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Abstract: Emotion recognition using Artificial Intelligence (AI) is a fundamental prerequisite to improve Human-

Computer Interaction (HCI). Recognizing emotion from Electroencephalogram (EEG) has been globally accepted in 

many applications such as intelligent thinking, decision-making, social communication, feeling detection, affective 

computing, etc. Nevertheless, due to having too low amplitude variation related to time on EEG signal, the proper 

recognition of emotion from this signal has become too challenging. Usually, considerable effort is required to 

identify the proper feature or feature set for an effective feature-based emotion recognition system. To extenuate the 

manual human effort of feature extraction, we proposed a deep machine-learning-based model with Convolutional 

Neural Network (CNN). At first, the one-dimensional EEG data were converted to  Pearson's Correlation Coefficient 

(PCC) featured images of channel correlation of EEG sub-bands. Then the images were fed into the CNN model to 

recognize emotion. Two protocols were conducted, namely, protocol-1 to identify two levels and protocol-2 to 

recognize three levels of valence and arousal that demonstrate emotion. We investigated that only the upper 

triangular portion of the PCC featured images reduced the computational complexity and size of memory without 

hampering the model accuracy. The maximum accuracy of 78.22% on valence and 74.92% on arousal were obtained 

using the internationally authorized DEAP dataset.  

Keywords: Emotion, Convolutional Neural Network, Feature Extraction, EEG, Pearson's Correlation Coefficient, 

Complexity.

 

I. Introduction 

Emotion is a feeling that implies how we act for a particular instance. Now in the era of technological development, the 

research of emotion recognition from EEG has become very popular due to its non-invasive feature. The remarkable 

development has occurred on emotion-based non-invasive Brain-Computer Interface (BCI) and signal processing 

technology. Therefore, the analysis of EEG-based emotion recognition has become a very attractive issue in affective 

computing. Various information and important data can easily be extracted from the human brain and analyzed for 

knowing the inner truth of humans.  

Nowadays machine especially robot has been utilized in many industries, hospitals and even in household applications. 

People are setting higher expectations for robots as they become more prevalent in many parts of daily life. For better 

human-machine interaction, it is hoped the super ability of decision making, self-thinking, emotion sensing. The 

assurance of emotion recognition is an inevitable need to make a robot more practical for real-life applications. The 

patient's affective information, including emotional state, is considered a key factor of his/her mental and physical 

status. A patient's emotional state has a significant effect on the treatment management process [1]. Therefore clinics, 

hospitals, and other healthcare providers should keep a proper system for emotional state assessment to strengthen 

healthcare. Since human behavior is mainly dependent on emotion and psychologist wants to analyze the condition of 

the human mind; recognition of emotion has also become a hot topic in psychology. Many psychological experiments 

demonstrated the relation between emotions with EEG signals [2], [3].  Even emotion is now treated as a governor of 

music and video recommendation. For instance, in a sad mood, it recommends a funny event for making a person 

happy. In gamming, the level may become harder in positive emotional states. In court, during the criminal's statement, 

emotion can also be recorded to judge his authenticity and reliability. Accordingly, emotion recognition has become an 

indispensable part of our daily life. Consequently,  computer scientists, AI specialists, physiologists, and biologists are 

continuously generating enormous studies using computer technology to understand human emotions [4]. 

The research on emotion recognition demands the emotionally aroused signal of the human being. Humans remain 

emotionally excited in their real-life activities. However, it is too tough to accumulate the aroused data on that situation. 

For research, emotion-relevant EEG data is usually collected by listening music, watching videos, and playing 

emotion-related games. The audiovisual stimuli create the proper excitement on human brain signals among the 

different types of stimuli as audiovisual stimuli affect the human mind by both audio and video context [5]. To 

recognize human emotion, many scholars used various types of raw signals [6]. Many used EEG signals [2], [7]–[9] 

and facial expressions [10], [11]; and few used gesture, speech signals [12], autonomous nervous signals [13]. Subjects 

need to express emotion explicitly when facial expressions and speech signals are being used. Moreover, from the 

facial expression, only these types of emotion can be classified whose effect will change the human face structure. 
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However, subjects who feel happy internally but do not express it by their face cannot be classified. So facial 

expression is not considered as a good emotion recognizer raw signal. For speech signals, the subject's emotion can be 

classified with the help of the voice's intensity. For that reason, this type of emotion recognition method is not 

applicable to autistic persons.  Moreover, the people who are not able to speak remain out of this type of emotion 

recognition method. Some researchers tried to classify emotion from gesture [14] and body movement [15]. People 

with physically handicapped are not able to present body language and gestures to express emotion. Furthermore, the 

autonomous nervous system is not too applicable because of its complex acquisition technique. Interestingly, subjects 

cannot control the spontaneously generated EEG signal. When we extract emotion from EEG, then the emotion of the 

people who cannot speak or unable to express themselves by gesture and posture can also be recognized. Besides, the 

EEG signal acquisition approach is not as tricky as multimodal signal acquisition. Moreover, the low cost, wireless 

flexible and portable acquisition medium makes it more popular. Consequently, the best and peerless signal for 

emotion recognition is EEG for any kind of person at any time in any place. 

 

 

 

 

 

Figure 1:  Emotion recognition from EEG signal using CNN. 

Different researchers have applied multiple methods and approaches in recognizing and classifying emotion [16]–

[18]. Recently, the wavelet transform has become a prevalent analysis method due to its good performance both in the 

time and frequency domain [8]. EEG signal is a non-linear, non-stationary, and temporal asymmetry type signal on the 

microvolt range. The computation and analysis of this type of signal are too challenging. Some researches on emotion 

recognition have been performed by selecting proper features and shallow machine learning algorithms like Support 

Vector Machine (SVM) [19]–[23], k Nearest Neighbor (kNN)  [19], Decision Tree (DT), or Multi-Layer Perceptron 

(MLP) etc. Soleymani et al. developed an emotion recognition method based on user-independent analysis. They 

achieved a good result in terms of accuracy, like 68.5% for valence and 76.4% for arousal upon the classification of 3 

classes [24]. Zheng et al. investigated stable EEG patterns using machine learning and systematically evaluated the 

performance of different feature extraction methods, selection, and smoothing [25]. Atkinson and Campos suggested a 

valence arousal-based method combined with mutual information-based feature selection methods and kernel 

classifiers [26]. They proposed an EEG-based Brain-Computer Interface to explore a set of emotional types and 

incorporate additional features relevant for signal preprocessing and classification. In the conventional feature 

extraction methods, several features or feature set are being considered to train the recognition system. In contrast, deep 

learning eliminates the difficulties of selecting the useful and significant features. It allows the machine to learn the 

feature from the input data set automatically and transfer its learning to the classifier.  

Längkvist et al. proposed a Deep Belief Network (DBN) architecture to reduce the complexity and necessity of 

multimodal sleep data [27]. They also recovered the fact of time consumption in the classification stage.  Li et al. used 

differential entropy feature with a novel DBN and achieved 11.5% and 24.4% improvements on the task of affective 

state recognition [28]. Martinez et al. classified four different emotional states using CNN, considering the skin 

conductance and blood volume pulse signal [29]. The researcher Wen et al. [30] proposed a method using channel 

correlation, but they did not use the emotion-relevant sub-band data. Another researcher used deep and convolutional 

neural networks on mean, median, standard deviation, and many other time-domain features [31], but time-domain 

features are not too helpful. The author of [32] calculates the PCC of multichannel EEG data considering four sub-

bands.  

This paper proposed an emotion recognition method of lower complexity from audio-visual stimuli-based EEG 

signals using CNN. The architectural flow diagram is shown in the following Fig. 1. Emotion is highly related to beta 

and gamma sub-bands, moderately related to alpha sub-band, and very poorly connected to theta sub-band. Therefore, 
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we have considered only alpha, beta gamma sub-bands despite considering four sub-bands. That makes our information 

more significant and reduces computational complexity. Again, we proved that only the upper triangular portion of the 

PCC featured images was substantial to recognize emotion. Our work used a deep architecture-based Convolution 

Neural Network as it could automatically extract internal features. Thus, the main contributions of the proposed 

research are as follows: 

1) The development of an improved emotion recognition method with lower computational complexity, lower 

memory requirement, lower time consumption for processing; without hampering the performance. 

2) Developing a novel procedure to construct a matrix of significant two-dimensional data based on channel 

correlation from the one-dimensional EEG signals is proposed. 

3) The development of a CNN-based modified model that can recognize emotion using a single feature 

Pearson's Correlation Coefficient of EEG sub-bands. 

This work is the updated version of our previous work [33]. Here, the computation complexity is significantly 

reduced by reducing input images' size considering only the upper triangular matrix of PCC featured images. 

Moreover, the convolution neural network model is modified according to the size of our newly generated PCC 

featured images that applied as input. 

The rest of the paper is organized as follows. Section II demonstrates the necessary dataset collection and 

description with data preprocessing including some preprocessing techniques. In addition, the development of 

network architecture is also described in this section. The experimental results for two different protocols with the 

DEAP dataset are illustrated in section III. The discussions along with the comparative study with the current works  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The successive process of our proposed method includes reshaping, decomposition, segmentation, PCC featured image extraction, and 

classification to recognize emotion from raw EEG data. 

Classification 
CNN 

video×channel×data 
40×32×7860 

Interchanging the 
dimensions 

channel×data×video 
32×7860×40 

δ

  

θ

  

α                               β                               γ 

Decomposition 

Segmentation 

PCC Feature 

Reshaping  

Preprocessed EEG data 

video×channel×data 

40×40×8064 

EEG data 

Classified Emotion 

Channel Correlation Matrix 
23×23 

Featured Image 

Upper  
Triangular  
Matrix 

Not Used 

40 to 32 Channels 

63s to 60s data 



5 

 

are depicted in section IV. Finally, the conclusion with some significant future works is discussed in section V. 

II. Materials and Methods 

The proposed system takes EEG data as input and generates classified emotion as output. The system diagram of our 

experiment is illustrated in Fig. 2. Later the individual portion of the system is described separately. Firstly, the raw 

EEG data were preprocessed. Secondly, just one feature named Pearson's Correlation Coefficient between every 

possible combination of two channels among 32 channels was determined. Thus, we formulated the PCC featured 

images of channel correlation. Afterward, the PCC featured images containing two-dimensional channel correlation 

data were taken as input into our designed CNN classification algorithm to recognize emotion. 

A. Dataset 

We have considered the internationally accredited 'DEAP' dataset [34] in our study to perform the experiment and 

measured our model's performance. There remain sixteen different emotional class-based labeled EEG data of 32 

participants. 'DEAP' stands for Dataset for Emotion Analysis using Physiological signals. It is a commonly useable 

open dataset for emotion analysis that contains EEG, physiological and video signals.  

Table I 

Information about 'DEAP' Dataset 

Attributes Details Information 

EEG acquisition system Biosemi ActiveTwo 

Channels of recorded signals 32 EEG channel (512 Hz) 

12 Peripherals 

1 Status channel 
3 Unused channels 

Total of 48 channels 

EEG electrodes AF3, AF4, C3, C4, Cz, CP1, CP2, CP5, CP6, F3, F4, F7, F8, Fz, 
FC1, FC2, FC5, FC6, Fp1, Fp2, O1, O2, Oz, P3, P4, P7, P8 Pz, 

PO3, PO4, T7 and T8 

Rated parameter Valence, arousal, dominance, liking, and familiarity 

Range of rating 1-9, except familiarity (1-5) 

Available data format video×channel×data = 40×40×8760 

 

Researchers used the dataset to evaluate the performance of their own designed system of emotion recognition. The 16 

male and 16 female participants (age ranges from 19 to 37 years) were watched forty different emotional music videos 

and the corresponding physiological recordings and participant ratings were stored. Each video had a duration of 1 min 

long. They recorded EEG signals using the International 10/20 electrode placement system. The relevant information 

about the 'DEAP' dataset is shown in Table I. 

As the EEG signal is very low amplitude signals, the extraction of information from this type of signal is too 

complicated. Moreover, an Electrooculogram (EOG) and another noise signal may hamper the original signal's 

effectiveness if it is not preprocessed. Firstly, the raw data were downsampled to 128 Hz from 512 Hz to reduce the 

volume. Later, EOG artifacts were removed. Finally, it was passed through a bandpass filter of frequency 4~45 Hz. We 

collected the preprocessed data from the official website of 'DEAP'. 

B. Reshaping and Permutation 

In the emotion recognition task, the downloaded data shape format was like that video×channel×data = 40×40×8064. It 

illustrated 40 different videos, 40 channels, and 8064 data points (63s data, sampling frequency 128Hz, data 

points=128×63). Among them, only the first 32 electrodes (channels) were used for the EEG signals recording. 

Therefore, we extracted these 32 channel data only. Also, the last 60s data were original. We reshaped the data as 

video×channel×data = 40×32×7680. Afterward, the reshaped data were permuted to arrange the data as following 

format channel×data×video = 32×7680×40. The data structure before and after reshaping and permutation has 

demonstrated in Fig. 3.  
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Figure 3: Dimension 3D of data before and after reshaping and permutation. 

C. Decomposition 

The activity of human work affects fully on brain waves. As a result, the mental states and conditions can be extracted 

from the EEG signals. Generally human EEG is a composite type signal that consists of five different types of brain 

waves of different frequency namely delta (1 Hz < f < 4 Hz), theta (4 Hz < f < 8 Hz), alpha (8 Hz < f < 12 Hz), beta 

(12 Hz < f < 30 Hz) and gamma (30 Hz < f < 60 Hz). The different sub-bands are incorporated with different mental 

states and activities. For an instance, the delta sub-band is related to relaxing or calm activities like deep sleep and 

unconsciousness. The theta and alpha sub-bands are related to low-level excitement like drowsiness, imagination, 

closing the eye etc. The medium-level excitements including thinking, anxiety and stressed are incorporated with the 

beta sub-band signal. Lastly, the gamma sub-band signals affect hyperactivity, such as alertness, agitation, object 

matching and sensory processing. In this part of our work, the EEG signals were decomposed into the five sub-bands 

using Discrete Wavelet Transform. Later, as delta and theta sub-band associated with relaxing to low-level brain 

activity, we ignored it for emotion recognition. The original EEG signal and our decomposed alpha, beta, and gamma 

sub-band signals of channel Fp1, of the first participant (p1) for the first video (v1), are shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Decomposition of main preprocessed EEG signal (of p1, v1, Fp1) into alpha, beta, and gamma sub-band signals. 

D. Segmentation 

As CNN requires many training data for an exclusive performance, the EEG data have to be segmented. One EEG  

signal's length is the 60s, which means the number of total data points is 7680. Before calculating the PCC of different 

channels, we need to segment the data. Here the EEG signals were segmented into 20 parts in which every segment 
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contains 384 data points (data of 3s). The segmented part of a single channel EEG is shown in Fig. 5. Accordingly, for 

a single participant, the total segmented partition number will be 20 times 32 times 40, i.e., 25,600. 

 

 

 

 

 

 

Figure 5: Every decomposed signal of the 60s is segmented into 20 portions. 

E. PCC Featured Image Formation 

To recognize emotion from EEG signal, many researchers used various types of the method such as Short Time Fourier 

transform (STFT), Common Spatial Pattern (CSP), Discrete Wavelet Transform, Statistical feature, Higuchi fractal 

dimension (HFD), Magnitude Squared Coherence Estimate (MSCE), Power Spectral Density (PSD), Fast Fourier 

Transform (FFT), Higher-Order component (HOC), Differential Entropy (DE), Differential Asymmetry (DASM), 

Rational Asymmetry (RASM), Affective Signal Processing (ASP), etc. We used Pearson's Correlation Coefficient to 

generate the PCC-featured effective images for emotion recognition. 

Pearson's correlation coefficient is the scale of indication that represents the statistical relationship between two 

continuous variables. It is based on covariance; it is the best method of measuring the relationship between two 

variables. The value of Pearson's Correlation Coefficient ranges from +1 to -1, where +1 indicates a perfect positive 

correlation and -1 is the opposite of this. The calculation of PCC for two series of the dataset a and b is 

ba

ba




),cov(
ab   

where a = (a1, a2, a3 …. an) and b = (b1, b2, b3, …. bn). Here cov(a,b) indicates the covariance between a and b, and σa, 

σb implies the standard deviation of the dataset a and b, respectively. In our work, we calculated the PCC directly by 

using a user-defined function in MATLAB by (2). 
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F. Convolutional Neural Network Model  

Convolutional Neural Network is a branch of Deep Neural Networks (DNN), which has proven outstanding image 

classification and computer vision performance. The main structure of CNN is very similar to the connectivity pattern 

of the neuron of the human brain. One of the main advantages of CNN is that it requires a little bit of preprocessing or 

sometimes needs no preprocessing like other traditional classification algorithms. It can automatically learn many 

features from the training dataset and use them to predict the test data. The first operation of a CNN is making 

convolution with the images and a filter. In the neural network discussion, the filter and kernel are the same terms. The 

convolutional layer is the primary layer of any CNN network. This layer performs matrix multiplication between a 

particular portion of input images and a specific shape of the kernel. 

The kernel moves through an image and makes a new convolved image. Our proposed CNN architecture from the 

PCC-based images to the classified emotion is shown in Fig. 6. In the architecture, there remain three sets of  
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Figure 6: The proposed CNN model for emotion recognition consists of three sets of convolution, Rectified Linear Unit (ReLU), and pooling 

layers in addition to one flatten and one dense layer. The size of images, number of filters, padding, and stride, etc., on each level, are shown. 

 

Convolution, ReLU, and Pooling layers. Afterward, we used a flatten layer. Lastly, the dense layer was connected. 

Here we used a dropout of 0.25 for reducing the network complexity.  

After a single convolution layer, the dimension of the output images will be nH×nW×nC, considering the size of input 

images, filters, weight, and bias are as similar as expressed in (3), (4), (5), and  (6), respectively. 

]1[]1[]1[__   l
C

l
W

l
H nnninputofsize  (3) 

]1[][][__  l
C

l
W

l
H nfffilterofsize

 (4)  

  ][][][][__ l

C

l

C

l

W

l

H nnffweightofsize  1

 (5) 

][111__ l
Cnbiasofsize    (6) 

The output layer at level l can be calculated as follows. 

1
2

][

][][]1[







l

lll
H

H
S

fpn
n    (7) 

][][][__ l
C

l
W

l
H nnnoutputofsize   (8) 

The calculation of nw is precisely similar to nH like (7). Here, p[l] and S[l] represent the padding and stride values, 

respectively at a level l. The filters of size 3×3 were used in the 1st, 2nd, and 3rd convolution layers. The number of 

filters is shown in Fig. 6. Since we did not want to lose the information from the pixels of a corner of the input PCC-

based image, we used the same convolution (padding layer, p=1) for the 1st and 3rd convolution layers. A valid 
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convolution (i.e. no padding, p=0) method was used for the 2nd convolution layer to reduce computational complexity. 

The number of padding (p) and stride (s) in every layer is indicated clearly in Fig. 6. 

In the classification task for normal images, the most popular type of pooling is max pooling. Since the PCC-

featured images are texture-type images, we used average pooling despite using max pooling. It may be noted that a 

texture-type image does not contain any particular pattern like an ordinary or natural image. The 2×2 sized filters with 

stride 2 were used in every pooling layer. The major hyper-parameters and their corresponding information, such as the 

value or the type of them of our trained CNN model, are shown in Table II. 

Table II 

The Value or Types of the Major Hyper-parameters of Our Trained CNN Model 

Model Hyper-parameter Value or Type 

Learning rate 0.001 

Momentum 0.80 

Number of epochs 50 

Batch size 512 

Dropout 0.25 

Pooling method Average pooling 

Activation function ReLU and sigmoid (for protocol 1) 
ReLU and softmax (for protocol 2) 

Optimization algorithm Adam 

G. Activation Functions 

In our model, the ReLU activation function is used that best fits CNN architecture and faster. The ReLU has a positive 

feature compared to 'sigmoid' and 'tanh' that is never saturated with a significant value of x. Besides, it is more reliable 

and accelerates the convergence by six times. The mathematical expression of ReLU is given in (9). 

                   ),0max()( xxf                                           (9) 

As our input data consists of values from -1 to +1, normalization is not necessary here. We used l2 type kernel 

regularizer to remove the overfitting in dense layers where the regularization parameter is 0.001. 

In protocol 1, we made a binary classification. For doing this, we used the 'sigmoid' activation function in the last 

layer. The 'sigmoid' is a smooth non-linear activation function that returns the probabilities of a class, and since the 

probability ranges from 0 to 1, its range is also the same. The equation of the 'sigmoid' activation function is given in 

(10). Protocol 2 is not a binary classification task because we classified valence and arousal into three classes. 

Therefore, 'sigmoid' is not suitable for this purpose. For multiclass classification 'softmax' activation function is perfect. 

The 'softmax' activation function returns the probability of every class, and lastly, it targets the class that belongs to the 

most considerable probability. The 'softmax' function is defined in (11).  

                       
ze

z



1

1
)(                                      (10) 

                
)exp(1

1
)(

x
xh

T



                                  (11) 

Here, hθ is the scalar output of 'softmax' in the range of hθ(x)∈ R and 0<hθ(x)<1. The θ and x are the vectors of weights 

and input values, respectively. 

H. Optimization Algorithm and Cost Function 

In a neural network, updating the model parameter like weight and bias values needs an optimization algorithm. The 

optimization algorithm runs a procedure of finding the optimum or satisfactory solution. An optimization algorithm's 

primary purpose is to minimize the loss or error of a neural network model. Some popular examples of the optimization 

algorithm are Stochastic Gradient Descent (SGD), Batch Gradient Descent (BGD), Nadam (Nesterov Adam optimizer), 

Adagrad (Adaptive Gradient), Adadelta (Adaptive Delta), Adam (Adaptive Moment Estimation), Adamax, RMSprop, 
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etc. The Adaptive Moment Estimation (Adam) gradient descent algorithm was being used to optimize our neural 

network. The main target of a perfect neural network is not to increase the accuracy but to reduce the loss. The 

optimization algorithm always updates the values of weights and biases to reduce the value of the loss. 

In protocol 1, where the number of output classes M=2, the cross-entropy was calculated by using (12). Similarly, in 

the 2nd protocol, as the number of output classes is three, the categorical cross-entropy was calculated by (13).   

       )]1log()1()log([cost 1 pypyp 
                (12) 

         


 
M

c

cocop Py
1

,,2 )log(cost                                     (13) 

where 'M' indicates the number of output classes, 'y' is the binary indicator (0,1) that defines the correct or incorrect 

classification, and 'Poc' implies the predicted probability on observation 'o' of class 'c'.  

Table III 
Cost Function of the Binary and Multi-class Classification Problem 

 

 

 

 
 

 

Table IV 
Shape and Parameter Values of Our CNN Model in Protocol 1 

 

Layer (type) Output Shape Parameter  

Input 23, 23, 1 - 

Conv_1 (Conv2D)  23, 23, 64 640 

AvgPool_1 (AveragePooling) 11, 11, 64 0 

Conv_2 (Conv2D) 9, 9, 128 73856 

AvgPool_2 (AveragePooling) 4, 4, 128 0 

Conv_3 (Conv2D) 4, 4, 256 295168 

AvgPool_3 (AveragePooling) 2, 2, 256 0 

Flatten_1 (Flatten) 1024 0 

Dense_1 (Dense) 512 524800 

Dropout_1 (Dropout) 512 0 

Dense_2 (Dense) 2 1026 

Total parameter: 895,490 

Trainable parameter: 895,490 

Non-trainable parameter: 0 

 

Table V 

Shape and Parameter Values of Our CNN Model in Protocol 2 

Layer (type) Output Shape Parameter  

Input 23, 23, 1 - 

Conv_1 (Conv2D)  23, 23, 64 640 

AvgPool_1 (AveragePooling) 11, 11, 64 0 

Conv_2 (Conv2D) 9, 9, 128 73856 

AvgPool_2 (AveragePooling) 4, 4, 128 0 

Conv_3 (Conv2D) 4, 4, 256 295168 

AvgPool_3 (AveragePooling) 2, 2, 256 0 

Flatten_1 (Flatten) 1024 0 

Dense_1 (Dense) 512 524800 

Dropout_1 (Dropout) 512 0 

Dense_2 (Dense) 3 1539 

Total parameter: 896,003 

Trainable parameter: 896,003 

Non-trainable parameter: 0 

Types of 

Problem 

Configuration of the output 

layer 
Cost function 

Binary 
Classification 

One node with a 'sigmoid' 
activation function. 

Binary Cross-Entropy 

Multi-Class 

Classification 

One node for each class using the 

'softmax' activation function. 

Categorical Cross-Entropy 
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We used the 'Google-Colab' user interface to execute the code. The summary of the proposed emotion recognition 

model is shown in Table IV and Table V, respectively. It may be noted that the two architectures were almost the same 

except for the output shape of the last dense layer. As we classified 2 and 3 different classes in protocols 1 and 2, 

respectively, the last dense layer's shape was 2 and 3. 

III. Result 

In our experiment, we used the 'DEAP' dataset of the EEG signals to classify emotion. The emotion-related EEG 

signals were firstly converted into PCC featured images. Here, we calculated the correlations of different channels data 

for the same emotional video and the same segmentation. This channel correlation matrix contains the PCC between 

the combinations of every two channels for similar segmentation. Thus, the matrix of sized 32×32 could be found for 

every segmentation. As in every 60s the EEG signals were segmented into 20 segments, and a participant showed 40 

different emotional videos; the number of the total square matrices will be 20×40=800. Thus for 32 participants, 

800×32, i.e., 25600 square matrices of channel correlation were generated for a single sub-band. The channel 

correlation-based images were formulated with the highest correlation coefficient 1 as yellow color and the lowest 

correlation coefficient -1 as blue color. Some samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Random samples of PCC featured images in which every pixel indicates the PCC of the relevant two channels data. (a) Image for 

participant number 1, video number 1, segmentation number 1 (b) Image for participant number 1, video number 1, segmentation number 2 (c) 

Image for participant number 15, video number 20, segmentation number 7 (d) Image for participant number 31, video number 20, segmentation 

number 7. 

of PCC-based images are shown in Fig. 7, where 'p' indicates the certain participant, 'v' is for video, and 's' represents 

the segment number. Afterward, these images were fed into a CNN-based classification algorithm. In protocol-1, we 

distinguish low and high levels of valence and arousal. Here, the levels are distinguished by following the scale as low: 

0≤value≤4.5 and high: 4.5<value≤9. In protocol-2 low, medium, and high levels of valence and arousal are 

differentiated by following the range of low: 0≤value≤3, medium: 3<value≤6 and high: 6<value≤9. 

Alarcao and Fonseca [7] and Zheng and Lu [9] published their investigation that emotion was closely related to the beta 

and gamma band and moderately associated with the alpha band. Furthermore, the theta band had a slight activity 

depending on the emotion. On the contrary, as delta band was correlated with dreamless and deep sleep, unconscious 

mind, and very 

 

p1, v1, s1 p1, v1, s2 

p15, v20, s7 p31, v20, s7 

symmetric

(a)                                             (b) 

 

 

 

 

(c)                                        (d) 
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(a)                                                                                              (b) 
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Figure 8: Model accuracy and loss curves for two-class classification: (a) accuracy in valence, (b) loss in valence, (c) accuracy in arousal, (d) loss 

in arousal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Model accuracy and loss curves for three-class classification: (a) accuracy in valence, (b) loss in valence, (c) accuracy in arousal, (d) 

loss in arousal. 

poorly related to emotion. Therefore, we considered the three sub-bands except the delta, theta and main EEG data to 

extract emotion using CNN.

Since we used a set of 25600 PCC featured images of the main frequency and three sub-band frequencies, there 

remains a total of 25600×4=102,400 labeled PCC featured images. The data were divided into training (90%), 

validation (5%), and testing (5%) data. During the training period, the model validated the accuracy of the data selected 

in the validation portion. The accuracy and loss of 2 classes and 3 classes classification of valence and arousal are 

shown in Fig. 8 and Fig. 9.  From these graphs, it is clear that the minimum loss occurs between the 45 to 50 epochs for 

(a)                                                                                             (b) 

 

 

 

 

 

 

(c)                     (d) 
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both of the two protocols. As in the machine learning approach, the minimization of loss is more desirable than the 

maximization of accuracy, we used to train the system up to 50 epochs.   

 

 

 

 

 

 

 

 

Figure 10: Confusion Matrices (a) two-class valence (b) two-class arousal (c) three class valence, (d) three class arousal. 

The confusion matrices of our model are illustrated in Fig. 10. The four separate confusion matrices are generated 

for the two-class valence, two-class arousal, three-class valence, and three-class arousal classification task. In every 

confusion matrix, the last row represents the value of precision, and the last column represents the value of recall. 

Besides, the last row and the last column data indicates the percentage accuracy of the specific task. 

 

Table VI 

Classification Outcomes of Our Model 

Valence / 

Arousal 
Class Precision Recall F1 score support 

Protocol 1: 0= Low, 1= High 

Valence  
0 0.74 0.75 0.74 2168 

1 0.81 0.81 0.81 2952 

Arousal 
0 0.80 0.68 0.74 2234 

1 0.78 0.87 0.82 2886 

Protocol 2: 0=Low, 1=Medium, 2= High 

Valence 

0 0.63 0.70 0.66 816 

1 0.69 0.64 0.66 2072 

2 0.74 0.76 0.75 2232 

Arousal 

0 0.70 0.59 0.64 858 

1 0.70 0.63 0.66 2055 

2 0.70 0.81 0.75 2207 

 

The overall classification report containing the value of precision, recall, F1 score, and accuracy of every class of 

two different protocols is given in Table VI. The high value of the F1 score indicates that the importance of precision 

and recall were balanced and satisfactory for both of the two protocols.  

Here, only the inter-channel correlations were considered. The inter-channel correlations were more meaningful as 

the human brain remains aroused by any single emotional stimuli in only a few seconds (1s-4s). On the other hand, the 

inter-sample correlations may be another option for future work. It was important as it allowed one to consider the 

variation of temporal characteristics of EEG signals for different emotional states. In addition, the inter-sample 

correlation technique will enlarge the volume of data that promotes the deep machine learning algorithm performance 

for large-sized data. 
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IV. Discussion 

To recognize emotion firstly, the channel correlation-based PCC featured images were generated, as stated earlier. The 

PCC-featured images of size 32×32 are consisted by the diagonal symmetrical matrices that were showed clearly in 

Fig. 7. Since the diagonal elements represented the correlation between the same channels, the value will always be 1 

for all of the PCC matrices. As a result, in every image, the color of the diagonal element was yellow.  

 

Figure 11: Complexity reduction considering only the upper triangular matrix. 

Since the upper or lower triangular matrix data of a single PCC-based image were the same, it was unnecessary to 

use the same data in double time. Therefore, before sending the PCC matrices to our CNN model, the lower triangular 

data were removed. Thus, the data points were reduced from 1024 (32×32) to 528 (1+2+…..+32) as explained in Fig. 

11. An extra 0 data was added with this 528 data points to formulate a new shape PCC featured image of size 23×23.  

Eventually, only 51.1% of data points of the square matrix of PCC-based images were fed to the CNN model because 

these points consist of significant information for emotion recognition. Using this technique, the size of memory and 

the computational complexity had been reduced without degrading the emotion recognition accuracy. 

The data points of input images were reduced from 1024 to 529, indicating a 48.34% memory reduction only in this 

step of execution. The reduction of complexity in protocols 1 and 2 has been given in Table VII considering some 

specific factors. In protocol-1, the total trainable parameter was reduced to 895,490 from 1,550,850, which tends to a 

42.59% reduction in computation for the whole program. We used the GPU of ‘Google Colab’ with a 5 Mbps internet 

connection through the laptop of configuration Intel(R) Core(TM) i5-8250U CPU, 1.60GHz, 7.88GB DDR4 RAM, 

256GB SSD, 64-bit operating system for executing our programing code. The new model also needed less time for 

execution by using the same processor and same internet speed. The total time for 50 epochs was reduced to 207s from 

351s. Similarly, in protocol-2, (see Table VII); the new model shows the 48.34%, 42.24%, 66.56% reduction of 

complexity in the input size, number of total parameters and execution time respectively. 

Table VII 

Computational Complexity Reduction based on Input Size, Parameters, Execution Time in New Model  

Factors for reducing 

complexity 
Input size 

Number of total 

trainable parameters 

Execution time 

(for 50 epochs) 

Protocol-1 

Old Model 32×32=1024 1,550,850 351s 

New Model 23×23=529 895,490 207s 

Complexity Reduction (%) 48.34% 42.59% 41.03% 

Protocol-2 

Old Model 32×32=1024 1,551,363 302s 

New Model 23×23=529 896,003 101s 

Complexity Reduction (%) 48.34% 42.24% 66.56% 

 

The overall accuracy of our proposed model is shown in Table VIII. In Table VIII, it is represented that the accuracy 

for two-class valence and arousal recognition tasks is 78.22% and 74.92%, respectively. In the three-class 

classification, the accuracy is 70.23% and 70.25% for valence and arousal recognition tasks. Another important fact 

that the percentage accuracy of protocol-1 is comparatively higher than the accuracy 
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Table VIII 

Comparison of Different Emotion Recognition Methods 

Author Extracted Features Classifier 
Number of Classified 

emotion 
Accuracy (%) Dataset 

Koelstra et al. 
(2011) [34] 

Multimedia Content 
Analysis (MCA) 

Gaussian Naive Bayes 
classifier 

4 (HVHA, HVLA, 
LVHA, LVLA) 

Valence=57.6 
Arousal=62.0 

DEAP 

Jirayucharoensak 

et al. (2014) [35] 

Power Spectral Density 

(PSD) 

Deep learning network with 

SAE 
3 class 

Valence=49.5 

Arousal=46.0 
DEAP 

Ackermann et al. 
(2016) [4] 

Statistical feature SVM and Random Forest 3 (anger, surprise, etc.) 
Average 

Accuracy= 55 
DEAP 

Tripathi et al. 
(2017) [31] 

Statistical features in time 
and frequency domain 

Convolutional Neural 
Networks (CNN) 

2 (low, high) 
Valence=81.4 

Arousal=73.4 
DEAP 

3 (low, medium high) 
Valence=66.7 
Arousal=57.6 

Song et al. 

(2018) [36] 

PSD with 

graph 

Dynamical Graph 

Convolutional Neural 
Networks (DGCNN) 

2 (low, high) 

Valence= (86.2±12.3) 

Arousal= (84.5±10.8) 
Dominance= (85±10.3) 

DREAMER 

Cheng et al. 

(2019) [37] 

2D frame sequence 

considering spatial 
position 

Deep Forest 2 (low, high) 

Valence= (97.69±1.22) 

Arousal= (97.53±1.52) 
DEAP 

Valence= (89.03±5.56) 
Arousal= (90.41±5.33) 

Dominance= (89.89±6.19) 

DREAMER 

Fang et al. 

(2020) [38] 

Power Spectral Density 

(PSD) and 
Differential Entropy (DE) 

Multi-Feature Deep Forest 

(MFDF) 

5 (angry, happy, sad, 

pleasant, and neutral) 
Overall accuracy = 71.05 DEAP 

Our 

Method, 

P1 Pearson’s Correlation 

Coefficient (PCC) 

Convolutional Neural 

Networks (CNN) 

2 (low, high) 
Valence=78.22 

Arousal=74.92 

DEAP 
Our 

Method, 

P2 
3 (low, medium high) 

Valence=70.23 

Arousal=70.25 

 

of protocol-2. The cause is that whenever the number of classes to be categorized increases, then the loss will also 

increase. As a result, the accuracy will decrease. From the comparison table of work like ours, the accuracy of our 

proposed method is indeed satisfactory. The accuracy is not the highest, then how can it be acceptable? Our target is 

not to design a model of maximum accuracy, the target was to develop a model of lower computational complexity and 

lower memory and time required. For instance, the model of Tripathi et al. [31] works with lots of features, whereas we 

used only one feature named PCC. Besides, the accuracy in just 2 class valence is only higher; on the contrary, the 

remaining accuracy is lower than our method.  The model of Song et al. [36] is very effective, but as the dataset is not 

the same as ours, the proper comparison is not too meaningful here. Recently, some deep learning-based models, such 

as the deep forest-based model [37], [38] and rhythm-specific deep learning-based model [39] perform very well in the 

context of emotion recognition.  Cheng et al. [37] used a deep forest algorithm on the 2D frame sequence considering 

the spatial position across channels. They applied it on DEAP and DREAMER datasets and achieved top-ranked results 

in terms of accuracy stated in Table VIII. Fang et al. [38] used Multi-Feature Deep Forest as a classifier on PSD and 

DE features and classified emotion into five classes. The model was tested using the DEAP dataset and achieved 

71.05% overall accuracy, which is the highest for many classes classification. However, we focused on developing a 

model of lower computational complexity with a satisfactory level of classification accuracy. Our work's novelty is to 

use the technique of using only the upper triangular matrix data that reduces the size of input PCC-featured images 

from 32×32 to 23×23. It drastically reduces the computational complexity and time of training and operation. 

Moreover, we used only the PCC featured images with the CNN model; except for this feature, no additional effort was 

required to find many features. It reduces the trouble to extract features manually. 

V. Conclusion 

In this paper, we have used the Convolutional Neural Network model to recognize emotion from EEG signals. Despite 

using raw EEG data a systematically developed PCC featured images were considered for lower computation 

complexity and short operation time. The whole process of emotion recognition was completed by following the rule of 
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classification using logistic regression. Here, two different protocols were used; in both protocols, we observed the 

accuracy, model loss, and classification report. We achieved 78.22% and 70.23% accuracy in the valence classification 

task and 74.92% and 70.25% accuracy in the arousal classification task for two and three classes classification 

respectively. More accuracy and real-time operation compatibility are the fundamental prerequisites to enjoy the 

advantages of emotion recognition in the practical field. Consequently, more research and studies are essential in 

channel reduction, significant feature extraction, and deep network optimization in the future.  
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 EEG based emotion recognition model is proposed using Convolutional Neural Network 

architecture 

 Pearson’s Correlation Coefficients (PCC) of alpha, beta and gamma sub-bands are taken 

into consideration for emotion recognition 

 A novel method of emotion recognition focusing on lower computational complexity based 

on memory requirement and computational time 

 Low, medium and high level of valence and arousal based emotion recognition with only 

one feature of data named PCC. 


