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Abstract
In most tumors, cancer cells show the ability to dynamically transit from a non-cancer stem-like cell to a cancer stem-like cell
(CSC) state and vice versa. This cell plasticity has been associated with the epithelial-to-mesenchymal transition program (EMT)
and can be regulated by tumor cell-intrinsic mechanisms and complex interactions with various tumor microenvironment (TME)
components. These interactions favor the generation of a specific “CSC niche” that helps maintain the main properties, pheno-
typic plasticity and metastatic potential of this subset of tumor cells. For this reason, TME has been recognized as an important
promoter of tumor progression and therapy resistance. Tumors have evolved a network of immunosuppressive mechanisms that
limits the cytotoxic Tcell response to cancer cells. Some key players in this network are tumor-associated macrophages, myeloid-
derived suppressor cells and regulatory T cells, which not only favor a pro-tumoral and immunosuppressive environment that
supports tumor growth and immune evasion, but also negatively influences immunotherapy. Here, we review the relevance of
cytokines and growth factors provided by immunosuppressive immune cells in regulating cancer-cell plasticity. We also discuss
how cancer cells remodel their own niche to promote proliferation, stemness and EMT, and escape immune surveillance. A better
understanding of CSC-TME crosstalk signaling will enable the development of effective targeted or immune therapies that block
tumor growth and metastasis.
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Introduction

In recent years, various studies have been directed towards
understanding cancer-cell plasticity, which is defined as the
ability to switch between cancer stem-like cell (CSC) and non-
CSC states [1], along with transdifferentiation capability [2,
3], and how these processes affect tumor growth and progres-
sion. In some tumors, the dynamic acquisition of CSC features
has been associated with the induction of the epithelial-to-
mesenchymal transition (EMT) program, which promotes
the motility and invasion of the epithelial-shaped cells and
induces a mesenchymal-like phenotype that favors metastasis
[4–6]. Although most studies have focused on tumor cell-
intrinsic mechanisms, such as genetic and epigenetic

alterations, attention has recently turned towards understand-
ing how tumor cell-extrinsic factors provided by the tumor
microenvironment (TME) influence cancer progression and
response to therapy [6–8].

The TME is composed of fibroblasts, mesenchymal stem
cells, endothelial cells and pericytes, extracellular matrix
(ECM) proteins, immune cells, including macrophages,
myeloid-derived suppressor cells (MDSCs), natural killer
(NK) cells, dendritic cells (DCs) and B and T cells, among
others, and a variety of factors secreted by these cells [9]. It is
well known that the communication between cells and their
microenvironment is important for tissue homeostasis, the im-
mune cells being responsible for host defense, tissue remod-
eling and the elimination of dying cells. Similarly, acquisition
of mutations and the altered expression of some proteins in
cancer cells activate a cytotoxic immune response that eradi-
cates these malignant cells. However, there is growing evi-
dence that TME can change in response to cancer cell-
derived signals to favor tumor growth and progression [7,
10]. In this scenario, tumor stromal cell-derived signaling con-
tributes to sustain cancer cell proliferation, survival and
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invasion, as well as metastasis and angiogenesis [11]. Given
that TME may display anti- or pro-tumoral properties, it has
been suggested that the re-education of stroma cells towards
anti-tumor activity may be an effective therapeutic strategy
[12]. These bidirectional interactions favor the generation of
a specific “CSC niche” that helps conserve the main properties
of this subset of tumor cells [13] and preserves their pheno-
typic plasticity. As CSCs drive long-term tumor growth, are
responsible for relapse after therapy [14], and are considered
the most likely candidates for metastasis generation [15], a
thorough understanding of CSC-TME crosstalk is fundamen-
tal for innovative therapeutic strategies development.

Tumors have evolved mechanisms to attenuate the effec-
tiveness of T cells, whereby these cells become exhausted and
dysfunctional, and therefore ineffective in attacking cancer
cells [16, 17]. Tumors achieve this by creating an immuno-
suppressive network enriched in soluble mediators and specif-
ic immune cell populations. Components of TME, such as
tumor-associated macrophages (TAMs), MDSCs and regula-
tory T (Treg) cells, which are highly effective in inhibiting T
cell activation and proliferation, generate a tumor-promoting
local environment that negatively influences immunotherapy
[18, 19]. In addition, defects in antigen presentation, such as
losing the expression of major histocompatibility complex
(MHC) proteins in tumor cells, prevents them being recog-
nized by cytotoxic T cells, precluding the elimination of these
malignant cells [20]. Tumor cells and some immunosuppres-
sive cells hijack the so-called ‘immune checkpoint’ pathways,
which are important for maintaining self-tolerance and
protecting tissues from damage. The best characterized
immune-checkpoint receptors are cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) and programmed cell death
protein 1 (PD-1), which bind to CD80/CD86 and PD-L1/
PD-L2 ligands, respectively, to initiate checkpoint signaling
and cytotoxic T cell inhibition. Tumor cells take advantage of
these regulatory mechanisms and induce the expression of
these ligands to prevent anti-tumor responses [21].

This review concerns itself with the relevance of cytokines
and growth factors provided by immunosuppressive immune
cells in regulating cancer-cell plasticity and tumor progres-
sion, and with how cancer cells remodel their own niche to
promote their proliferation, stemness and EMT, and to escape
immune surveillance. We also discuss recent therapeutic strat-
egies that target the tumor-associated stroma to prevent dis-
ease progression.

Immune Cells Contributing
to the Tumor-Immunosuppressive Network

Several populations of tumor-immunosuppressive cells have
been described in recent years. Here, we focus on the best

characterized immune cells with an immunosuppressive func-
tion, notably TAMs, MDSCs and Treg cells (Fig. 1).

Tumor-Associated Macrophages (TAMs)

Macrophages are terminally differentiated myeloid cells orig-
inating from monocytic precursors, whose functions are to
eliminate infectious agents, promote wound healing and reg-
ulate adaptive immunity [22]. In mice, macrophages are char-
acterized by the expression of markers such as CD11b, F4/80
and colony-stimulating factor-1 receptor (CSF-1R), and low
levels of expression of Gr1, whereas, in humans, macrophages
are identified by the expression of CD68, CD16, CD14,
CD312, CD115, and other markers [23].

Macrophages have usually been classified into two sub-
types according to their polarization state and their functional
role. M1 or ‘classically activated’ macrophages are activated
via T helper type I (Th1)-derived cytokines and/or bacterial
products such as lipopolysaccharide (LPS). M1 macrophages
secrete pro-inflammatory cytokines (IL-12, IL-1β, IL-6, IL-
23 and tumor necrosis factor α (TNF-α)), generate reactive
oxygen species and nitric oxide (NO) and express a high level
of MHC class II. These cells have a tumoricidal function. By
contrast, M2 or ‘alternatively activated’ macrophages are ac-
tivated in response to T helper type II (Th2)-derived cyto-
kines, such as IL-4, IL-10, IL-13, and glucocorticoid hor-
mones. These cells are characterized by a high level of expres-
sion of scavenging, mannose and galactose receptors, activa-
tion of the arginase (ARG1) pathway, production of IL-10,
vascular endothelial growth factor (VEGF), matrix metallo-
proteinases (MMPs), and these cells facilitate tumor progres-
sion [24, 25]. Although the M1/M2 nomenclature has been
useful for many years, it is now known that macrophages can
change their polarity in response to environmental stimuli,
acquiring intermediate plastic phenotypes. For this reason, it
has been proposed that the TAM classification should be
based on the anti-tumorigenic or pro-tumorigenic function of
the macrophages [23].

The recruitment of monocytes into tumors is primarily reg-
ulated by tumor cell-derived cytokines, chemokines, and
growth factors, such as CCL2, CCL7, CCL8, CCL3, CCL4,
colony stimulating factor-1 (CSF-1), granulocyte-macrophage
CSF (GM-CSF), macrophage-stimulating protein (MSP),
platelet-derived growth factor (PDGF), VEGF-A, and
transforming growth factor-β1 (TGF-β1). These cells may
then differentiate into immunosuppressive M2-like macro-
phages in response to IL-4, IL-10, and IL-13 [10, 26].

In human colorectal, stomach and skin tumors, the pres-
ence of TAMs is associated with a favorable outcome, where-
as in breast, prostate, ovarian, and cervical cancer, TAMs are
linked to poor prognosis, suggesting that TAM infiltration
may be a potentially prognostic marker of clinical outcomes.
These disparate observations may be a consequence of the
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detection of macrophages with distinct differentiation features
(pro-inflammatory M1-like vs. pro-tumoral M2-like cells).
For instance, in colorectal cancer, pro-inflammatory TAMs
attract T cells to the tumor site, promoting type-I T cell re-
sponses that lead to the inhibition of tumor-cell proliferation
[27]. However, other studies demonstrated that TAMs support
tumor growth and progression [23] by promoting angiogene-
sis [28], enhancing invasion and metastasis [29], and
protecting tumor cells from apoptosis [30].

Immunosuppressive TAMs (M2-like) subvert anti-tumor
immunity by eliminating M1-like immune responses and by
impairing CD8+ T cell activation through direct interaction

with these cells or by secreting immunosuppressive cytokines
such as IL-10, TGF-β, ARG1, prostaglandins, and proteases
[31] (Fig. 1). Macrophages express PD-L1/PD-L2 and
CD80/CD86, which bind with the inhibitory receptors PD-1
and CTLA-4, respectively, resulting in the inhibition of T cell
cytotoxic function. PD-L1 expression in TAMs is upregulated
under hypoxic conditions, via hypoxia-inducible factor-1α
(HIF-1α) signaling [32, 33]. In addition, TAMs can express
PD-1, which is associated with a reduction of their phagocy-
tosis activity. PD-1+ TAMs have a polarization M2-like and
pro-tumorigenic function, and the blockade of PD-1/PD-L1
increases the phagocytosis activity of these cells, reducing
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Fig. 1 The tumor-immunosuppressive network limits cytotoxic
immune-cell responses to cancer cells and promotes cancer-cell
plasticity. This schema illustrates some of the mechanisms evolved by
tumors to block cytotoxic immune cell responses and to promote tumor
progression and metastasis. Immune cells, such as TAMs, MDSCs, and
Treg cells are recruited into the tumor and become educated by cancer
(stem) cell-derived cytokines and chemokines to acquire pro-tumorigenic
functions. These cancer and tumor-infiltrating immune cells disrupt im-
mune surveillance through multiple mechanisms, including inhibition of
antigen presentation by DCs, T cell proliferation, M1 macrophage polar-
ization and NK-cell cytotoxicity. In addition, cancer cells and immuno-
suppressive TAMs inhibit cytotoxic T cell function by activating immune
checkpoint pathways. Immunosuppressive cells enhance tumor progres-
sion by directly promoting EMT and CSC properties in cancer cells

through the secretion of cytokines such as TGF-β, IL-6, EGF, among
others, and support invasion and metastasis by secreting a variety of
pro-tumorigenic cytokines and growth factors. Paracrine signal loops
between CSCs and TAMs have been described, which enhance cancer-
cell plasticity, immunosuppression and tumor progression. Hence, CSC-
derived CSF-1 and GM-CSF promote TAM activation and, in turn,
macrophage-derived EGF or CCL18 induce EMT, CSC state, and tumor
cell invasion. Finally, immunosuppressive TAMs and MDSCs produce
pro-angiogenic factors such as VEGF, TNF-α, ADM, PDGF, among
others, to promote angiogenesis, or secrete MMPs, serine proteases, and
cathepsins, leading to ECM alterations. MDSC, myeloid-derived sup-
pressor cell; NK, natural killer; TAM, tumor-associated macrophage;
Treg, regulatory T cells
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tumor growth [34]. Therefore, anti-PD-1/PD-L1 therapy can
block tumor growth by promoting CD8+ T cell activation and
anti-tumor activity of TAMs.

Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs play an important role in tumor progression by evad-
ing the host’s immune response. These cells arise as a conse-
quence of the aberrant myelopoiesis associated with cancer,
and are functionally defined as immunosuppressive immature
myeloid cells [35]. Two main populations have been de-
scribed: granulocytic or polymorphonuclear MDSCs (PMN-
MDSCs), and monocytic MDSCs (M-MDSCs) [36]. PMN-
MDSCs share phenotypic features with neutrophils, but are
less phagocytic. By contrast, M-MDSCs exhibit a similar phe-
notype to that of inflammatory monocytes and differentiate
into immunosuppressive macrophages and DCs under specif-
ic TME signals. In mice, PMN-MDSCs are identified by the
expression of CD11b+Ly6G+Ly6Clow and M-MDSCs as
CD11b+Ly6G−Ly6Chigh, whereas, in humans, PMN-MDSCs
are CD11b+CD14−CD15+CD33+ cells, and M-MDSCs are
CD11b+CD14+ CD15−CD33+HLA−DR−/lo cells.

M-MDSCs are recruited to tumor sites by tumor cell-
derived cytokines, such as CCL2 and CCL5. In contrast,
PMN-MDSCs are recruited by tumor cell-derived CXCL1,
CXCL2, CXCL5, CXCL6, CXCL8, and CXCL12, as well
as CCL2, CCL3, and CCL15 [37]. CXC chemokine receptor
2 (CXCR2) binds CXCL1, CXCL2, and CXCL5, among oth-
er chemokines, and plays an important role in the tumor re-
cruitment of PMN-MDSCs. Several studies have shown that
MDSCs disrupt immune surveillance mechanisms, such as T
cell activation, DC antigen presentation, M1-like polarization,
and NK cell cytotoxicity (Fig. 1). Factors implicated in
MDSC suppressive activity include: i) the production of
ARG1, which leads to the deprivation of arginine that is es-
sential for several T cell functions; ii) inducible nitric oxide
synthase (iNOS), which promotes NO synthesis; iii) produc-
tion of reactive oxygen species (ROS); and iv) expression of
cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), IL-10,
and TGF-β, which induce severe anergy of effector immune
cells. NO and ROS both induce T cell apoptosis and the nitra-
tion of cytokines and Tcell receptor (TCR), which block Tcell
migration and cytotoxic activities against tumor cells. In ad-
dition, MDSCs upregulate the expression of PD-L1, blocking
anti-tumor T cell-mediated activity via interaction with the
PD-1 receptor of these cells [38, 39].

More recently, other MDSC functions have been described,
such as the formation of a pre-metastatic niche [40], enhance-
ment of tumor growth and invasion, and stimulation of angio-
genesis [41] (see below). Furthermore, an elevated frequency
of MDSCs is positively correlated with advanced disease and
poor therapeutic response in patients with a range of cancers,
including melanoma, colorectal, breast, bladder, thyroid and

non-small-cell lung cancer (NSCLC) [42, 43]. Therefore,
targeting MDSCs is emerging as an attractive approach to
the design of new cancer treatments.

Regulatory T (Treg) Cells

Treg cells are characterized by the expression of markers such
as CD4, CD25 and forkhead box P3 (FOXP3) that plays an
important role in Treg-cell development and function [44].
Under physiological conditions, Treg cells regulate the activa-
tion of Tand B cells andmaintain the homeostasis of cytotoxic
lymphocytes [45]. In contrast, Treg cells fulfill different func-
tions during tumorigenesis, depending on the environmental
stimuli, which means that they can be associated with poor
prognosis, as in gastric, esophageal, pancreatic, liver, and
breast carcinoma [46–50], or with improved survival, as in
colorectal cancer [51]. Treg-cell recruitment in a range of hu-
man cancer types is mediated by tumor cell-derived CCL22
and CCL28, which attract CCR4- and CCR10-expressing Treg
cells, respectively [52–54] (Fig. 1).

Similar to MDSCs, Treg cells facilitate tumor progression
by interfering with the cytotoxic activity of T cells and sup-
pressing tumor-antigen presentation [55]. In this regard, Treg
cells secrete immunosuppressive cytokines, such as IL-10, IL-
35, and TGF-β, and block the activity of T cells by direct
interaction with these cells. In addition, Treg cells express
CD39 and CD73, which induce metabolic alterations that sup-
press cytotoxic T cells and/or NK activity [56–58].

Impact of Tumor-Infiltrating
Immunosuppressive Cells on Cancer-Cell
Plasticity

Cancer-cell plasticity has been associated with the induction of
the EMT program [4, 5], which promotes the acquisition of
CSC properties. The induction of EMT is mediated by many
growth factors and cytokines, such as TGF-β, hepatocyte
growth factor (HGF), epidermal growth factor (EGF), NF-κB,
Notch, and Wnt [59]. Growing evidence indicates that TAMs,
MDSCs and Treg cells enhance tumor progression by promot-
ing EMT and CSCs properties in tumor cells (Fig. 1). Indeed,
M2-like TAMs, through TLR4/IL-10 signaling pathway [60] or
via TGF-β1 [61], promote EMT and CSC-like properties in
pancreatic and hepatocellular carcinoma, respectively. TNF-α
secreted by pro-inflammatory TAMs induces a switch from a
differentiated to a dedifferentiated phenotype in melanoma
cells, which escape immune surveillance and contribute to tu-
mor relapse [62]. Furthermore, mesenchymal-like breast cancer
cells induce immunosuppressive TAM activation via GM-CSF.
In turn, these activated macrophages secrete CCL18, creating a
positive feedback loop that promotes EMTand metastasis [63].
TAM-derived IL-6 activates the STAT3 pathway to promote
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CSC self-renewal in breast and hepatocellular carcinoma [64].
Similarly, EGF released from TAMs activates the EGFR/
STAT3 pathway of breast cancer cells, inducing the expression
of SOX2 and other target genes involved in CSC state mainte-
nance [65]. In addition, Lu and colleagues demonstrated that
TAMs and tumor-associated monocytes physically interact
with mouse mammary CSCs to support the maintenance of
the stem-like state in this subset of tumor cells. EphA4 binding
to its receptor on tumor cells resulted in the activation of Src
and NF-κB signaling favoring the secretion of numerous cyto-
kines involved in CSC maintenance [66].

In addition, CSCs can enhance the pro-tumor function of
tumor-recruited macrophages. Hence, CSC-derived IFNβ in-
duces the secretion of TAM-derived IFN-stimulated gene 15
(ISG15), which promotes CSC self-renewal and tumor-
initiating features in pancreatic ductal adenocarcinomas
(PDAC) [67]. Furthermore, PDAC CSCs secrete Nodal/
Activin A and TGF-β1, which induces an M2 phenotype that
favors CSC self-renewal and invasion through the secretion of
hCAP-18/LL-37 [68].

Several studies showed that MDSCs are also involved in the
regulation of EMT and CSC features [69, 70]. MDSC-induced
EMT occurs through the upregulation of COX-2 and the acti-
vation of the β-catenin/TCF4 pathway in nasopharyngeal cells,
or through the stimulation of miR-101 expression in ovarian
cancer cells [69, 71]. Furthermore, tumor-infiltrated MDSCs,
which show signal transducer and activator of transcription 3
(STAT3) signaling activation, promote the stemness of pancre-
atic cancer cells by increasing the expression of SNAIL,
SLUG, ZEB1, NANOG, and OCT-4 [72]. In this regard, stud-
ies based on a mouse model of breast cancer implicated
MDSC-derived IL-6 in increasing tumor cell stemness [73].
Zhu et al showed that CXCR2+ MDSCs are recruited and ex-
panded during breast cancer progression, which promotes
cancer-cell EMT via IL-6, and T cell exhaustion [74].

In ovarian cancer, the EMT-inducer transcription factor
SNAIL induces CXCL1/2 expression through the NF-kB path-
way and enhances MDSC tumor infiltration via CXCR2 [75].
CSCs stimulate the accumulation of MDSCs via the elevated
production of G-CSF in mammary syngeneic tumor models. In
turn, MDSCs trigger NOTCH signaling activation to enhance
CSC properties in tumor cells, establishing a feedforward loop
[76]. Accordingly, Peng and colleagues demonstrated that
MDSCs endow breast cancer cells with stem-like features
through IL6/STAT3 and NO/NOTCH crosstalk signaling, and
their targeting may offer an opportunity to improve cancer ther-
apies [77]. Although many studies have not distinguished be-
tween MDSC populations, a recent report demonstrated that M-
MDSCs and PMN-MDSCs have opposite effects on tumor
cells. Indeed, tumor-infiltrated M-MDSCs facilitate cancer-cell
dissemination by inducing EMT/CSC properties. In contrast,
pulmonary PMN-MDSCs support metastasis by reverting the
EMT phenotype and promoting tumor-cell proliferation [78].

Finally, some reports have indicated that tumor-infiltrating
Treg cells contribute to cancer-cell plasticity. Indeed, the activa-
tion of AKT and MAPK signaling pathways by FOXP3+ Treg-
derived IL-17, and by PGE2-mediated NF-κB activation, in-
duce the expansion of the CSC population in colorectal cancer
[79–81].

CSC/EMT and Immune Evasion

A comprehensive study that immunophenotyped around 9000
samples of different solid cancers by their transcriptomic sig-
nature showed that tumor features may influence the charac-
teristics of their immune infiltrate [82]. Tumors that are
enriched for the EMT program, focal adhesion, ECM remod-
eling, angiogenesis, inflammation, and hypoxia genes, are as-
sociatedwith the infiltration of immunosuppressive cells, such
as macrophages [82]. Several studies have revealed that CSC
escape of immune surveillance occurs by several mechanisms.
In this regard, CD44+ CSCs of head and neck carcinomas
express PD-L1, which binds to PD-1 receptor on T cells,
blocking their cytotoxic function [83]. Dongre et al showed
that epithelial-like breast tumors exhibit high levels of CD8+ T
cells and antitumor M1-like macrophages. In contrast, tumors
arising from breast mesenchymal-like cells with an induced
EMT, and a high level of expression of PD-L1, contain Treg
cells, M2-like macrophages and exhausted CD8+ T cells.
These findings indicate that tumor cells with an induced
EMT program promote the recruitment of immunosuppres-
sive cells and escape immune surveil lance [84].
Accordingly, ZEB1 expression relieves microRNA-200
(miR-200) repression of PD-L1 on NSCLC cells, leading to
CD8+ T cell immunosuppression and metastasis [85].
However, while epithelial tumor-bearing mice respond to
anti-CTLA-4 immunotherapy, mesenchymal tumor-bearing
mice are refractory to this treatment, suggesting that the im-
munosuppressive microenvironment of mesenchymal-like tu-
mors makes them resistant to this therapy [84]. Accordingly,
characterization of transcriptomic features in metastatic mela-
noma showed that resistant and non-respondingmelanomas to
anti-PD-1 therapy display a gene signature characterized by
the up-regulation of genes involved in EMT, angiogenesis and
immunosuppression, characterized by monocytes and macro-
phages infiltration. These observations suggest that the mes-
enchymal and immunosuppressive phenotype is associated
with innate anti-PD-1 resistance [86].

Another mechanism used by cancer cells to escape immune
surveillance operates through alterations in the expression of
MHC-I and MHC-II proteins. These proteins are required to
elicit the immune responses by T lymphocytes, and MHC-I is
downregulated in glioblastoma and breast CSCs [84, 87].
However, glioblastoma CSCs express various ligands of
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activating NK receptors, making them susceptible to NK-
mediated cell cytotoxicity [88].

Impact of Tumor-Infiltrating Immune Cells
on Tumor Progression and Metastasis

Several studies have associated immunosuppressive TAMs
with tumor-cell invasion and metastasis. The induction of an-
giogenesis is crucial to the development and growth of most
solid tumors. TAMs produce a plethora of pro-angiogenic
factors, including VEGF, TNF-α, adrenomedullin (ADM),
PDGF, TGF-β, and these cells are involved in promoting the
formation of a vascular network during malignant progression
in a mouse model of breast cancer [28]. In this regard, VEGF-
A helps enhance vascularization and establishes an anti-
inflammatory microenvironment, which is characterized by
the presence of M2-polarized macrophages in a model of skin
carcinogenesis [89]. Consistent with this, TAM depletion in
Csf1-null mice or by using liposome-encapsulated clodronate
reduces angiogenesis in various tumor models [90].

In addition, immunosuppressive TAMs promote tumor-cell
invasion and metastasis via secretion of MMPs, serine prote-
ases, and cathepsins, which alter the ECM, modify cell-cell
contacts and induce basal membrane disruption (Fig. 1). In
this regard, cancer cell-secreted IL-4 induces a M2 macro-
phage polarization state characterized by increased cathepsin
activity, and synergizes with IL-6 and IL-10 to promote tumor
growth and invasion in pancreatic cancer [91, 92]. This syn-
ergy is dependent on the STAT3 and STAT6 interaction, which
activates inositol-requiring enzyme 1α (IRE1α), leading to
enhanced cathepsin secretion [92].

CSF-1 promotes the development of invasive and metasta-
tic carcinomas by regulating the recruitment of TAMs at the
tumor site [93]. CSF-1R inhibition abrogates TAM infiltration
and enhances CD8+ T cell recruitment, reducing cervical and
mammary tumor growth and progression [94]. However, it
was observed that glioma cell-supplied GM-CSF, IFNγ, and
CXCL10 promote TAM survival upon CSF-1R inhibition,
although these TAMs lose M2 polarization and show en-
hanced phagocytosis activity [95]. Similarly, the inhibition
of CCL2-CCR2 signaling specifically blocks macrophage re-
cruitment within the tumor, which is associated with reduced
metastasis and enhanced mouse survival [26]. A paracrine
signaling loop between tumor-derived CSF-1 and
macrophage-derived EGF has been linked to increased carci-
noma cell invasion [96, 97]. Accordingly, M2-polarized
TAMs by IL-4-expressing TH2-CD4

+ lymphocytes produced
high levels of EGF, which enhance tumor-cell invasion, mi-
gration and lung metastasis by activating EGFR-signaling in
breast cancer cells [98]. Therefore, these studies show that
CD4+ T cells can enhance breast cancer-cell dissemination

and metastasis through their ability to regulate the pro-tumor
properties of TAMs.

Several studies have described the impact of TAMs on the
efficacy of chemotherapeutic agents (reviewed in [99]). TAMs
protect myeloma cells from chemotherapy-induced apoptosis
by inhibiting the activation of caspase-dependent apoptotic
signaling [30]. These immune cells contribute to cisplatin-
chemoresistance of lung and colon CSCs through STAT3
and Hedgehog signaling by releasingmilk-fat globulin epider-
mal growth factor-8 protein (MFG-E8) [100]. The juxtacrine
activation of α4-integrin-expressing TAMs by vascular cell
adhesion molecule-1 (VCAM-1)-positive breast cancer cells
promotes tumor cell survival via the induction of PI3K/AKT
signaling during lung metastasis development [101].
Interestingly, VCAM-1 also interacts with α4β1 in osteo-
clasts, contributing to bone metastasis [102]. Together, these
findings demonstrate that tumor cells co-opt TAMs in order to
survive therapies, and that the disruption of signaling axes
between stromal and tumor cells may serve to prevent meta-
static colonization.

On the other hand, several studies have also related MDSC
function to tumor-cell migration, invasion and metastasis. The
recruitment of MDSCs to the tumor site and to the pre-
metastatic niche is induced by several cancer cell-derived
chemokines, and is mediated by the expression CXCR2 in
MDSCs, among others (see section 2.2). Hypoxia can en-
hance MDSC migration to the tumor site via HIF-1α-
mediated production of chemokines [103]. VEGF-A secreted
by colorectal carcinoma cells stimulated TAMs to produce
CXCL1, which favored the recruitment of circulatory
CXCR2+ MDSCs into pre-metastatic niche in order to pro-
mote liver metastasis [104]. Furthermore, hypoxia-induced
lysyl oxidase (LOX), S100A8/A9, IL-6, and IL-10 are also
implicated in the MDSC recruitment and the establishment of
the pre-metastatic niche [105–107].

On the other hand, deletion of the gene encoding TGF-β
receptor II (Tgfbr2) in mammary carcinoma cells increases
MDSC infiltration into tumors through SDF-1/CXCR4 and
CXCL5/CXCR2 axes. These tumor-recruited MDSCs direct-
ly promoted tumor-cell invasion and metastasis through en-
hanced MMP and TGF-β secretion [108]. Kumar and col-
leagues demonstrated that the upregulated expression of
ΔNp63 transcription factor is correlated with an increased
number of MDSCs in triple-negative breast cancer (TNBC)
patients. MDSC recruitment to the primary tumor and meta-
static sites occurs through the direct ΔNp63-dependent acti-
vation of the chemokines CXCL2 and CCL22. Likewise,
CXCR2/CCR4 inhibitors reduce MDSC recruitment, angio-
genesis and metastasis, and MDSCs secrete pro-metastatic
factors, such as MMP9 and chitinase-3-like 1 to promote
TNBC CSC function [109]. All these studies provide a ratio-
nale for the development of CXCR2 antagonists to prevent
metastatic spread of tumor cells.
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Finally, MDSCs are known to play a role in promoting
angiogenesis. Hence, MDSC recruitment inhibition mediated
by stem-cell factor (SCF) mRNA interference in breast tumor
cells restores proliferation of tumor-infiltrating Tcells, and the
blockade of SCF receptor (cKit) prevents tumor-specific Tcell
anergy, Treg development, and angiogenesis [110]. In addition,
MDSCs secrete Bombina variegata peptide 8 (Bv8), whose
expression is upregulated by STAT3 signaling. STAT3 activa-
tion can also directly induce the secretion of VEGF and bFGF
by MDSCs [111]. Blockade of Bv8 in combination with
VEGF antibody inhibits angiogenesis and tumor growth
[112]. Although VEGF antibody-mediated therapy has had
some success in the clinic setting, tumors eventually become
refractory to this treatment. MDSC recruitment could be a key
mechanism mediating this resistance, as MDSCs can promote
new vessel growth even in the presence of VEGF antibody
[113, 114].

Therapeutic Strategies for Targeting
Tumor-Immune Microenvironment

Some therapeutic strategies have been directed towards
targeting stromal components rather than tumor cells.
Stromal cells have a relatively low mutation rate [13] and
may be less susceptible to developing therapeutic resistance.
In addition, taking advantage of the characteristic of the TME
to display anti- or pro-tumoral properties, it has been sug-
gested that their re-education may be an effective therapeutic
strategy [115, 116]. As TAMs, MDSCs, and Treg cells play an
important role in tumor progression and metastasis and their
tumor infiltration is associated with poor prognosis in various
tumor types, targeting these populations is proving to be an
attractive therapeutic strategy [117–123] (Table 1).

Immune checkpoint inhibitors such as anti-PD-1, anti-PD-
L1, and anti-CTLA-4 antibodies, which suppress the function
of T cell-inhibitory receptors, have been developed as thera-
peutic strategies that increase the content of activated tumor-
specific cytotoxic Tcells [124] (Table 1). The first clinical trial
with ipilimumab, an antibody that targets CTLA-4, showed
longer overall survival to ~10 months in metastatic melanoma
patients compared with patients not receiving ipilimumab
therapy [125]. Additional clinical trials using CTLA-4
blocking drugs, either alone or in combination therapy are
being performed on patients with advanced melanoma,
NSCLC and breast cancer [126–128]. For instance,
nivolumab, an anti-PD-1 receptor antibody, has been used
alone or in combination with ipilimumab to treat patients with
advanced melanoma, osteosarcoma, colorectal and renal car-
cinomas [129–133]. The 53% of melanoma patients had an
objective response to combinatory therapy, all with tumor re-
duction of at least 80% [129] and longer overall survival com-
pared with monotherapy [130]. Recently, FDA has approved a

PD-1 blockade treatment for unresectable locally advanced
and metastatic cutaneous SCCs with Cemiplimab [134].
However, most patients’ clinical response was partial or
short-lived, and a considerable percentage of patients suffered
disease progression [135]. Checkpoint inhibitors that target
PD-L1 have also been approved by FDA for the treatment
of metastatic NSCLC, urothelial [136, 137], Merkel-cell car-
cinoma and advanced bladder cancer [138–140]. As some
patients are intrinsically resistant or develop adaptive resis-
tance after these treatments in several tumor types, inhibitors
of additional immune checkpoint receptors, such as lympho-
cyte activation gene 3 (LAG3; CD223), and T cell immuno-
globulin and mucin-containing molecule-3 (TIM3; CD366)
[141] are currently being tested, alone or in combination with
a variety of drugs, as new targets in cancer immunotherapy
(Table 1).

Clinical trials with agonistic monoclonal antibody against
CD40, a TNF receptor superfamily member that is expressed
in DCs, B cells, monocytes and many nonimmune and tumor
cells, have shown encouraging results in monotherapy and in
combination with chemotherapy. The CD40 monoclonal anti-
body reverses immune suppression by activating APCs, pro-
moting anti-tumor T cell responses and re-educating cytotoxic
myeloid cells in lymphomas, melanomas, and pancreatic car-
cinomas [142] (Table 1).

On the other hand, chimeric antigen receptor-T cell (CAR-
T) therapy is based on the ex vivo genetic modification of T
cells in order to recognize tumor-associated antigens and kill
target cells expressing these antigens [143]. CAR-T therapy
has shown considerable success in treating leukemia but lim-
ited efficacy in solid tumors [143], except for neuroblastoma
[144] and sarcoma [145]. These observations suggest that
TME may block immune-driven tumor clearance by
impairing CAR-T infiltration, activation or survival.
Therefore, the removal of TME barriers to immune clearance
may improve the efficiency of CAR-T-based therapies in solid
tumors [146, 147].

Other TME-directed therapies are based on the neutraliza-
tion of tumor-associated chronic inflammation [148]. The in-
hibition of the NF-κB pathway or immune-cell recruitment
and/or function blockade through CSF-1R, CCR2 or
CXCR2 inhibitors is being investigated in clinical trials
[149]. For example, several CCR2 inhibitors (CCX872-B,
PF-04136309, MLN1202, and BMS-813160) are currently
undergoing clinical trials for the treatment of solid tumors
(Table 1) [118]. In addition, CSF-1R inhibitors decrease tumor
growth and increase survival in gliomas in preclinical trials,
which are associated with macrophage reprogramming, but
not with the depletion of these immune cells [95]. In contrast,
treatment with CSF-1R inhibitor results in TAM depletion in
preclinical models of breast cancer, without changes in the
growth of primary tumors [149]. Moreover, PLX3397, a
CSF-1R tyrosine kinase inhibitor, reduces macrophage
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infiltration and enhances the efficacy of radiotherapy and im-
munotherapy [150, 151]. This drug is currently under clinical
development for the treatment of glioblastoma and breast can-
cer patients. Given that different tumor types show distinct
responses to CSF-1R inhibition, it has been suggested that
TME-targeted therapies should be administered depending
on tumor type and location in order to block tumor progres-
sion and metastasis development.

Strategies to promote the polarization switch of M2 mac-
rophages to an anti-tumor M1 phenotype are also emerging as
new therapeutic approaches (Table 1). In this regard, the inhi-
bition of PI3Kγ in M2-like TAMs gives rise to T cell activa-
tion that suppresses growth of head and neck SCC (HNSCC),
PDAC, lung and breast tumor [152]. Furthermore, activation
of TLR3/Toll-IL-1 receptor domain-containing adaptor mole-
cule 1 by Poly (I:C) accelerates M1-like macrophage polari-
zation [153]. Polarization from an M2 to an M1 phenotype
suppresses mammary tumor growth and angiogenesis [154],
indicating that the re-education of TAMs could restore normal
vasculature and block the pro-tumorigenic effects of TAMs. In
accordance, histidine-rich glycoprotein (HRG) inhibits tumor
growth and metastasis by inducing macrophage polarization
and vessel normalization via downregulation of the placental
growth factor (PIGF) [118, 155]. TMP195, a histone
deacetylase (HDAC) inhibitor, repolarizes TAMs and
synergizes with PD-1 to reduce tumor burden and metastasis
in a breast cancer model [156].

Taken together, these studies suggest that a combination of
therapies targeting immune evasion of tumor cells and those
activating anti-tumor immune cell responses may provide op-
timal benefits for patients. However, these trials are still in the
early stages and we do not fully understand how these drugs
contribute to efficacy and overall survival. The long-term im-
pact of these therapies on patient safety and survival also
remains to be evaluated.

Concluding Remarks

Studies in recent years have significantly advanced our under-
standing of the cytokines and molecular pathways regulating
the crosstalk between TME components such as TAMs,
MDSCs, Treg, and cancer cells. These immunosuppressive
cells and derived cytokines contribute to the generation of a
tumor-immunosuppressive network that promotes tumor pro-
gression and negatively influences immunotherapy in a range
of cancer types. Signals derived from these tumor-infiltrating
immune cells help sustain cancer-cell proliferation, survival,
and invasion, as well as metastasis and angiogenesis. In addi-
tion, cancer cells have evolved different mechanisms of im-
mune evasion to avoid their recognition and/or attack by cy-
totoxic T cells or NK cells. These mechanisms include the
recruitment of immunosuppressive cells that block the activity

and proliferation of cytotoxic T cells, the downregulation of
MHC-I protein expression, and/or the induction of PD-1 and
CTLA-4 ligands, among others, for the activation of T cell-
inhibitory immune checkpoint pathways.

Several studies have also shown that immune and cancer-
cell crosstalk plays an important role in promoting the acqui-
sition of CSC features, EMT, CSC self-renewal and mainte-
nance. Likewise, CSC-derived factors stimulate the recruit-
ment of these immunosuppressive cells into tumors. Given
the important role of CSCs in driving long-term tumor growth,
metastasis, and relapse after therapy, a thorough understand-
ing of CSC-TME crosstalk is fundamental to the development
of innovative therapeutic strategies. In this regard, therapies
based on disrupting the pro-tumorigenic TME by blocking the
recruitment of immunosuppressive TAMs and MDSCs to tu-
mors have been developed. In addition, many studies have
suggested that re-education of stromal cells, rather than their
targeted ablation, may be an effective strategy for treating
cancer. Future studies will allow us to establish combinatory
therapies that block tumor growth and metastasis by targeting
TME and cancer cells, and to increase the efficiency of cur-
rently immune checkpoint inhibitors.
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