operations needed for FHE are not inherently supported by PIM. For
example, even though vector operations are very efficient in PIM, some operations like division and modulus are
not suitable. We adopt novel ways to implement such operations in MemFHE. Further, MemFHE rethinks functions
like digit-decompose, which would otherwise be extremely difficult to implement in the highly-optimized pipeline
of FHEW.
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Unlike most existing work that accelerate just a part (e.g. bootstrapping) of the FHEW pipeline, MemFHE
accelerates each and every function, including encryption/decryption, key generation, key switching, modulus
switching, digit-decomposition, bootstrapping-key management at the server, etc. Accelerating each of these
functions in memory, while maintaining a high-throughput rate require careful accelerator design. Most of
these functions were designed based on the operations provided by CPU and software libraries. However, PIM
inherently supports only basic functions. Also, he architecture of PIM doesn’t inherently supports the kind
of pipelining that we are accustomed to with CPUs. So, not only the implementation of a majority of these
operations in PIM is complex but also ensuring pipelined behavior in PIM is not trivial. Hence, this paper might
appear to be very detail oriented, which we believe is necessary.

3 RELATED WORK

FHE on CPUs and GPUs: The works in [33, 34, 40, 11, 43, 48] proposed CPU and GPU implementations of
FHEW [12, 38] and TFHE [6] algorithms. While some implementations optimized the parameters of applications to
make it hardware-friendly, others utilized GPU acceleration techniques like memory coalescing and vectorization
to improvement the latency of FHEW and TFHE schemes. However, they cannot scale and speedup enough to
make FHE feasible.

FHE FPGA/ASIC Acceleration: Almost all recent FPGA accelerators for HE are based on the 2nd generation
schemes. The work in [10] and [49] perform the basic HE operations for B/FV scheme on FPGAs. The work in
[47] implements HE operations for CKKS, another 2nd generation scheme, obtaining significant performance
improvements vs. CPU. A recent work in [50] accelerated basic FHE primitives allowing it to essentially support
any FHE scheme. However, it does not provide the required memory and compute bandwidth that the latest
generation schemes demand. On the contrary, MemFHE implements complete FHE computing pipeline with the
latest generation schemes. MemFHE exploits extensive in-memory bandwidth while providing high compute
bandwidth by converting 1000s of memory block into computing cores.

FHE PIM Accelerators: The work in CiM-HE [46] implements homomorphic arithmetic operations for the
2nd generation B/FV scheme in SRAM. It uses CMOS-based custom memory peripherals to support different
operations. While no PIM implementation exists for computing with RGSW schemes, the work in [20] and
[45] homomorphically search over data encrypted with a third generation FHE [12]. Their limited functionality
restricts practical use.

4 MEMFHE SYSTEM OVERVIEW

MemFHE employs an end-to-end privacy-preserving computing system consisting of both client and server
implementations. Our architecture is based on the FHEW cryptosystem [38] which provides the slowest noise
growth and hence is the most generally applicable class of FHE. MemFHE is implemented completely in memory,
using homogeneous crossbar memory arrays and exploits PIM to implement all FHE operations.

All computations in the MemFHE-server happen in encrypted domain. It inputs the encrypted ciphertexts and
performs the desired operations on the ciphertexts in the basic function unit, Urync, without decrypting them.
Computing in FHE domain leads to the accumulation of noise in the resultant ciphertext. To reduce this noise and
keep it below the threshold, server utilizes the MemFHE-bootstrapping. Bootstrapping is the most important but
also the slowest process in the MemFHE-server pipeline due to its iterative nature. Hence, we heavily pipeline
bootstrapping architecture, so that the slowest operations in bootstrapping happens on different pipeline stages.
We introduce novel architectures for various sub-components of bootstrapping and perform operation level
optimizations in the bootstrapping core. As a result, MemFHE-server can achieve a high throughput of 170
inputs/ms even for high security parameters, which is 20kx higher than CPU [48].
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Fig. 1. MemFHE Server Architecture

In addition to the server, we also present MemFHE-client, which provides the input ciphertexts and receives the
output of the server. The client is responsible for converting raw data into FHE domain, using a client-specific secret
key. The client in FHEW cryptosystem encrypts a bit of data into an LWE ciphertext. MemFHE-client accelerates
LWE utilizing efficient in-memory multiply-accumulation and shift operations. The encrypted ciphertext is sent
to server along with an encrypted version of the client’s secret key. Client also decrypts the output of FHE
computation from the server into plaintext form.

5 MEMFHE-SERVER ARCHITECTURE

Figure 1 shows an overview of the server’s architecture. The goal of MemFHE’s server is to provide a high
throughput for operations on encrypted data. To achieve this, we create a deep pipeline. As discussed later and
evaluated in experiments, bootstrapping is the major bottleneck of the server-side computations. Hence, we use
the latency of the slowest bootstrapping stage (i.e. polynomial multiplication) to set the maximum latency of any
pipeline-stage in the server. We next present in-memory implementations of all the server components.

5.1 FHEW Function Implementation

The main strength of FHEW lies in its ability to implement arbitrary functions. FHEW achieves this by translating
each boolean function into one or more homomorphic computation steps and then mapping the integer output to a
bootstrapping-compatible polynomial, m;. Each element of my, is set to either Q/8 and —Q/8, the FHE equivalents
of binary ‘1’ and ‘0’. MemFHE allocates a memory block which stores these translations for all functions. Function
implementation is the only process in MemFHE server that follows the client’s parameters, n and g. FHEW uses
polynomial addition, subtraction, and scaling by a constant as computing steps. For example, an AND between
two bits is implemented by first homomorphically adding the corresponding ciphertexts (both the polynomial
and the integer parts), followed by mapping the integer part of the output ciphertext to N-degree polynomial, my.
Then, each coefficient of my, in [3q/8, 7q/8) is set to Q/8 and the others are set to —Q/8. A complete list of boolean
gates and their corresponding FHEW translations are presented in [38]. MemFHE implements computation steps
in a memory block, Ury N, executing polynomial additions and subtractions as described in Section 8. Scaling is
performed using a series of shift-add operations. Since mapping happens within server’s parameters, MemFHE
performs it during the initialization stage of bootstrapping discussed in Section 6.1.

5.2 Bootstrapping

Implementing functions homomorphically in encrypted domain introduces noise in the ciphertext, which may
make it impossible to decrypt the ciphertext. Bootstrapping reduces this accumulated noise. A majority of
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MemFHE’s resources are dedicated to the bootstrapping core. MemFHE transfers the output of Upync¢ to
bootstrapping. The initialization phase of bootstrapping coverts the output of Upync¢ into a server-compatible
encryption and initializes a cryptographic accumulator, ACC. Then, bootstrapping utilizes a series of accumulation
units, Uacc, to modify the contents of ACC. The accumulation uses EKp to "decrypt away" the accumulated
noise from the output of Upync. MemFHE supports two types of accumulation schemes, AP [1] and GINX
[15]. While GINX is more efficient for binary- and ternary-distributed secret keys, AP is more efficient in other
cases [38]. MemFHE chooses the accumulation scheme based on the client’s encryption procedure. The output
ciphertext with reduced-noise is then extracted from the ACC. Section 6 details the implementation of different
bootstrapping steps in MemFHE.

5.3 Key Switching

Bootstrapping encrypts the output with a different key, EKp instead of the original key s. Key switching is
performed to obtain an output encrypted with s, so that it can be decrypted by the client. It utilizes the switching
key, EKs, which is sent by the client to the server along with the refreshing key, EKp. As shown in [38], key
switching uses a base B that breaks the integers into d; digits. The N domain-output of ACC gets converted to a
client-compatible n. Key switching initializes a ciphertext, ¢, with an empty polynomial and the integer value
of the extracted ACC. The ciphertext c; has the parameters n and Q. Each coeflicient of the ACC polynomial
part, selects elements (n, Q ciphertext) from EKs and then subtracts them from the existing value of cs. This
is repeated for d; iterations. At the end of each iteration, the ACC polynomial coefficients are divided by the
switching base Bs.

All operations in key switching are performed modulo Q. MemFHE first implements (ds — 1) divisions as
shown in Figure 1. Since By is known, MemFHE pre-computes and stores the value of 1/B;. Division is now a
multiplication with 1/Bs. To prevent losing data due to rounding errors, the multiplication with 1/Bjs is performed
in full precision, generating twice the number of bits than needed. This happens in parallel for all the coefficients
in a row-parallel way. This is followed by a modulo operation with Bs. Here we utilize in-memory Montgomery
reduction (Section 8) to obtain the modulus of the divided coeflicients. Now, we have N X (ds — 1) coeflicients,
that select as many ciphertexts from EK, and perform sequential ciphertext subtractions. MemFHE employs a
tree structure to subtract the ciphertexts. Each computing element of this tree is a memory block. Each blocks
perform x sequential subtractions so that the total latency of these subtractions is less than the throughput of the
design. Hence, we pipeline the tree stage-by-stage. It takes [logz(N.(ds — 1)/x)] tree stages to implement all the
subtractions. Each subtraction is followed by Barrett reduction (Section 8 with modulo Q. The final output of the
tree, cs, is the key-switched output.

5.4 Modulus Switching

Lastly, the output of key switching is converted from a modulo Q ciphertext to a modulo g ciphertext. To achieve
that, each element is multiplied with q and divided by Q and then rounded off to the nearest integer. MemFHE
implements modulus switching in a single memory block. The key-switched ciphertext ¢, including its integer
part, and is stored vertically in the memory block so that each coefficient is in a separate row. Similar to key
switching, MemFHE prestores the value q/Q. All the ciphertext coefficients are hence multiplied with ¢/Q in a
row parallel way. Then, a value of 0.5 is added to all the products in parallel using row-parallel addition as detailed
in Section 8. Now, for each memory row, the integer part represents the integer nearest to the corresponding
coefficient of cs.(q/Q). We finally take modulus of the output with q. Since g is a power of 2 for all security
parameters that MemFHE considers, modulo is equivalent to reading log,q LSBs of the output. If q is not a power
of 2, we use Barrett reduction instead. The output of modulus switching, also the output of server, is a ciphertext
with parameter n and g, encrypted with secret key, s of the client.
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Fig. 2. Accumulation Unit Uycc of MemFHE

6 MEMFHE BOOTSTRAPPING

Bootstrapping inputs an encrypted version of the private key, EKp, also called the refreshing key, along with a
ciphertext. The output is a ciphertext corresponding to the input ciphertext but with reduced noise. Bootstrapping
performs iterative computations on a cryptographic accumulator, ACC. The process involves first initializing ACC
with the input ciphertext, then implementing an iterative accumulation over ACC. Each accumulation involves a
series of multiplication and addition operations over polynomials. Finally, an element of the final ACC is extracted
to obtain the output ciphertext. In this section, we discuss the implementation of each of these steps in MemFHE.

6.1 Initialization

The initialization phase performs two tasks (i) setting the initial value of ACC and (ii) ensuring that the input
ciphertext’s polynomial is compatible with the decomposed refreshing key.

Initializing ACC: MemFHE performs the mapping discussed in Section 5.1 in this phase. The coefficients
of the bootstrapping-compatible polynomial; m; are each mapped to Q/8 and —Q/8 based on whether they
lie inside or outside an operation-dependent range (Ib, ub), [3q/8, 7q/8) in the case of AND. To implement
this mapping operation in parallel for all the coefficients of m;,, we utilize search-based PIM operations. Using
exact bitwise-search operations, MemFHE implements in-memory compare operation, which can search a set
of memory columns for all the numbers greater, equal, or less than the query. The details of the operation are
presented in Section 8. First MemFHE inputs [b as a query and searches for all the numbers greater than [b. Then,
MemFHE performs searches for the numbers less than ub. The final filtered-out rows are initialized to Q/8, while
the remaining rows are initialized to —Q/8. The resultant my, is the initial ACC value.

Polynomial’s Compatibility with EKg: The input ciphertext’s polynomial a, needs to be made compatible
with the decomposed refreshing key, EKp. The polynomial a undergoes the same set of operations as those
discussed in key switching, except for subtractions, with parameters n, B,, and d, instead of N, B, and d. It
results in n X.d, coefficients for each input. We call them ag,.. For the bootstrapping pipeline to work, all of
the n X d, Uacc units should receive elements from ay..s belonging to different inputs. Hence, we introduce an
n X d,-sized register, in which word; is fed directly to Uscc—;.

6.2 Accumulation

The inputs to the accumulation function include the decomposed representation of a (age.) from the initialization
step, an RGSW encrypted refreshing key, EKp, and the output of initialization step, a pair of polynomials of
degree N. Accumulation preforms iterative multiplication of this key with ACC and then addition back to ACC. It
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is the slowest part of bootstrapping due to high data dependency between the iterations. It adds the result of
multiplication in each iteration to the accumulator. The dependency of the input of one ciphertext element on the
output of the previous one further prohibits the functions from being parallelized across the ciphertext elements.
However, each ciphertext element is a high-degree polynomial, allowing parallelize over the polynomial length.

6.2.1 AP Bootstrapping: Traditionally, refreshing key is an n-dimensional vector where each element of the
vector is either an N-degree polynomial or a pair of those. However, in AP bootstrapping instead of each element
of EKp being an N-degree polynomial, it is a pair of 2d, polynomials of degree N. Each dimension of the vector
is further represented using the pair (B,, d,). Hence, the AP refreshing key is a three dimension matrix where
each element of the matrix is a pair of 2d; N-degree polynomials. MemFHE stores the refreshing key in n x d,
memory blocks such that each block stores 2B,.d; polynomials. Each EKp memory block is assigned to the
corresponding accumulation unit. The main computation of the AP bootstrapping is to perform accumulation
function on ACC n X d, times. Each step involves a multiplication of the current ACC value with an element of
EKpg as ACC « ACC ¢ EKp.

Accumulation Unit (Uycc): We design a bootstrapping pipeline such that the accumulation logic consists
of n X d, accumulation units, Uscc. The unit address (i, j), where 0 < i < nand 0 < j < d,, corresponds to the
(i X dy + j)th accumulation iteration. While the units cannot operate on multiple iterations of a single ciphertext
in parallel, they can process different ciphertexts in a pipelined fashion. Each unit receives the corresponding
value from a4.. memory and uses it to select an element from EKp for multiplication. Since all units input EKp
in each iteration, it introduces a fetch bottleneck at the EKp. To reduce this problem, EKp is split over multiple
memory blocks, with each Ugcc having a local EKg memory. EKp isindependent of inputs and populated once.

Since FHEW is based on RGSW encryption scheme, the multiplication in the accumulation stage happens on
digit-decomposed operands to reduce the growth of noise. As explained later, the SDD tile in Uscc performs digit
decomposition on the two N-degree polynomials of ACC, splitting each coefficient of ACC into d; numbers with
log, B bits each. EKp is already digit-decomposed. The output of SDD tile, digit-decomposed ACCy, contains 2d,
polynomials of degree N, similar to each part of EK pair polynomials. Now Uscc performs 4d, polynomial-wise
multiplications in parallel, 2d; between ACCyc. and each part of the EKp pair as shown in Figure 2. To make the
multiplication efficient, all the polynomials are converted in NTT domain before multiplying. Uscc employs 2d,
NTT pipelines and converts ACCy,. into NTT domain. The details of our NTT pipeline are presented in Section
6.2.3. EKp is already in NTT domain. Polynomials in NTT domain are stored in a row-parallel way, such that
each coefficient is stored in a separate row as shown in Figure 2. Then, we perform row-parallel multiplication
between the polynomials. After multiplication, all products are accumulated to generate a pair of polynomials
that serve as the output ACC. Before sending the output to the next unit, Uscc converts it back to the coefficient
(non-NTT).

Signed Digit Decompose (SDD): Signed digit decompose (SDD) decomposes a pair of polynomials into
multiple polynomials. The core operation is to break each polynomial coefficient (originally log,Q bits) into
smaller log; B, bit signed numbers. As shown in Table 2, B, is always a power of 2, making the process simpler.
SDD consists of one or more memory blocks which perform iterative modulus-division operations, as shown in
Figure 2. In each iteration, MemFHE selects log; B, LSBs (remainder of the division by By) from the coefficients,
preserving the remaining bits (quotient of the division). The selected LSBs represent the first log, B,-bit number.
This process is repeated dy times, decomposing all coefficients into into d, log, B4-bit numbers. Hence, in the
beginning of each iteration, we first change the range of the coefficients from [0, Q) to [-Q/2, Q/2] by subtracting
Q from all inputs in [Q/2, Q), mapping them to [-Q/2, 0). MemFHE implements this operation in parallel for
all the coefficients of the input polynomial. Coefficients are stored in different rows, occupying the same set of
memory columns. We search for all numbers greater than Q/2 using MemFHE’s in-memory parallel compare
operation discussed in Section 8. MemFHE then subtracts Q from all the filtered coefficients. Similarly, the selected
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LSBs (remainders) are sign-extended, where MemFHE copies the (log, By — 1)th bit for all the coefficients in
parallel. Then, all negative remainders are made positive. MemFHE achieves this by searching the MSB bits of
all the remainders in parallel (one remainder per coefficient per iteration) and subtracting Q from the filtered
remainders.

6.2.2 GINX Bootstrapping: The decision to run either AP or GINX bootstrapping is based on the type of secret
key used by the client. As shown in [38], GINX works better in case of binary and ternary secret keys, while AP
works better for other. GINX bootstrapping differs from AP in two major ways. First, it utilizes binary secret keys,
resulting in a smaller refreshing key EKg. EKp in GINX has a dimension of n X 2, instead of AP’s n X B, X d,. Each
element consists of 2d, polynomials of degree N, the same as AP. Second, the bootstrapping function in GINX
involves extra multiplicative and additive terms to generate the effect of input-dependent polynomial rotation.
Specifically, the bootstrapping follows:

ACC « ACC + (X™ = 1)(ACC o EKp),

where m = [a(i) X (2N/q)] for ith coefficient of the input ciphertext polynomial a. (X™ — 1) is a monomial
representing GINX’s "blind rotation" by m. This encodes the input in the form of the powers of polynomial. The
state-of-the-art implementation PALISADE [48] pre-computes (X™ — 1) for all possible values of 0 < m < 2N
and maintains a library of their NTT counterparts. Based on the m corresponding to a Uscc, PALISADE selects
a value from the library and then multiply it with Uacc’s output. This creates a data transfer bottleneck in a
pipelined architecture like MemFHE’s, where many units need to access the library simultaneously. On the
contrary, MemFHE exploits the bit-level access provided by PIM to implement this "rotation" efficiently.

MemFHE uses the same architecture to implement GINX as that for AP. GINX requires n X 2 Uscc units. Here,
unlike AP, EKp input to Uscc is independent of the polynomial part a of the ciphertext. Like in the case of AP,
the SDD tile of Uxcc first decomposes input ACC, Uscc then performs the same polynomial-wise multiplication
and subsequent addition, and finally converts them to coefficient domain using INTT. Now, the output of addition
represents prod = (ACC ¢ EK3p) in coeflicient domain. We now perform in-memory row-parallel rotation on
prod as discussed in Section 8. MemFHE finally adds the rotated prod, prod,, to pre-decomposed ACC and finally
subtracts prod. The output is the GINX accumulated ACC in coefficient domain.

6.2.3 NTT and INTT Pipeline. Number theoretic transform (NTT) is a generalization of fast Fourier transform
(FFT) that performs transformation over a ring instead of complex numbers. In FHE, it is mainly used in polynomial
multiplication where it converts a polynomial (by default in coefficient domain) into its frequency (NTT) domain
equivalent. A polynomial multiplication in coefficient domain translates to an element-wise multiplication in
NTT domain, enabling extensive parallelism for high-degree polynomials. However, the process of converting to
and from NTT domain is complex. The state-of-the-art implementations of NTT [47, 41] utilize algorithms where
the coeflicient access pattern for an n-degree polynomial changes for each of the logyn stages of NTT pipeline.
Instead, we utilize Singleton’s FFT algorithm proposed in [51] and later accelerated in [35, 54, 9] to implement
MemFHE’s NTT pipeline. Figure 3a shows the signal flow graph for Singleton’s FFT algorithm. We observe that
the coefficient access pattern for the algorithm remains the same for every stage. MemFHE exploits this property
to avoid using NTT-specific interconnects.

Data Mapping;: Figure 3b shows the data layout of one NTT stage in MemFHE. We write an n-degree input
polynomial, a, in n/2 rows such that a pair of coefficients with indices 2i and (2i + 1) share the ith row of the
memory block. All such pairs are hence written in separate rows, utilizing the same columns. A twiddle factor is
associated with each pair, which is pre-computed and stored in the corresponding row. Each pair generates the
ith and (i + n/2)th coefficients of the output polynomial in ith row of the block.

Computation: Each NTT stage of MemFHE performs three compute operations. First, we perform row-parallel
multiplication between the coefficients with odd indices (2i + 1) and the corresponding twiddle factor W. Second,
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Fig. 3. Singleton’s NTT in MemFHE

we add the generated products to the coefficients with even indices (2i) in a row-parallel way to generate the first
n/2 coeflicients of the output polynomial. Lastly, we subtract the products from the even-indexed coefficients in a
row-parallel way to obtain the remaining output coefficients. The details of the row-parallel operation execution
are presented in Section 8.

Stage-to-Stage Data Transfer: Figure 3c shows the data transferred in each transfer phase. We perform
column-wise data transfer, where each column consists of one bit from all (or a subset of) rows of the memory
block. In one data transfer phase, q¢ column transfers can transfer as many g-bit numbers as the rows in the
memory. As discussed in data mapping, the output polynomial is present in n/2 rows such that indices [0, n/2 — 1]
are stored in one set of columns and the remaining indices in the another set of columns. Hence, we need four
data transfer phases. The first data transfer reads the even-indexed coefficients from [0, n/2 — 1] and write them
to the next stage according to the data mapping scheme, while the second data transfer does the same for the
even-indexed coefficients from [n/2, n — 1]. Similarly, third and fourth data transfer phases deal with odd-indexed
coeflicients. These data transfers read selected rows from one memory block, send it over a conventional local
interconnect, and write them at a contiguous location of the destination memory.

Operation Pipeline: We pipeline our NTT implementation at the granularity of an NTT stage. Hence, the
pipeline depth is given by the number of NTT stages: (n X dr) X (2logzn + 2). Each stage works in parallel over
different inputs: As discussed in Section 9, each MemFHE memory block contains 1024 rows. Hence, one memory
block can implement an NTT stage for up to 2048-degree polynomial, requiring a total of 11(l0og,2048) memory
block for whole NTT. For n < 2048, we perform NTT over m = 2048/n inputs at the same time in parallel, while
requiring only log,n stages in the pipeline. In order to maintain the computation and data transfer characteristics,
we interleave the inputs as shown in Figure 3e. Here, the output throughput of the pipeline becomes mx the
original throughput. For n > 2048, MemFHE allocates multiple memory blocks per stage and implements a deeper
pipeline. Since MemFHE’s NTT is stage-wise pipelined, the throughput of the larger NTT is the same as that for
n = 2048.

Inverse NTT (INTT): NTT and INTT utilize the same hardware and have identical data-mapping, computation,
transfer, and pipelining schemes. The two operations differ only in the twiddle factors they use. During pre-
compute step, INTT pipeline generates the twiddle factors, w™%, which are inverse of those used in NTT. The
rest of the process is the same.
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6.3 Extraction

After accumulation, ACC consists of a pair of polynomials. Extraction is a simple mapping process that converts
ACC to a ciphertext. The first polynomial of ACC represents the polynomial part of the bootstrapped output
ciphertext. Whereas, the constant term (corresponding to degree-0) of the second polynomial represents the
integer part. To reverse the mapping operation that occurred during initialization phase, Q/8 is added (modulo
Q) to the integer part.

7 MEMFHE CLIENT ARCHITECTURE
7.1 Encryption

Client encryption converts a message bit, m, into a ciphertext of the type (a, b), where a is an integer polynomial
of length n, while b is an integer. This encryption utilizes learning with errors (LWE) encryption technique
[37, 44, 38] and is defined as LWE;(m) = (a, b) = (a, (a.s + e + m’) mod q), where m’ is an encoded version of m,
s is the secret key, and e is an integer error added to the message.

Evaluating m’ involves dividing the message, m, with a message modulus t and then multiplying the output
with the application parameter, g/2. According to the state-of-the-art implementation in [48] and the security
parameters presented in [38] and Section 9, t and g are always powers of 2. Hence, MemFHE scales m to m’ using
in-memory shift and add operations. We first extract the log,t LSBs of m. Then, in-memory multiplication with
q/2 is simply a left shift operation on m%t by log,(g/2). Since all the operations in encryption are done modulo g,
we extract the log,q LSBs of the output. In the case when q is not a power of 2, we perform modulo operations as
described in Section 8.

Generating integer b requires a dot product between vectors.a and s, followed by adding e and m’. To generate
this dot product, we utilize the secret key memory, SK;,,em. It stores the vector corresponding to secret key s in a
row-parallel way such that all the elements of s occupy the same set of memory bitlines and each element is
stored in a different row. The incoming vector g is written such that the corresponding elements of a and s are
present in the same row.

We implement row-parallel integer multiplication between the elements of the two vectors. Our row-parallel
execution performs vector-wide multiplication with the same latency as that of a single multiplication, discussed
in Section 8. This is followed by an addition of all the products. To add, we perform column parallel in-memory
addition operations on the output products such as those proposed in [13] but using the in-memory switching
techniques instead of sense amplifier based operations of [13]. In the following discussion, we denote the bitwidth
of each product (i.e. [og,q) with the letter p. Here, we accumulate each bit position independently, so that k p-bit
numbers are reduced to p logak-bit numbers after (k — 2) column parallel 1-bit additions for each of the p bit
position. To further reduce the output to a single number, we transpose the output of column-parallel addition so
that the outputs for all p columns are stored in the same row. It takes p data transfers, log;k bits per transfer, to
read the outputs column-wise and store them in a row. We then perform bit-serial addition to obtain the final
integer output, which takes p x log;k 1-bit additions. This output represents the dot product a.s, to which we add
integers e and m’.

7.2 Decryption

Client decryption converts the server’s output ciphertext, (a, b), back to a bit message, m, as Round(4/q* (b —a.s)),
where s is the client’s private key. MemFHE first uses the dot product implementation of MemFHE'’s encryption
to obtain a.s, followed by a subtraction operation with b. The subtraction is followed by a modulo g operation,
where MemFHE simply reads the log,q LSBs of the output. Scaling is done with 4/q by discarding the log,(g/4)
LSBs. Round(.) is implemented similar to the rounding function discussed during modulus switching in Section
5.4.
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Table 2. MemFHE Security Parameters [38]

Set | Security | n | q | N | log,Q | B, | B, | B,
Classical

STD128 | 128-bit | 512 | 512 [ 1024 | 27 |25 27 | 23
STD192 | 192-bit | 512 | 512 | 2048 | 37 |25 |29 |23
STD256 | 256-bit | 1024 | 1024 | 2048 | 29 | 25 | 21% | 32
Quantum — Safe
STD128Q | 128-bit | 512 | 512 [ 2048 | 50 | 25| 2% |23
STD192Q | 192-bit | 1024 | 1024 | 2048 | 35 | 25 | 212 | 32
STD256Q | 256-bit | 1024 | 1024 | 2048 | 27 | 25| 27 |32

8 MEMFHE COMPUTATIONS

Here, we detail PIM implementation of MemFHE operations.

Vectorized Data Organization: MemFHE implements vectorized-versions of its operations. An input vector,
with n b-bit elements, is stored such that n elements occupy n different rows with but share the same b memory
columns.

Row-parallel Addition and Multiplication: A b-bit addition in MemFHE is implemented using bitwise
AND, OR, and XOR and requires (6b + 1) memory cycles [22]. Similarly, multiplication is performed by generating
partial products and serially adding them. MemFHE optimizes the multiplication in [23] by sharing the memory
cells among intermediate outputs of addition and utilizing faster operations proposed in [22]. This significantly
reduces the time to perform full precision b-bit multiplication from (13b? — 14b — 6) to (7b* + 4b) memory cycles,
while the total memory required reduces from (200 —5) to 13b. This increase the maximum possible multiplication
bitwidth from 51 bits in [23] to 78 bits in MemFHE.

Modulus/Modulo: Modulus operation gives the remainder of a division. In the context of FHE, modulus is
used to avoid overflow during computation. Hence, most operations in MemFHE are followed by modulus. In
most cases in MemFHE-server, modulus is taken with respect to a prime number. We perform PIM variants of
Barrett [2] (for addition) and Montgomery [39] (for multiplication) reductions using shift and add operations, as
done in [41]. This requires prior knowledge of the modulus base, which is governed by the security parameters
(and hence known) in MemFHE. If taken with respect to a power of 2, then modulus just selects the corresponding
LSBs of the input.

Comparison: Comparison operation in MemFHE can compare an input query with the data stored in
MemFHE’s memory blocks. We exploit the associative operations proposed in [18] to search for a bit of data
in a memory column. To compare data stored in b columns and r rows of a memory block with a b-bit query,
we perform bit-by-bit search. Starting from MSB, associative search is applied for each memory column and all
memory rows. Associative search circuit [18] selects all rows where there is a mismatch between the stored and
query bit.

Rotation: Rotation in MemFHE is equivalent to reading out a memory row (column), bit-wise rotating them
at the input register of the block and writing it back.

Shift: MemFHE implements shift operation by simply selecting or deselecting bitlines for the corresponding
LSB/MSBs. If sign-extension is required, then MemFHE copies the data stored at the original MSB bitline.
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9 EVALUATION
9.1 Simulation Setup

We simulate MemFHE using a cycle-accurate simulator. The simulator considers the memory block size (1024x1024
bits in our experiments), the precision for each operation, the degree of polynomials, the locations and the
organization of the data. We use HSPICE for circuit-level simulations and calculate energy consumption and
performance of all the MemFHE operations with 28nm process node. We adopt an RRAM device with VTEAM
model [31] and switching delay of 1.1ns [52]. The parameters of the model have been set to mimic the behavior
of practical RRAM memory chips [53]. RRAM components of the design have a SET and RESET voltage of 2V and
1V respectively, with a high-to-low resistance ratio of 10MQ/10kQ. A detailed list of parameters is presented in
[30, 26]. However, the proposed architecture works with most processing in memory implementations based on
digital data.

MemFHE is based on the FHEW cryptosystem of PALISADE library [48]. We perform our evaluation over
multiple security parameter sets as described in [38] and summarized in Table 2.

9.2 MemFHE-Server Pipeline Analysis

Figure 4 shows the throughput, latency, energy consumed, and memory required for one MemFHE-server pipeline
with different parameter settings. We compare the throughput-optimized and area-optimized implementations
of the pipeline. The two implementations differ in the way they pipeline NTT/INTT. While the area-optimized
version follows the stage-wise pipelining mechanism discussed in Section 6.2.3, the throughput-optimized
design implements a finer-grained pipeline. It further breaks an NTT stage into three pipeline stages, first for
multiplication with twiddle, second for reduction of the product and addition/subtraction, and the third for final
reduction and data transfer to the next stage.

Throughput-Optimized MemFHE: We observe that the four design metrics change significantly with the
security levels. Throughput is highly dependent on Q, the bitwidth of server-side computations. More precisely,
throughput varies approximately with (logzQ)?. This happens because the slowest operation of the pipeline, i.e.
the coefficient-wise multiplication, has an implementation latency of O(Q?) in MemFHE. MemFHE's latency is
dependent on Q? as well as the polynomial degree of input ciphertext, n, and parameter d, and varies approximately
with n.d,.(log,Q)?. MemFHE-server consumes a total energy of 34 mJ (164 mJ) for processing an input in 128-bit
classical (quantum-safe) FHE setting. While the quantum-safe implementations consume higher energy than
their classical counterparts, the difference reduces as the security-level increases. The total memory consumed
by MemFHE’s server changes with different parameter settings as well. It varies approximately with n.N.d,,
consuming 37 GB (47 GB) for a complete server pipeline running 128-bit classical (quantum-safe) FHE. We further
observe that the accumulation of cryptographic accumulator, ACC, consumes on average 96.5% of the total
memory requirement of the server pipeline, while contributing 99.7% to the total latency. Accumulation makes
up 99.9% of the total bootstrapping computational effort. Hence, this effectively represents the performance of
bootstrapping.

Area-Optimized MemFHE: While MemFHE provides extensive throughput benefits, it takes considerable
amount of area. Moreover, since memory is the main resource in MemFHE, we optimized our implementation
for area. We observe that an area-optimized MemFHE-server pipeline consumes 2.5X less memory resources
on average as compared to the throughput-optimized design, while reducing the throughput by approximately
2.2X. In contrast, the latency increases by 75%. This happens because we reduce the number of pipeline stages
by 3% in the area-optimized design but at the same time increase the latency of each pipeline stage by 2.2X. Since
the operations remain the remain in both the designs, their total energy consumption is similar. This highlights
one of the advantages of PIM as pipelining doesn’t have operational and storage overhead since outputs of most
operations are generated in the memory block and hence stored inherently.
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Fig. 4. MemFHE-server pipeline results for a bitwise operation. The suffix Q represents quantum-safe security guarantee.

Table 3. MemFHE Key Sizes (in MB)

STD128 | STD192 | STD256 | STD128Q | STD192Q | STD256Q
EKg 253 925 1269 1719 1750 1013
EKg (AP) 322 897 1920 1150 2304 1792
EKp (GINX) 14 39 60 50 72 56
Total (AP) 575 1822 3189 2869 4054 2805
Total (GINX) | = 267 964 1329 1769 1822 1069

9.3 MemFHE-Server Scalability

We take the area-optimized MemFHE for different security-levels and scale it to the given memory size. MemFHE
has a minimum memory requirement, which is storage needed for the refreshing and switching keys. The different
key sizes in MemFHE are presented in Table 3. To scale down from a pipeline’s ideal memory size described in
Section 9.2 and Figure 4, we reduce the number of NTT cores. To scale up, we increase the number of parallel

pipelines.

Figure 5 shows the throughput of the server for different security levels under different memory constraints.
Missing bars in the figure show the cases when the available memory is not sufficient to implement MemFHE.
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Fig. 5. MemFHE-server throughput for different memory sizes. The missing bars represents memory lower than the minimum
required size.

We observe that MemFHE’s throughput changes almost linearly with the total memory availability. It increases
from the ideal 77 inputs/ms with 14 GB memory consumption to 307 inputs/ms with 64 GB for 128-bit security
level, while decrease to 7 inputs/ms with 2 GB memory size. However, in some cases the changes isn’t linear. For
example, for the quantum-safe 128-bit security configuration, MemFHE’s throughput of 20 inputs/ms doesn’t
change when going from the ideal 20 GBto 32 GB. This happens because the increase in memory is not sufficient
to support two pipelines. At the same time, increasing the memory availability further to 64 GB increases the
throughput by 3x to 61 inputs/ms because 64 GB memory has enough resources to fit three STD128Q pipelines.

9.4 MemFHE Client Analysis

MemFHE-client encrypts bits to ciphertexts and decrypts processed ciphertexts back to bits. Figure 6a shows the
encryption latency and energy consumption for MemFHE-client at different security levels for a bit. Decryption
involves the same operations and has roughly the same latency as that of encryption. The latency of encryption
depends on the ciphertext modulus, g, and the polynomial degree, n. As expected, the dot product a.s is the slowest
operation in encryption, taking 98% of the total latency. Encrypting a bit to a 128-bit (256-bit) quantum-safe
ciphertext in MemFHE takes 3 us (5.5 us), while it consumes 4 nJ (9.8 nJ) of energy. On the other hand, the CPU
is on average 171x slower. For example, CPU requires 550 us to encrypt a bit for 128-bit quantum-safe FHE.

MemFHE requires a total of 128 KB (256 KB) memory (one memory block) for generating a 128-bit (256-bit)
quantum-safe ciphertext. However, similar to MemFHE-server, the client is also scalable and employs multiple
encrypting-decrypting memory blocks for processing multiple inputs in parallel. Figure 6b shows how the
throughput of the MemFHE-client changes with the available memory sizes. The figure shows the combined
encrypt-decrypt throughput. Each memory block in MemFHE can be dynamically configured to run either
encryption or decryption. We observe that the client’s throughput increases linearly with the increase in the total
memory size, going from 0.2 inputs/us for 256 KB memory to nearly 47 inputs/us for 64 MB for quantum-safe
256-bit encryption.
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Fig. 6. Encryption in MemFHE-client. (a) Latency and energy consumption and (b) throughput for different memory sizes.

9.5 Arithmetic Operations in MemFHE

In this subsection, we show the end-to-end performance of MemFHE while implementing addition and mul-
tiplication. We utilize Kogge-Stone adders for addition operation as well as accumulation of partial products
during multiplication. This reduces the critical path of the circuits and hence, the end-to-end latency for an input.
Provided sufficient independent inputs, MemFHE can implement all these operations with the same throughput
as shown in Section 9.2, processing up to 174 inputs/ms at 256-bit quantum-safe security.

Figure 7 shows the latency of running different types of additions and multiplications in MemFHE pipeline for
various security settings. We observe that for individual operations, the latency is limited by their critical path.
The latencies for individual addition vary with O(log,b), where b is the bitwidth of operation, taking 353 ms (705
ms) for an 8-bit (64-bit) addition while providing 256-bit quantum-safe security. For multiplication, the latency
varies with O(b.log,b), taking 2.8 s (45 s) for an 8-bit (64-bit) multiplication.
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Table 4. Workloads for Learning in MemFHE [36]

Dataset Network Topology Accuracy | #GateOps
MNIST C-B-A-P-C-P-F-B-A-F[19] 99.54% 856K
CIFAR-10 [C-B-A-C-B-A-P]x3-F-F[3] 92.54% 211IM
ImageNet ShuffleNet [55] 69.4% 1.1G
Penn Treebank [32] | LSTM: t-step 25, 300-unit layer; ReLU [32] | 89.8 PPW 24.4M

C: convolution layer; A: activation layer; B: batch normalization;
P: pooling layer; F: fully-connected layer; PPW: perplexity per word.

Implementing 1024 independent additions and multiplications does not increase the latency significantly.
Instead, these independent inputs fill up MemFHE’s pipeline, which was otherwise severely underutilized.
For example, performing 1024 8-bit additions/multiplication take only twice the total time as that for single
addition/multiplication in 128-bit quantum-safe setting. For 256-bit quantum-safe FHE, the latency for 1024 8-bit
additions/multiplications is actually similar to that for a single addition/multiplication. This happens because
MemFHE pipeline for STD256Q is much deeper than that of STD128Q), allowing more operations to fill up the
pipeline. Even for 1024 64-bit multiplications, MemFHE is at most 13X slower than one 64-bit multiplication.
Hence, MemFHE truly shines when there are enough independent operations to fill the pipeline.

Lastly, Figure 7 also shows the latency of different addition and multiplication operations, normalized to
MemFHE, for an Intel i7-9700 CPU with 64 GB of RAM in 128-bit classical security setting in log scale. The results
were obtained using single-threaded implementation of the state-of-the-art PALISADE library [48] as detailed in
[38]. We observe that CPU is on average 35x (295%) slower than MemFHE for individual 8-bit (64-bit) arithmetic
operations. For 1024 arithmetic operations, MemFHE is on average 20573x faster than CPU. This is due to the
highly pipelined architecture of MemFHE that can deliver higher throughput for large data. We also compare
MemFHE with Nvidia GTX 1080 GPU with 8GB memory [40]. We see that MemFHE is on average 53X faster
than GPU for 32-element long vector additions and multiplications. However, the latency of FHE computations
in [40] scales linearly with vector-length beyond 8, while MemFHE is able to maintain the same latency for a
vector-length of 160 for 32-bit multiplications. This makes MemFHE up to 265X faster than GPU.

MemFHE Ops and Memory Block Size: The memory block size in MemFHE refers to the physical memory
size that can be used as a compute element. However, many such blocks can be architecturally combined to
form a bigger memory block. The main effect of block size is the size of operations that can be implemented. For
example, from Section 8, 64-bit multiplication requires 832 (= 13x64) columns. If the physical memory width is
less than this, then we can’t implement that operation, without incurring the performance/area cost of making
copies of the inputs and intermediate outputs. To reduce the complexity of design, the maximum size of operation
in MemFHE is limited by the memory width. For example, for an implementation with a memory block of size
512 % 512 bits (32kB), MemFHE can implement up to 32-bit multiplication. For a given precision and block size,
we can generate area- and latency-optimized MemFHE designs. While the performance of area-optimized design
will depend on the block size, the performance of latency-optimized design is minimally affected by block size.

9.6 Learning in MemFHE

We show MemFHE performance for complicated learning tasks. Our evaluation is inspired from the CPU
implementation of TFHE-based deep neural networks (DNN) in [36], which we refer to as TDNN for simplicity.
TDNN converts DNN operations into TFHE compatible functions. We use the same functions to evaluate
MemFHE as it also supports TFHE. Table 4 details the datasets and the corresponding network topologies used
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Fig. 7. End-to-end latency for implementing add and multiply ops in MemFHE.

for evaluation. TDNN works in both fully homomorphic (TDNN-FHE) mode as well as leveled mode (TDNN-
Lvl). While TDNN-FHE bootstraps each gate operation, TDNN-Lvl bootstraps only higher-level operations like
polynomial multiplications and additions [36].

Figure 8a shows the inference throughput of MemFHE and TDNN over various datasets. MemFHE is scaled
to have a total of 64GB memory size. While MemFHE provides a range of classical and quantum-safe security
guarantees, TDNN provides 163-bit (152-bit) security guarantee in FHE (leveled) mode. We observe that as
compared to TDNN-FHE, MemFHE provides on average 2007x higher throughput (inference/s) for classical
FHE. Moreover, MemFHE has 827X higher throughput while ensuring quantum-safe FHE while TDNN-FHE
just provides classical security. We also observe that MemFHE in quantum-safe provides similar throughput
as TDNN-Lvl. This is a huge improvement because leveled HE accelerates computations on encrypted data by
performing multiple operations without bootstrapping. However, it limits the achievable security levels. Moreover,
encrypting in leveled mode is dependent on the complexity of target operation and cannot implement arbitrary
operations. MemFHE achieves the throughput of a leveled implementation while running FHE.

TDNN presented in [36] runs on an Intel Xeon E7-4850 CPU with 1TB DRAM. To perform a similar memory
size evaluation, we also scale MemFHE up to 1TB memory. Figure 8 summarizes the results. We observe that
MemFHE’s throughput further increases on average by 19x (17x) for classical (quantum-safe) FHE. This translates
to four orders of magnitude higher throughput than TDNN-FHE. This huge improvement in MemFHE comes
from (i) significant reduction in total data-transfers and (ii) the significantly higher number of processing in
memory cores. Unlike traditional systems, off-chip data-transfers in MemFHE consists only of the communication
between client and server. The high density of memory allows us to have a large number of PIM-enabled cores in
the system, allowing for higher parallelism and deeper pipelining.

10 CONCLUSION

We presented MemFHE, the first end-to-end acceleration of fully homomorphic encryption in PIM. We designed
accelerators for both client as well as server for the latest RGSW based homomorphic encryption schemes.
MemFHE reduces the data transfer bottlenecks and enables extensive parallelism. MemFHE raises the bar of
today’s systems security, providing both classical and quantum-safe security guarantees.
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