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Abstract— The purpose of this article is based on analyzing the use 

of RTQ3D (“quasi-3D” ray tracing technique) to produce the value 

of the initial electromagnetic fields or fitness for a hundred and 

sixty receivers according to the possible positions of two antennas to 

be distributed in a closed environment. The problem variables 

consist of the values of the magnetic fields for one hundred and 

sixty receptors depending on the positions of the antennas to the 

base stations, which serve as input data for the algorithm to the 

RMLP (Artificial Neural Network, multilayer perceptron with Real 

backpropagation learning algorithm). The values of the magnetic 

fields associated with the positions of the antennas are the values to 

be learned by the network, the teacher of RMLP. This study aims 

to develop efficient techniques for optimization of electromagnetic 

problems. We use the PSO (Particle Swarm Optimization) 

algorithm  associated with a metamodel based on an ANN 

(Artificial Neural Network). Specifically, we use the MLP 

(Multilayer Perceptron) with the backpropagation algorithm in 

order to evaluate objective functions in an efficient way. The ANN 

will be used to assist the technique of “quasi 3D” ray-tracing in 

order to reduce the high computational cost of this technique in 

PSO optimization.  
  

Index Terms— Artificial Neural Networks, Multilayer Perceptron, 

electromagnetic fields, Particle Swarm Optimization, metamodeling.  

I. INTRODUCTION 

Optimization problems are characterized by situations in which one needs to maximize or minimize a 

numerical function of several variables, in a context where there may be restrictions.  

The sophistication of computer resources developed in recent years has motivated a breakthrough in 

optimization techniques. In fact, optimization problems have become increasingly complex, 

increasing the associated computational cost. Classical optimization techniques are reliable and have 

applications in many different fields of engineering and other sciences. However, deterministic 

methods can present some numerical difficulties and problems related to robustness: the lack of 

continuity of the functions to be optimized or its constraints, nonconvex functions, multimodality, the 

existence of noise functions, the need to work with discrete values for variables, the existence of local 

minimum or maximum, etc. Thus, studies of heuristic methods with search-controlled randomized 
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probabilistic criteria reappear as a strong trend in recent years, mainly due to their robustness and to 

the advancement of computational resources. One of the main motivations for using stochastic 

optimization methods, such as PSO, is their ability to converge to the global optimum point. Indeed, 

most of the electromagnetics problems are multimodal, and using a deterministic method could lead to 

a local optimum. However, a limiting factor of stochastic methods is the need for a large number of 

objective function evaluations [1]. 

In the methods of natural optimization, the objective function is evaluated several times, since we 

deal with a great number of points (population) at a given iteration. This increases the computational 

cost associated with these methods. However, this high computational cost is the price to pay for 

preventing solutions from becoming trapped in local minima. 

In general, the methods of natural optimization require more computational effort when compared 

to classical methods, but have some advantages such as ease of implementation, robustness and do not 

require continuity of the objective function associated with the problem [2]. 

An important application of metamodels is in the optimization of electromagnetic problems. In fact, 

given that the modeling of such problems generally has a high computational cost, the optimization of 

electromagnetic devices often requires certain procedures for the replacement of objective functions, 

in order to evaluate them in an efficient way. The replacement function allows obtaining results with 

good precision, but with a much lower computational cost [3]. 

Several models can be used to obtain approximations of objective functions with good accuracy. 

The most popular are the polynomial model, Kriging model, feedforward neural networks, including 

multilayer perceptrons, radial basis function networks and support vector machines. According to [4], 

the development of strategies for assisted metamodels are proposed as a new approach to basic 

simulation optimization in the field of electromagnetic project. In this application field, the estimation 

of objective functions are likely to have a significant computational cost, and techniques such as 

metamodeling are applied to accelerate the evolutionary optimization strategies. Some experiments 

done with the main metamodels mentioned in this study showed that better results were obtained with 

the Kriging model and artificial neural network. 

The Kriging model [3] and the feed-forward neural network are robust and offer savings in 

computational time. Studies have shown that these two metamodels have similar performance [5]. 

Therefore, we chose to use the Artificial Neural Networks (ANN), which have been widely used in 

several applications due to ease of implementation and effectiveness. 

It is important to stress that the evolutionary algorithms associated with metamodels are becoming 

extensively used by a growing number of researchers in design optimization [6]. Here, we show the 

validity of the PSO (Particle Swarm Optimization) algorithm in conjunction with an ANN-based 

metamodel to be used in the optimization of electromagnetic problems. 
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II. PSO, RTQ3D AND THE ANN-BASED METAMODEL 

A. PSO – Particle Swarm Optimization 

Introduced by Kennedy and Eberhart in 1995, the particle swarm optimization has emerged from 

experiments with algorithms modeled from the observation of social behavior of certain types of 

birds. The particles considered by the algorithm behave like birds looking for food or a place to make 

their nests, each one using both its own knowledge and the knowledge of the flock (or swarm) 

concerned to the best location for that. PSO is composed of particles represented by vectors defining 

the current speed of each particle and its location. The location of each particle is updated according 

to its current speed, its own knowledge and the knowledge acquired by the whole flock. The PSO 

algorithm encompasses simple concepts and can be implemented in a few lines of code, requiring 

only simple mathematical operators. 

The algorithm starts by generating a population of N particles that form the swarm and establish 

(randomly) their respective positions in the search space. It also sets the initial speed for each particle. 

Subsequently, at each iteration k, the algorithm updates the position x
i
(k) and the velocity v

i
(k) of each 

particle i. After the first evaluation of the fitness associated to a given particle, the algorithm keeps 

track of the coordinates p
i
 in the search space associated with its best solution. The overall best value 

(considering the whole population) and its location p
s
(k) are also stored during the procedure. With a 

simple scheme, these stored data are iteratively updated using random parameters and constants, 

changing the particles velocities in order to intelligently explore the search domain at each iteration 

[7]. 

The velocity vector of each particle is updated according to (1):  

           kxkprckxprckvwkv isiiii  22111        (1) 

Where w is the inertia weight; c1 and c2 are, respectively, the cognition and social coefficient; and r1 

and r2 are random numbers uniformly distributed in [0,1]. Inertia weight w usually is chosen between 

0.4 and 1.4: lower values speed up convergence while higher values encourage exploring the search 

space. The value used for w in this study was 0.9, which allows obtaining very good results for the 

analyzed problem. Cognition coefficient c1 limits the size of the step that the particle takes toward its 

individual best while social coefficient c2 limits the size of the step that the particle takes toward the 

global best. Usually both assume values close to 2. It would be possible to use different values of c1, 

c2 and w, including the idea of using variable parameters in time (e.g., decreasing w with the 

advancement of iterations). This could have been done to improve the convergence. However, we use 

typical fixed values for these parameters, according to the literature, which also yields satisfactory 

results.  

The position of each particle is updated according to (2): 

     11  kvkxkx iii           (2) 

The iterations proceed until some stopping criterion is reached (e.g., maximum number of iterations 

or desired particle fitness). 
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B. An RTQ3D-indoor  

For the purpose presented in this paper, the RTQ3D-indoor algorithm is used for field computation 

and coverage evaluation, since the applications are in indoor environments. The RTQ3D-indoor [8] 

model uses 2D ray-tracing algorithm based on the Theory of Images to build a “tree of images” and to 

find the different reflected rays for a given scenario. The input scenario database is described in the 

horizontal plane, but adding the ceiling height from the floor and the transmitting (base stations) and 

receiving (user terminals) antennas heights [9]. 

According to the example of Fig. 1, the ray-tracing algorithm applied on quasi three-dimensional 

indoor environments (RTQ3D-indoor) converts a given path initially obtained from the RT 2D 

algorithm in five rays: i) the direct path (from the viewpoint of a vertical plane); ii) the ground 

reflected path; iii) the ceiling reflected path; iv) the path reflected on the ground and on the ceiling 

and; v) the path reflected firstly on the ceiling and then on the ground [9]. 

 

Fig. 1. Passage of a 2D path to five quasi-3D paths using the RTQ3D-indoor 

algorithm [8]: a) horizontal plane; b) vertical plane [9]. 

C. Metamodel: ANN (Artificial Neural Network) with backpropagation algorithm  

According to [10], a neural network is a massively parallel distributed processor consisting of 

simple processing units, which have the natural tendency for storing experiential knowledge and 

making it available for use. It resembles the brain in two respects: 

- knowledge is acquired by the network from its environment through a learning process; 

- connection strengths between neurons, known as synaptic weights, are used to store the 

acquired knowledge.  

The procedure used to perform the learning process is called a learning algorithm, whose function is 

http://dx.doi.org/10.1590/2179-10742016v15i4816
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to modify the synaptic weights of the network in a systematic manner to achieve a desired design 

goal. We consider the multilayer perceptron (MLP), which consists in a network of simple neurons 

called perceptrons. The MLP is a hierarchical structure of several perceptrons with some advantages 

compared to single-layer networks and it is capable of learning a rich variety of nonlinear decision 

surfaces [10-11]. 

The so-called neuron's net input can be represented by the weighted sum of the inputs from other 

neurons and external inputs, according to (3). 

 
 


p

j

m

l

ikkijjii tIwtywtnet
1 1

)()1()(          (3) 

Where yj(t – 1) is the output of the j-th neuron in the previous processing cycle (t-1); Ik is the k-th 

external input; θi is the bias of the i-th neuron and w refers to the corresponding weight, shown in 

Fig.2[10]. 

 

Fig.2. Illustrative “Graph” of The proposed network [10]. 

 

In order to model an electromagnetic problem, data from the electromagnetic simulation are used to 

train the ANN, i.e., to compute the weights of (3). Here, we chose to use the backpropagation (BP) 

algorithm for this training (supervised learning). Backpropagation is an abbreviation for "backward 

propagation of errors". In the BP algorithm, the network begins with a random set of weights. Input 

data is normalized to a range of ±1 and input vectors are presented to the network. Thus, the 

corresponding output is calculated using the initial weight matrix. Next, the ANN output is compared 

to the output of the electromagnetic simulation (using the same input data). The squared difference 

between the two output vectors determines the system error. The accumulated error for all of the 

input-output pairs is defined as the Euclidean distance in the weight space which the network attempts 

to minimize. Minimization is accomplished via a gradient descent approach, in which the weights are 

adjusted in the direction of decreasing error. When the error has been decreased below a pre-defined 

tolerance, training ceases. It is worth remarking the nonlinear functions can be represented by MLP 

http://dx.doi.org/10.1590/2179-10742016v15i4816
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with units that use nonlinear activation functions. Since the BP algorithm requires an activation 

function to be differentiable, we used a sigmoid (logistic function) [10]. Another important aspect in 

defining the topology of neural network is the number of neurons in the hidden layer, due to its 

influence on both the speed and the effectiveness of the learning network, which was defined by the 

geometric mean between the input and output neurons [11]. 

III. VALIDATION 

In order to verify the effectiveness of proposed method, it was initially used in the optimization of a 

test function with analytical solution. Specifically, the goal is to find the global maximum of the 

Peaks function, given by (4) and shown in Fig. 3. It is important to mention that the Rastrigin and 

Sinc functions were also tested during the validation process of this study, with satisfactory and 

similar results for all of them. The results obtained through the functions Peaks, Rastring and Sinc 

showed the efficiency and effectiveness necessary to validate the proposed PSO optimizer assisted by 

an ANN. 
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Fig.3. The analytical function considered. 

The goal of this implementation is to test the effectiveness of the PSO optimizer using an ANN 

(network MLP with backpropagation algorithm) as a metamodel. 

The optimization was done both directly using the function given by (4) and using an ANN-based 

metamodel to represent it. Specifically, the PSO was used to obtain the global maximum location of 

Peaks function. The algorithm was initialized with a random set of particles and the process took 

place until the maximum point was located, at the center of the red contours. 

Fig. 4(a) shows the contour plot of the results obtained using directly (4) while fig. 4(b) shows the 

results obtained using the ANN simulating the function given by (4). The global maximum is 

represented by “×” in fig. 4(a). 
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                                                                                        (a) 

 

                                                                                        (b) 

Fig.4. (a). Contour plot of the actual function; (b) Contour plot of the simulated function, with the located peak. 

The ANN was trained until a root mean square error of 0.0004 was obtained, requiring 27,253 

epochs to get this error value. An epoch is a step in the training process of an ANN, i.e., each time the 

network is presented with a new input pattern. The root mean square error solution of PSO assisted by 

the ANN was equal to 0.00569. From the results, we can conclude that the use of the proposed 

metamodel to replace the original fitness function allows obtaining good results. 

IV. ELECTROMAGNETIC PROBLEM 

The use of an electromagnetic prediction model represents an important design procedure in 

wireless systems. Here, we use a quasi-3D ray-tracing propagation model associated with a PSO 

optimizer to find optimal antenna placement in an indoor scenario [9-11]. 

Initially, a population is generated where each particle corresponds to the coordinates (x, y) of the 
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transmitting antennas placements in a 40 m × 28 m scenario. It was defined a mesh of 160 receptors 

uniformly distributed within the environment. The antennas of all receivers were considered to be 1.5 

m high from the ground. The method was applied to minimize the number of points where the field is 

below a minimum reception threshold (-110 dBm). This is equivalent to maximize the coverage area. 

The variable of the problem was assumed to be a vector containing the coordinates (x, y) of the 

transmitting antennas, allowing different locations of them on the horizontal plane of the scenario. 

The height of these transmitting antennas was assumed to be fixed (3 m), simulating vertically 

polarized quarter-wave monopole antennas fixed to the ceiling. Two antennas were considered in the 

problem. Therefore, the variable of the problem is a vector containing four elements, which represent 

coordinates of transmitting antenna positions on the horizontal plane. The frequency used was 2.4 

GHz, and the total equivalent isotropically radiated power (EIRP) was 400 mW. 

Firstly, the field values generated by ray-tracing are used as a guide in the learning process 

performed by the network, optimizing weight values, which are saved in a file. After training, the 

ANN calculates the field values at all reception points, which are used by the PSO optimizer, allowing 

a great reduction in computation time. 

The PSO assisted by ANN was initialized with a set of 100 random particles. The PSO assisted by 

ANN optimizing was performed for three different numbers of iterations: 2,000, 3,000 and 6,000. 

Table I shows the best antenna locations found by the PSO for these three cases. We observe that the 

results are very sensitive to the number of iterations, which indicates that the ANN needs to be further 

improved. Fig. 5 shows the mapping of received powers considering the best pair of positions of the 

antennas found for 3,000 iterations. We see that the distribution of field is reasonable. Best results, 

with more uniform fields, can be obtained using more transmitting antennas in the scenario. 

TABLE I. RESULTS OF OPTIMIZATION ANN-ASSISTED PSO  

Iterations 
Positions Antenna 1  

(x1(m), y1(m)) 

Positions Antenna 2 

(x2(m), y2(m)) 

2,000 (25.61, 9.56) (34.04, 17.58) 

3,000 (20.18, 7.56) (29.12, 15.82) 

6,000 (34.50, 4.91) (32.00, 6.65) 
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Fig.5. Received power mapping in the indoor environment (3,000 iteractions). 

V. CONCLUSIONS 

In this paper, we proposed a PSO optimizer assisted by an ANN, the optimizer was implemented 

using the MATLAB program version 7.10.0.499. The optimization process was carried out through a 

MacBook Pro Retina Computer with 2,6 GHz intel Core i5 processor and 8GB of RAM memory 

1600MHz DDR3, with 256GB of flash storage. In the optimization of an electromagnetic problem, 

the computational cost can be very large, since it is necessary to carry out a numerical simulation for 

each evaluation of the fitness function. In this case, the use of an ANN as a metamodel permits to 

obtain satisfactory results with a reduction of the computational cost. The study developed in this 

work is based on [9], where the association of RTQ3D-indoor with PSO optimizers was applied in a 

typical telecommunication problem: a wireless local area network (WLAN) system in an indoor 

scenario that must be covered with two 802.11b/g/n (2.4 GHz) access points (AP). However, the study 

developed in [9] disregards the computational cost, which is quite high when a metamodel is not used. 

As an example, the average time required for optimization using the ANN metamodel with 3,000 

epochs is around 36 min. Without using the metamodel, the PSO takes about 72 hours to produce 

slightly better results. 

In order to assess the effectiveness of the proposed method, it was applied in a test function with a 

global maximum. Also, it was applied in an electromagnetic problem (namely, the best antenna 

positioning in wireless systems). The response of the ANN-assisted PSO for a real electromagnetic 

problem can be considered satisfactory. All observations suggest that an improvement in the ANN 

and additional training will lead to the best results. However, this would increase the computational 

time. 
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