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Abstract
Nucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double 
membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucle-
ated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, 
separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of 
a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted 
the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle 
which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical 
constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton 
on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and 
nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total 
lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer 
nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein 
interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand 
the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.
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Abbreviations
NE  Nuclear membrane/envelope
ER  Endoplasmic reticulum
EM  Electron microscopy
INM  Inner nuclear membrane
ONM  Outer nuclear membrane
LBR  Lamin B receptor
LAPs  Lamina-associated polypeptides
SUN  Sad1 and UNC-84
KASH  Klarsicht, Anc-1, and Syne homology
LINC  Linker of the nucleoskeleton and cytoskeleton
NPC  Nuclear pore complexes
NUP  Nucleoporins
NL  Nuclear lamin
PC  Phosphatidylcholine
PI  Phosphatidylinositol
NER  Nucleoplasmic reticulum
FRAP  Fluorescence recovery after photobleaching
D  Diffusional mobility
GFP  Green fluorescent protein
IP3R  Inositol (1,4,5)-trisphosphate receptor
RyR  Ryanodine receptor
NAADP  Nicotinic acid-adenine dinucleotide
RBC  Red blood cells

Introduction

Nucleus is at the center stage of cellular drama orchestrated 
in the life of a cell and the universality of its presence in 
plants and animals was first proposed in the 1830s by Brown 
in plants; and Valentin and Henle in animals (Osorio and 
Gomes, 2013). The history of the initial observations of 
the nucleus is extremely fascinating and has been covered 
in detail elsewhere (Osorio and Gomes, 2013). We have 
provided a schematic of the timeline of the scientists who 
contributed to this initial journey of observing the nucleus 
(Fig. 1). The nucleoplasm is surrounded by a double mem-
branous compartment constituting the Nuclear membrane/
envelope (NE) that separates it from the cytoplasm in 
nucleated cells. The initial understanding of the NE since 
its discovery in 1913 (Kite 1913) has been that of a border 
security entity between the nucleus and the cytoplasm, sepa-
rating gene regulation and transcription in the nucleus from 
translation in the cytoplasm. The switch from the chroma-
tin-centric understanding of the nucleus to unravelling the 
lipid-protein-rich environment of the NE was spearheaded 
by the discovery that mutations in genes encoding its pro-
tein components cause a wide array of inherited diseases 
often referred to as laminopathies or nuclear envelopathies. 
These pathologies include movement disorders and myo-
pathies (Dauer and Worman 2009; Meinke and Schirmer 
2016), aging-related diseases causing reduced life span and 

progeria (Kubben and Misteli 2017; Fichtman et al 2019), 
lethal defects in the embryo (Turner and Schlieker, 2016), 
and lipodystrophies (Shackleton et al. 2000). Disruption of 
NE stability is also common in cancer cells causing DNA 
damage, cancer-relevant chromosomal rearrangements, and 
the initiation of pro-inflammatory pathways (Lim et al. 2016; 
Umbreit and Pellman 2017; Hatch 2018; Selezneva et al. 
2022), underscoring the need to unravel its organization and 
dynamics.

Today, the NE is considered a dynamic organelle which 
forms a functional linkage between the nucleus and the rest 
of the cell (Fig. 2). Biological mass-spectrometry techniques 
and analysis algorithms have expanded our knowledge of 
the nuclear protein repertoire. However, understanding its 
lipid-protein composition and their interaction remains chal-
lenging owing to (i) purifying nuclear membrane without 
Endoplasmic reticulum (ER) contamination is very difficult 
and (ii) due to the proximity of the two membranes of NE. 
Immunogold-label Electron microscopy (EM) remains the 
method of choice for determining the location of NE resid-
ing proteins with precision. In recent years, techniques such 
as rapamycin trapping, using spit-GFP constructs, metal-
induced energy transfer, ensemble Fluorescence recovery 
after photobleaching (FRAP) and super-resolution micros-
copy have been adapted to address the differential under-
standing of Inner nuclear membrane (INM) vs outer nuclear 
membrane (ONM) (Tingey et al. 2019). In this mini-review, 
we summarize the current understanding of the lipid-protein 
machinery of the NE and the dynamic deformations that 
occur in the NE in physiological and pathological states.

Protein Machinery of NE

Protein machinery of NE contributes to 1% (278 proteins) of 
all human proteins experimentally detected by the Human 
Protein Atlas with 238 of them having multiple locations 
outside of NE. Interestingly, 10% of eukaryotic transmem-
brane proteins are found to be residing in NE (Mudumbi 
et al. 2020). The ONM is continuous with the rough ER 
membrane, and they are generally similar in protein content 
with only a few proteins, namely nesprins and Itprip, pref-
erentially concentrated in the ONM (Méndez-López et al. 
2012; Cheng et al. 2019). In contrast, the protein machinery 
of the INM is still poorly understood. A comprehensive pro-
teomic study identified 13 knowns and 67 putative proteins 
concentrated in the INM (Schirmer et al. 2003; Méndez-
López et al. 2012; Cheng et al. 2019). The few signature 
proteins of INM include the integral proteins Lamin B recep-
tor (LBR), Lamina-associated polypeptides (LAPs), emerin 
and MAN1 (also known as LEMD3), Ima1 (Ima1 present 
in fission yeast is a homologue of the human Samp1 and rat 
NET5 proteins) and Lem2 (Collas et al. 2000; Tange et al. 
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Fig. 1  Timeline of the early observations marking the discovery 
of the nucleus and the nuclear membrane. First observation of the 
nucleus was reported by Leeuwenhoek in fish erythrocytes, followed 
by the observations of Trembley, Müller, Ehrenberg, Hewson, Fon-
tana and Bauer. Bown, Valentin and Henle recognized the quasi uni-

versality of nucleus in plants and animals. Later in twentieth century, 
Kite used the term nuclear membrane for the first time to describe a 
membranous structure around the nucleus. Information obtained from 
Osorio and Gomes, (2013) and Kite (1913)
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2016). Newly identified members of INM include Nurim, 
Mfsd10, Tmx4, and Arl6ip6 (Chen et al. 2012; Cheng et al. 
2019). A recent review covered the current understanding 
of the diverse cellular functions of INM proteins in detail 
(Pawar and Kutay 2021).

The two membranes of the NE are separated by 
30–50 nm, and NE bridges composed of Sad1 and UNC-
84 (SUN) proteins in INM and Klarsicht, Anc-1, and Syne 
homology (KASH) proteins in ONM have been proposed to 
set and regulate nuclear envelope spacing (Sosa et al. 2012; 
Cain et al. 2014). These proteins also constitute the Linker of 
the nucleoskeleton and cytoskeleton (LINC) complex, which 
physically connects the nucleus and plasma membrane via 
the actin cytoskeleton to perform diverse functions including 
mechano-transduction from the extracellular environment to 
the nucleus (Ueda et al. 2022).

In addition to the LINC complex, large macromolecu-
lar assemblies (~ 100 mDa) constituting NPCs bridge the 
two membranes of NE. Nuclear pore complexes (NPCs) 
mediate molecular flux between the nucleus and the cyto-
plasm and are built by ~ 1000 protein subunits called 
Nucleoporins (NUP). The biogenesis of NPCs during 
the interphase of the cell cycle and their insertion in NE 
by fusion between the INM and ONM has been covered 
in detail elsewhere (Rothballer and Kutay 2013). NPCs 
have been traditionally studied as a selective pore allow-
ing the trafficking of molecules through the double lipid 
bilayers, recent studies highlight its role in chromosomal 
organization and gene regulation, as it can interact with 
the genomic region enhancers and super-enhancers (Lin 
et al. 2019; Pascual-Garcia et al. 2019). Polar molecules, 
ions and macromolecules are allowed to pass between 
nucleoplasm and cytoplasm through the NPCs (Hampo-
elz et al. 2019).

Another important protein constituent of NE are the 
ion channels which have been discovered using genetic, 
immunological, pharmacological, and electrophysiological 
approaches (Matzke et al. 2010). The most well understood 
ion channels in NE are the  Ca2+ channels in animals and 
plants (Bootman et al., 2009; Oliveira et al. 2014; Sec-
ondo et al. 2020; Pirayesh et al. 2021). The  Ca2+ channels 
found in the INM include Inositol (1,4,5)-trisphosphate 
receptor  (IP3R), Ryanodine receptor (RyR), and Nicotinic 
acid-adenine dinucleotide (NAADP) receptors. The ONM 
resident  Ca2+ channels are  IP3R,  Ca2+-ATPases and inositol 
1,3,4,5-tetrakisphosphate-operated  Ca2+ channels (Becchetti 
2011). In addition, chloride channels (Gururaja et al. 2020), 
potassium channels (Jang et al. 2015)  Ca2+ -ATPase (Ger-
asimenko et al. 1995) and  Na+/Ca2+ exchangers (Secondo 
et al. 2020) are also present in the NE.

The INM is lined by the Nuclear lamin (NL), belongs to 
type V intermediate filament proteins, and is divided into 
two subtypes, the A and B. The gene LMNA is spliced in 
two isoforms, the longer version encoding the protein Lamin 
A and the shorter isoform generating the Lamin C protein. 
Two different genes (LMNB1 and LMNB2) are responsible 
for encoding Lamin B1 and B2 proteins. Details of NL and 
their post-translational modifications and their active role 
in signaling have been covered elsewhere (Gauthier et al. 
2021).

Grease of the NE: Lipids in Action

NE constitute a very small fraction (< 1%) of the total mem-
brane content of the cell (Milo and Phillips 2015) and its 
composition has been analyzed by mass-spectrometry and 
multidimensional NMR (31P and 1H) (van Meer et al. 2008; 
Dazzoni et  al. 2020a). NE lipid extract demonstrated a 

Fig. 2  A schematic repre-
sentation of NE showing the 
structure and dynamic deforma-
tions. NE is a dynamic double 
membrane organelle which 
forms a functional linkage 
between the nucleus and the rest 
of the cell. The two membranes 
are bridged by NPCs and the 
LINC complexes. Two types of 
deformations observed in the 
NE are the outward projecting 
blebs and inward projecting 
invaginations called NER
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complex mixture of phospholipids with different fatty acyl 
chain lengths varying between 30 and 38 carbon atoms (two 
chains summed up) associated predominantly with Phos-
phatidylcholine (PC) head group (van Meer et al. 2008; 
Dazzoni et al. 2020a). Negatively charged lipids were also 
observed with an abundance of Phosphatidylinositol (PI), 
associated with chain length varying between 36 and 38 car-
bon (Dazzoni et al. 2020a). NE lipid extracts analyzed by 
1H–,13C– and 31P-NMR showed the presence of cholesterol 
in addition to PE and PI (Dazzoni et al. 2020b). The pres-
ence of elevated levels of unsaturated fatty acid chains (with 
one to two double bonds per lipid species) accentuated the 
fluidity and elasticity of NE relative to plasma membrane 
(Dazzoni et al. 2020a, b). Despite the enhanced membrane 
fluidity, the INM and the ONM are only permeable to small 
non-polar molecules and sustain nucleoplasm membrane 
potential approximately − 15 mV with respect to the cyto-
plasm (Loewenstein and Kanno 1963; Mazzanti et al. 2001).

Recent studies have highlighted that although NE is not 
a major site of lipid synthesis compared to the ER, changes 
in NE lipid composition occur as an adaptive stress manage-
ment response to the maintain the integrity of NE. Studies in 
yeast, fly and mammalian cells have shown that de novo PC 
synthesis can take place to relieve the curvature elastic stress 
and NE breakdown (Haider et al. 2018). Accumulation of 
very-long-chain fatty acids or phytoceramides by the action 
of NE resident very-long-chain fatty acid elongase Elo2 has 
been observed in yeast to prevent lethal defects associated 
with Lem2 and Bqt4 knockouts, which are conserved nuclear 
membrane proteins (Kinugasa et al. 2019). Interestingly, tar-
geting ceramide synthesis suppresses nuclear abnormalities 
and improves the proliferation of aneuploid cells in yeasts 
and patients associated with Down syndrome (Hwang et al. 
2019). In addition, a sphingolipid hydrolase (Smpd4) that 
releases ceramide spatially localizes to NPCs, suggesting a 
potential local role for sphingolipids and their precursors at 
the NE (Cheng et al. 2019).

How is Identity of the NE Maintained?

How is identity of the NE maintained despite the ONM 
being continuous with the ER? The code to understand 
the sorting of lipids and proteins within the ER/NE mem-
branes and how NE maintains its identity is still not 
cracked. The ability to retain proteins in the INM has been 
linked to their affinity for nuclear components e.g., for 
LBR, SUN2, LAP2β and the phenomenon termed as “dif-
fusion and retention” (Ungricht et al. 2017). Interestingly, 
many INM proteins contain NLS-like sequences (Lusk 
et  al. 2007) and Kutay and group proposed that these 
could function as nuclear retention motifs, e.g., as part 

of DNA-binding domains (LaCasse and Lefebvre 1995; 
Cokol et al. 2000).

Recent evidence suggests that lipids produced in the ER 
are harnessed to remodel nuclear membranes (Barger et al. 
2022).

Is there an asymmetry in the lipid composition of INM 
vs ONM? Specific lipids residing in INM have been shown 
to support viral proliferation (Marschall et al. 2011), NE 
dynamics (Hatch and Hetzer 2014), de novo lipid synthesis 
(Haider et al. 2018; Romanauska and Kohler 2018) and NPC 
biogenesis (Drin et al. 2007) underscoring the existence of 
mechanisms that differentially enrich and regulate specific 
lipid species at the INM. Currently limited knowledge exists 
to understand these processes and potential mechanisms that 
drive lipid asymmetry at the NE and lead to NE remod-
eling, despite the direct continuity of the lipid bilayers of 
the NE and ER. Two pathways have been proposed to attain 
this asymmetry: (1) the presence of a physical barrier that 
reduces the timescale of lateral diffusion for specific lipids 
from one area (peripheral ER/ONM) to the other (INM) and 
(2) differential spatial restriction of synthetic enzymes to 
generate a continuum of concentrations high in one area 
(e.g., peripheral ER) relative to the other (e.g., INM). These 
pathways have been discussed in detail in other recent 
reviews (Bahmanyar and Schlieker 2020; Barger et al. 2022).

NE Membrane Deformations

The exposure of NE to constant mechanical constraints by 
virtue of its connectivity to the large polymer network of the 
laimina and chromatin on one side, and to the cytoskeleton 
on the other side results, in a variety of shape changes. A 
recent review covered the mechanisms and functions of NE 
remodeling in exquisite detail (Ungricht and Kutay 2017). 
Here we discuss, two main types of NE deformations that 
have been observed: the outward projecting nuclear blebs 
and the inward projecting nuclear invaginations constituting 
the nucleoplasmic reticulum (NER).

Nuclear blebs are formed when the double NE separates 
from the lamina and chromatin, inflates and forms a round 
protrusion containing nucleoplasm which is not retracted 
like the plasma membrane blebs and possesses a high likeli-
hood of bursting (Srivastava et al 2021). Nuclear blebs form 
as spherical protrusions filled with nucleoplasm and devoid 
of chromatin and are commonly associated with sites of 
local lamina weakness (Charras et al. 2008; Wiggan et al. 
2017; Shah et al 2017). The membrane rupture occurs sys-
tematically in these swollen blebs, measuring ~ microns in 
diameter, as a consequence of internal pressure mounted by 
translocation of nucleoplasm inside the blebs (Srivastava 
et al 2021). However, these membrane rupture events are 
followed by rapid repair (Raab et al. 2016; Earle et al. 2020). 
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Some of these blebs are associated with chromatin hernia-
tion, which results in protrusion of the chromatin through 
the local rupture of the lamina at the base of the bleb. A 
new lamina eventually reforms on the surface of the herni-
ated chromatin as the herniation is not retracted, leading to a 
long-term nuclear shape alteration after the resealing of the 
envelope (Charras et al. 2008). The uncontrolled exchange 
between the nuclear interior and cytoplasm occurs in the 
nuclear blebs and these sites prime DNA damage (Shah et al. 
2017). Nuclear blebs have been observed in several cancer-
ous cells such as in monoblasts of acute monocytic leukae-
mia (McDuffie 1967), Burkitt lymphoma cells (Epsteln et al. 
1965; Achong and Epstein 1966), and anaplastic giant cell 
carcinoma of the thyroid (Caryso et al 2011). Accumula-
tion of these blebs has been observed in laminopathies such 
as premature Hutchinson–Gilford progeria syndrome and 
Emery–Dreifuss muscular dystrophy (Lattanzi et al. 2016). 
Interestingly, nuclear blebbing has also been observed in 
developing human and guineapig thymocytes (Törö and 
Oláh 1966; Sebuwufu 1966) suggesting NE plasticity dur-
ing functional development and differentiation of the cells.

The continuity of NE is interrupted by invaginations 
that reach deep within the nucleoplasm and such a com-
plex branched network of invaginations has been defined as 
NER (Malhas et al. 2011). Lipids extracts from NER were at 
least two orders of magnitude more elastic than the classical 
plasma membrane suggesting a physical explanation for the 
formation of NER (Dazzoni et al. 2020b). Morphological 
comparisons with the ER paved the nomenclature of these 
widespread intra-nuclear invaginations as NER (Echevarría 
et al. 2003; Fischer et al. 2003). NER structures are clas-
sified into 2 main classes: Type I invaginations where the 
INM alone invaginates into the nucleoplasm, whereas type II 
where both the INM and ONM enter the nucleoplasm allow-
ing the presence of a cytoplasmic core (Drozdz, and Vaux 
2017). The function of NER in physiology and pathology 
has been covered in detail in recent reviews (Drozdz, and 
Vaux 2017; Stiekema et al. 2022).

Dynamic Nature of NE

NE is a highly dynamic (temporally) organelle based on its 
ability and need to deform at small and large length scales. 
However, sparse studies exist which have looked at the 
mobility of lipids and protein in NE. Spectrometry analysis 
of NE of HEK 293 T cells showed that these membrane 
consist of PC (63%), PE (9%), SM (4%) and PI (12%) (Daz-
zoni et al. 2020a). Interestingly, cholesterol is also thought to 
be an important lipid in these membrane although its exact 
amount is still debatable. Measurements using solid-state 
NMR showed that the NE lipids derived from these cells are 
100 times more elastic than plasma membranes (Dazzoni 

et al. 2020b). The abundance of unsaturated in the fatty acyl 
chains of PI coupled with its negative charge is thought to 
be balancing factor counteracting the rigidifying effect of 
cholesterol in NE (Dazzoni et al. 2020a).

FRAP based studies have shown that GFP-tagged emerin, 
MAN1 and LBR-are less mobile in the nuclear envelope 
than in the ER (Ellenberg et al. 1997; Östlund et al., 1999; 
Wu et al., 2002). Diffusional mobility (D) of emerin was 
decreased in INM (D = 0.10 ± 0.01 µm2/second) compared to 
the ER membrane (D = 0.32 ± 0.01 µm2/second). MAN1 also 
demonstrated a lower mobility in the INM (0.12 ± 0.02 µm2/
second) relative to the ER pool (D ~ 0.28 ± 0.04 µm2/sec-
ond). Early studies addressing the mobility of proteins in NE 
membranes using isolated nuclei chemically modified with 
citraconic acid showed that D for proteins in the INM bound 
by the fluorescently labeled lectin wheat germ agglutinin 
was 0.039  mm2/s (Schindler et al., 1984). Enhanced mobil-
ity of GFP-tagged emerin and MAN1, but not LBR, was 
observed in embryonic fibroblasts from lamin A knockout 
 (Lmna−/−) mice implying that emerin and MAN1 are partly 
retained in the INM by binding to A-type lamins, while LBR 
depends on other binding partners for its retention.

Conclusion

This is a very exciting time in membrane biology, as the 
landscape of our understanding of membranes is begin-
ning to expand from the classical plasma membrane to the 
intracellular organelles. NE is at the center stage of this 
revolution as we are understanding its many facets with the 
improvement of technology available to tease out its organi-
zation and dynamics. The challenges to overcome include 
the ability to define the lipid-protein composition of INM 
and ONM with precision to address the dynamic lipid-pro-
tein interaction in these complex membranes. Purifying and 
isolating nuclear membrane without ER contamination is 
still considered as the holy grail of the field. The traditional 
method for nuclei isolation involves the use of non-ionic 
detergent (Lee et al., 2010), which suffer from the tendency 
to cause unwanted nuclear aggregation and disrupt the NE 
resulting in stripping/loss of of some NE proteins in addi-
tion to leakage of nuclear matrix materials. Detergent free 
methods have been described that purify the nucleus without 
these side effects (Blobel and Potter 1966; Eski et al., 2020).

Solving the challenges mentioned above is quintessential 
for obtaining a deeper mechanistic understanding of the vari-
ous signaling pathways that are triggered by NE residents or 
interacting protein-lipid machinery. In addition, this allows 
us to further understand its direct and indirect roles in the 
chromosomal organization and gene regulation.
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