
Finding the � Shortest Simple Paths: Time and Space Trade-Ofs

ALI AL ZOOBI, DAVID COUDERT, and NICOLAS NISSE, Université Côte d’Azur, Inria, CNRS, I3S,
France

The � shortest simple path problem (�SSP) asks to compute a set of top-� shortest simple paths from a source to a sink in a

digraph. Yen (1971) proposed an algorithm with the best known polynomial time complexity for this problem. Since then,

the problem has been widely studied from an algorithm engineering perspective. The most noticeable proposals are the

node-classiication (NC) algorithm (Feng, 2014) and the sidetracks-based (SB) algorithm (Kurz, Mutzel, 2016). The latest ofers

the best running time at the price of a signiicant memory consumption.

We irst show how to speed up the SB algorithm using dynamic updates of shortest path trees resulting in a faster algorithm

(SB*) with the same memory consumption. We then propose the parsimonious SB (PSB) algorithm that signiicantly reduces

the memory consumption of SB at the cost of a small increase of the running time. Furthermore, we propose the postponed

node-classiication (PNC) algorithm that combines the best of the NC and the SB algorithms. It ofers a signiicant speed up

compared to the SB algorithm while using the same amount of memory as the NC algorithm.

Our experimental results on complex networks show that all the considered algorithms have low memory consumption,

and that the PSB algorithm is the fastest. On road networks, the relative performances of the algorithms depend on the

number � of requested paths. Indeed, when the number � of requested paths is small (i.e., � ≤ 20 in our experiments), the

SB* algorithm is the fastest among the considered algorithms, but it sufers from a large memory consumption and it ofers

very bad performances on some queries. When the number of requested paths is large (i.e., larger than 20 according to our

experiments), the PNC algorithm is the fastest among the considered algorithms on road networks and it has a low memory

footprint. The PNC algorithm is therefore a better choice on road networks.

CCS Concepts: · Theory of computation→ Shortest paths.

Additional Key Words and Phrases: � shortest simple paths; graph algorithm; space-time trade-of

1 INTRODUCTION

The classical � shortest paths problem (�SP) aims at inding the top-� shortest paths between a pair of source and
destination nodes in a graph. This problem has numerous applications in various kinds of networks (road and
transportation networks, communications networks, social networks, etc.) and is also used as a building block for
solving optimization problems. Let � = (� ,�) be a digraph. An �-� path is a sequence (� = �0, �1, · · · , �� = �) of
vertices starting with � and ending with � , such that (�� , ��+1) ∈ � for all 0 ≤ � < � . It is called simple if it has no
repeated vertices, i.e., �� ≠ � � for all 0 ≤ � < � ≤ � . The weight of a path is the sum of the weights of its arcs and

This work has been supported by the French government, through the UCAjedi Investments in the Future project managed by the National

Research Agency (ANR) with the reference number ANR-15-IDEX-01, the ANR project MULTIMOD with the reference number ANR-17-

CE22-0016, the ANR project Digraphs with the reference number ANR-19-CE48-0013, by Région Sud PACA and by the STIC-AmSud project

GALOP.

An extended abstract of this work has been presented in the 18th International Symposium on Experimental Algorithms [1].
Authors’ address: Ali Al Zoobi, ali.al-zoobi@inria.fr; David Coudert, david.coudert@inria.fr; Nicolas Nisse, nicolas.nisse@inria.fr, Université

Côte d’Azur, Inria, CNRS, I3S, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-6654/2023/10-ART $15.00

https://doi.org/10.1145/3626567

ACM J. Exp. Algor.

HTTPS://ORCID.ORG/0000-0002-4665-4021
HTTPS://ORCID.ORG/0000-0002-3306-8314
HTTPS://ORCID.ORG/0000-0003-4500-5078
https://orcid.org/0000-0002-4665-4021
https://orcid.org/0000-0002-3306-8314
https://orcid.org/0000-0003-4500-5078
https://doi.org/10.1145/3626567


2 • Al Zoobi et al.

the top-� shortest paths therefore comprise a set containing a shortest �-� path, a second shortest �-� path, etc.,
until a ��ℎ shortest �-� path.

Several algorithms for solving �SP have been proposed. In particular, Eppstein [9] proposed an exact algorithm
that computes � shortest paths (not necessarily simple) in time� (� + � log� + �), where� is the number of arcs
and � the number of vertices of the graph. An important variant of this problem is the � shortest simple paths
problem (�SSP) introduced in 1963 by Clarke et al. [7] which adds the constraint that reported paths must be
simple. This variant of the problem has various applications in transportation networks when paths with repeated
vertices are not desired by the user. It is also a subproblem of other important problems like constrained shortest
path problem, vehicle and transportation routing [17, 20, 36]. It can be applied successfully in bio-informatics [3],
especially in biological sequence alignment [31] and in natural language processing [5]. For more applications,
see Eppstein’s recent comprehensive survey on �-best enumeration [10].
The most famous algorithm for solving the �SSP problem has been proposed by Yen [37] and has time

complexity� (��(�+� log�)). It has been proved that the �SSP problem can be solved in� (�) iterations of APSP
(All Pairs Shortest Paths) [16]. This means that the �SSP problem can be solved in time� (��(� +� log log�)) on
sparse digraphs and in time� (��3 (log log�)/log2 �) on dense digraphs using the fastest APSP algorithms [18, 29].
Vassilevska Williams and Williams [34] show that a subcubic kSSP algorithm would also result in a subcubic
algorithm for APSP, which seems unlikely at the moment. Recently, Eppstein and Kurz [11] proved that on
digraphs with bounded treewidth, the �SSP problem can be solved in time � (� + � log�).

On the other hand, several works have been proposed to improve the eiciency of the algorithm in practice [12,
15, 17, 19, 22ś24, 32]; they all feature the same worst-case running time as Yen’s algorithm, i.e.,� (��(�+� log�)).

In particular, Feng [12] proposed an improvement of Yen’s algorithm called Node Classiication (NC) algorithm.
With the help of a pre-computed shortest path tree of the digraph, the NC algorithm classiies the vertices of
the digraph in order to speed up the computation of shortest simple paths. An interesting fact about the NC
algorithm is that its memory consumption is almost the same as Yen’s algorithm (only a shortest path tree is kept
in the memory).

Recently, Kurz and Mutzel [23, 24] obtained a tremendous improvement of the practical running time, designing
an algorithm called Sidetrack Based (SB) with the same lavor as Eppstein’s algorithm. The key ideas are to
deine a path using a sequence of shortest path trees and deviations, and to postpone as much as possible the
computation of shortest path trees. With this new algorithm, they were able to compute hundreds of paths in
graphs with million nodes in about one second, while previous algorithms required an order of tens of seconds
on the same instances. For instance, Kurz and Mutzel’s algorithm computed � = 1 000 shortest simple paths in
50 milliseconds for the DC network [8] while it required about 5 seconds with Yen’s algorithm and about 0.3
seconds by the improvement proposed by Feng [12]. The drawback of the SB algorithm is the need for storing all
computed shortest path trees, thus leading to a large usage of memory.

To sum up, the fastest algorithm with low memory consumption (i.e., the same memory consumption as Yen’s
algorithm) is the Node Classiication (NC) algorithm, proposed independently by [12] and [15]. With larger
memory consumption, the Sidetrack Based algorithm (SB) [24] can achieve a tremendous speed up.

Our contributions. We propose a new algorithm with low memory consumption, called Postponed Node
Classiication (PNC), that combines the best of the NC and the SB algorithms. More precisely, while the PNC
algorithm has the same memory consumption than the NC algorithm, our experimental results show that it is
the fastest �SSP algorithm among all considered algorithms on road networks.

Considering large memory consumption, we show how to speed up the SB algorithm using dynamic updates
of shortest path trees resulting with the SB* algorithm, that is, the fastest �SSP algorithm (on median) with
large memory consumption among the considered algorithms on road networks. Moreover, we propose a new
algorithm, called Parsimonious Sidetrack Based (PSB), that is based on the SB algorithm. The PSB algorithm

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 3

gives, on road networks, a space time trade-of between SB and NC algorithms. That is, on road networks, it
signiicantly reduces the memory consumption of SB at the cost of an increase of the running time. Nonetheless,
on complex networks, the PSB algorithm gives the best running time among all the considered algorithms. We
further propose parameterized variants of PSB (called PSBv2 and PSBv3) that improve its performance, both in
terms of memory consumption and of running time, on road networks.

We analyse the behavior of all of the aforementioned algorithms on diferent types of networks (road, biological,
Internet and social networks). We have also investigated the relationships between the performances of the
algorithms and the Dijkstra rank of the queries. Finally, we end up with a irst empirical framework for selecting
the most suitable �SSP algorithm for a given use case.

This paper is organized as follows. We start recalling the Yen and NC algorithms in Section 2. Then, we present,
in Section 3, the SB algorithm with our improvement SB*. In Section 4, we present the PSB algorithm and its
two variants PSBv2 and PSBv3. Section 5 is devoted to the presentation of the PNC algorithm. We present our
experimental evaluation of all these algorithms on various networks in Section 6. Finally, we conclude this paper
in Section 7.

2 PRELIMINARIES

2.1 Definition and Notation

Let � = (� ,�) be a directed graph (digraph for short) with vertex set � and arc set �. Let � = |� | be the number
of vertices and� = |�| be the number of arcs of � . Given a vertex � ∈ � , � + (�) = {� ∈ � | �� ∈ �} denotes
the set of the out-neighbors of � in � . Let �� : �→ R+ be a weight function over the arcs. For every �, � ∈ � ,
a (directed) path from � to � in � is a sequence � = (� = �0, �1, · · · , �� = �) of vertices with �� , ��+1 ∈ � for all
0 ≤ � < � . Note that vertices may be repeated, i.e., paths are not necessarily simple. A path is simple if, moreover,
�� ≠ � � for all 0 ≤ � < � ≤ � . The weight of the path � equals �� (�) =

∑
0≤�<� �� (�� , ��+1) (we will omit � when

there is no ambiguity). The distance �� (�, �) between two vertices �, � ∈ � is the smallest weight of a �-� path in
� (if any). Given two paths � = (�0, · · · , �� ), � = (�0, · · · ,�� ) and ���0 ∈ �, we denote by � .� the �0-�� path
obtained by the concatenation of � and � . i.e., � .� = (�0, · · · , �� ,�0, · · · ,�� ) = (�0, · · · , �� , �) = (�,�1, · · · ,�� ).
Given �, � ∈ � , a top-� set of shortest simple �-� paths is any set � of (pairwise distinct) simple �-� paths such

that |� | = � and � (�) ≤ � (� ′) for every �-� path � ∈ � and �-� path � ′ ∉ � .
The � shortest simple paths problem takes as input a weighted digraph � = (� ,�), �� : �→ R+ and a pair of

vertices (�, �) ∈ � 2 and asks to ind a top-� set of shortest simple �-� paths (if they exist).
Let � ∈ � . An in-branching � rooted at � is any sub-digraph of � that induces a (not necessarily spanning) tree

containing � , such that every � ∈ � (� ) \ {�} has exactly one out-neighbor (that is, all paths go toward � ). An
in-branching � is called a shortest path (SP) in-branching rooted at � if, for every � ∈ � (� ), the weight of the
(unique) �-� path ���� in � equals �� (�, �). Note that an SP in-branching is sometimes called reversed shortest path

tree. Similarly, a shortest path (SP) out-branching � rooted at � is any sub-digraph of � inducing a tree containing
� , such that every � ∈ � (� ) \ {�} has exactly one in-neighbor and the weight of the (unique) �-� path ���� in
� equals �� (�,�). Any algorithm able to compute an SP in-branching (or an SP out-branching) is called an SP
algorithm. As we consider directed weighted digraphs, we use the algorithm of Dijkstra. However, it is possible
to use any suitable shortest path algorithm instead.

In the forthcoming algorithms, the following procedure will often be used (and the key point when designing
the algorithms is to limit the number of such calls and to optimize each of them). Given a sub-digraph � of �
and �, � ∈ � (� ), we use an SP algorithm to compute an SP in-branching rooted at � that contains a shortest �-�
path in � . Note that, the execution of an SP algorithm may be stopped as soon as a shortest �-� path has been
computed (when � is reached), i.e., the in-branching may only be partial (not necessarily spanning � ). The key

ACM J. Exp. Algor.



4 • Al Zoobi et al.

point will be that this way to proceed not necessarily only returns a shortest �-� path in � (if any) but an SP
in-branching rooted in � , containing �. Recall that any such call has worst-case time complexity � (� + � log�).
Let � = (�0, �1, · · · , �� ) be any path in � and � < � . Any arc � = ���

′
≠ ����+1 is called a deviation of � at �� .

Moreover, any path � ′ = (�0, · · · , �� , �
′, � ′1, · · · , �

′
ℓ = �� ) is called a detour of � at � (or at �� ). Note that neither �

nor � ′ is required to be simple. However, if � ′ is simple, it will be called a simple detour of � at � (or at �� ). In
addition, � ′ is called a shortest (simple) detour at �� (or at �) if and only if � ′ is a detour with minimum weight
among all (simple) detours of � at �� (or at �).

2.2 Yen’s algorithm

We start by describing Yen’s algorithm [37] trying to give its main properties and drawbacks.
All the algorithms described below start by computing a shortest �-� path �0 = (� = �0, �1, · · · , �� = �), and

assume that there is always at least one such path. This is done by applying an SP algorithm from � . We clearly
may assume that �0 is simple since the weights are non-negative. A second shortest �-� simple path must be a
shortest simple detour of �0 at one of its vertices. Yen’s algorithm computes a shortest simple detour of �0 at ��
for every vertex �� in �0 as follows. For every 0 ≤ � < � , let �� (�0) be the graph obtained from � by removing the
vertices �0, · · · , ��−1 (this is to avoid non-simple detours) and the arc ����+1 (to ensure that the computed path is
a new one, i.e., diferent from �0). For every 0 ≤ � < � , an SP out-branching in �� (�0) rooted at �� is computed
using an SP algorithm until it reaches � and therefore returns a shortest path �� from �� to � . For every 0 ≤ � < � ,
the detour (�0, · · · , ��−1, �� ) of �0 at �� is added to a set ��������� (initially empty). Note that the index � (called
below deviation-index) where the path (�0, · · · , ��−1, �� ) deviates from �0 is kept explicit

1, i.e., the path is stored
with its deviation index. Once (�0, · · · , ��−1, �� ) has been added to ��������� for all 0 ≤ � < � , by remark above,
a path with minimum weight in ��������� is a second shortest �-� simple path.
More generally, by induction on 0 < � ′ < � , let us assume that a top-� ′ set � of shortest simple �-� paths has

been computed and that��������� is a set of simple �-� paths. Moreover, let us assume that there exists a shortest
path� ∈ ��������� such that � ∪ {�} is a top-(� ′ + 1) set of shortest simple �-� paths. Moreover, let us assume by
induction that, for every path � in ��������� , with deviation index � , all detours of � = (�0, · · · , � |� | ) at vertices
�� for 0 ≤ � < � have already been computed and added to ��������� . Yen’s algorithm pursues as follows. Let
� = (�0 = �, · · · , �� = �) be any shortest path in ���������2 and let 0 ≤ � < � be its deviation-index. First, � is
extracted from ��������� and it is added to � (as the (� ′ + 1)�ℎ shortest �-� path). Then, for each vertex � in � , a
shortest simple detour of� at � is added to��������� (since potentially one of these detours is a next shortest �-�
path). For this purpose, for every � ≤ � < � , let �� = (�0, · · · , ��−1) (�� = ∅ if � = 0) and let �� (�) be a subdigraph
of � containing a shortest ��-� path �� in � such that �� ∩ �� = ∅ and the path �� .�� is new (�� .�� ∉ �). After
the construction of �� (�) (described below), an SP out-branching of �� (�) rooted at �� is computed using an SP
algorithm until it reaches � and therefore returns a shortest path �� from �� to � in �� (�). For every 0 ≤ � < � ,
the shortest simple detour �� .�� of � at �� (together with its deviation index �) is added to the set ��������� .
This process is repeated until � paths have been found, i.e., when � ′ = � . Indeed, the computed detours of � are
distinct from every previously computed paths as they have diferent preixes (this is the reason to keep explicitly
the deviation-index).

The procedure of constructing �� (�) is the following. First, to avoid non-simple detours, i.e., any intersection
between �� and �� , the vertices �0, · · · , ��−1 (if � > 0) are removed from � . Second, to ensure that the computed
path (�� .�� ) is new (diferent from those in �), each arc ���

′ such that � already contains a path with preix
(�0, · · · , �� , �

′) is removed from �� (�).

1The deviation-index is not kept explicitly in Yen’s algorithm. But, since it is a trivial improvement already existing in the literature [25], we

mention it here.
2Actually��������� is implemented, using a heap, in such a way that extracting a shortest path in it takes logarithmic time and insertions

are done in constant time.

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 5

Therefore, for each path� that is extracted from��������� ,� ( |� (�) |) calls of an SP algorithm are done. This
gives an overall time-complexity of� (��(� +� log�)) which is the best theoretical (worst-case) time-complexity
currently known (and of all algorithms described in this paper) to solve the �SSP problem.

2.3 A Node Classification algorithm

In this section, we present the Node Classiication (NC) algorithm, an improvement of Yen’s algorithm proposed
independently by Feng [12] and Gao et al. [15].

The most expensive part of Yen’s algorithm is its large number of calls to an SP algorithm. The NC algorithm
aims at reducing the computing time of each of these calls, and possibly to avoid some of them.
Precisely, during the process of inding a detour, the search area of an SP algorithm is restricted to a digraph

that is smaller than � with the help of a pre-computed shortest path in-branching. The NC algorithm starts by
computing a shortest path in-branching � of � rooted at � (used to extract a irst shortest path �0). Then, when a
path � = (�0, · · · , �� ) with deviation-index � is extracted, its detours are computed from � = � to � − 1. The NC
algorithm classiies the vertices as red, yellow, and green: a vertex on the preix (i.e., the path (�0, · · · , ��−1))
is colored red, a vertex � that can reach � through � without visiting a red vertex (i.e., ���� ∩ (�0, · · · , ��−1) = ∅)
is colored green, and all other vertices are colored yellow. This coloring can be computed in linear time using
a DFS in � . Moreover, the coloring used to compute the detour at ��+1 can be obtained faster by updating the
coloring for the detour at �� .

Another important ingredient of the NC algorithm is the notion of residual weight. For each arc � = �� not in
� , the residual weight of � is the cost of deviating from � at � . Precisely, it is the weight of the path �.���� minus
the weight of the path ���� . Formally, the residual weight of arc �� is � (�, �) = � (�, �) + � (���� ) − � (�

�
�� ). The

residual weight is computed only once (after computing � ) and remains valid till the end of the execution of the
NC algorithm. Note that an arc in � has residual weight equals to 0, and so the residual weight of the path ����
from any green vertex � to � in � equals 0.
Recall that to compute a detour of � at �� , Yen’s algorithm executes an SP algorithm to compute a shortest

path from �� to � in �� (�). In the case of the NC algorithm, Feng proved that it is suicient to execute an SP
algorithm using the residual weights and to stop its execution as soon as a green vertex is reached. This results
in restricting the execution of the SP algorithm to the yellow subgraph, which is expected to be smaller than
�� (�), and so to speed up the computation of the detours.

In Section 5, we propose an adaptation of the NC algorithm (using ideas from the SB algorithm presented in
the next section) that allows us to speed it up.

3 SIDETRACK BASED (SB) ALGORITHM

We now present the Sidetrack Based (SB) algorithm, proposed by Kurz and Mutzel [24]. We start by describing
the data structure used in the SB algorithm. Then, we explain it and provide a pseudo code (Algorithm 1). Finally
we analyse a few of its aspects. Note that our contributions in Section 4 strongly rely on this algorithm and that
is why we describe it in detail.

3.1 Compact representation of a path

The SB algorithm is based on a data structure generalizing the representation of a path proposed by Eppstein [9].
Such compact representation uses sequences of in-branchings �0,�1, · · · ,�ℎ and deviations �0, �1, · · · , �ℎ (recall
that a deviation of a path � is any arc not in � but with its tail in � ).
Precisely, the sequence � = (�0, �0,�1, �1, · · · ,�ℎ, �ℎ,�ℎ+1) with �� = ���� for all 0 ≤ � ≤ ℎ, represents the path

� starting at � , following �0 until the tail �0 of �0, then the deviation �0, then �1 from the head �0 of �0 until it
reaches the tail �1 of �1, etc., until it reaches the head�ℎ of �ℎ , plus (possibly) the path from�ℎ to � in �ℎ+1. That

ACM J. Exp. Algor.



6 • Al Zoobi et al.

is, � is the sequence of vertices of the paths ��0��0 , �
�1
�0�1 , · · · , �

�ℎ
�ℎ−1�ℎ followed by the vertices of ��ℎ+1�ℎ�

if this latter
path exists. Two consecutive in-branchings�� and��+1 are not necessarily distinct. The SB algorithm ensures that,

if � is an �-� path (i.e., if ��ℎ+1�ℎ�
exists), then the subpath � of � going from � to�ℎ (�0, · · · ,�ℎ) is always simple

and � is not simple only if ��ℎ+1�ℎ�
intersects � .

3.2 The SB algorithm

We are now ready to present the SB algorithm, whose pseudocode is presented in Algorithm 1. The main idea of
the algorithm is to postpone the computation of the detours. That is, the in-branchings �ℎ+1 are computed only if
needed. The subtlety is to know when to extract a path (without knowing its actual weight if �ℎ+1 has not been
computed yet) from the set ��������� (where the paths are encoded using the format presented above). For this
purpose, a lower bound on the distance from�ℎ to � is used to get a lower bound on the weight of the path.

Roughly, the SB algorithm uses a set ��������� to manage candidate paths that are encoded using the above
data structure. Sequentially, it extracts a shortest element � from ��������� . If � represents a simple path, this
path is added to the output and the representations of its detours (which will be found using the last tree in the
representation of �) are added to ��������� . Otherwise, the SB algorithm attempts to modify � by instantiating
its last in-branching (see below). If this computation leads to a representation of a simple path, then it is added
to ��������� . Otherwise, � is discarded. The SB algorithm goes on iteratively until it has found � paths. The
initialization consists in computing a irst in-branching �0 rooted at � in � (using an SP algorithm) and so a

shortest �-� (simple) path �
�0
�� and adding its representation to ��������� .

More precisely, the set ��������� is a min-heap in which the weight (the key) of an element is a lower bound
on the weight of the path it represents. Each element � in ��������� has the form � = (� = (�0, �0, · · · , �ℎ =

(�ℎ,�ℎ),�ℎ+1), ��, � ) where each in-branching �ℎ′ (with ℎ
′ ≤ ℎ) is already computed and �� is a lower bound of

the weight of the path represented by �. The value � is a boolean indicating whether the path represented by
� is known to be simple. If so, it will follow from the construction that �ℎ+1 has already been computed. Else
�ℎ+1 must be irst computed to know if � represents a simple path. For the initialization, the in-branching �0 is

computed and the element ((�0), � (�
�0
�� ), � = 1) is inserted in ��������� .

The SB algorithm iteratively extracts elements from ��������� by minimum weight (with a priority to rep-
resentation of simple paths to break ties) until � paths are obtained or ��������� is empty. When an element
� = (� = (�0, �0, · · · , �ℎ = (�ℎ,�ℎ),�ℎ+1), ��, � ) is extracted from ��������� , two cases are distinguished. Let � be
the index of �ℎ in the path � represented by � (note that � plays the same role as the deviation-index in Yen’s
algorithm).

Case � = 1. Then, � represents a simple path � = (�0 = �, · · · , �� = �ℎ, · · · , �� = �) and all of its in-branchings
have already been computed. In this case, the path � is added to the output. Then, the algorithm considers
all deviations of � starting from a vertex � � of the suix (�� , · · · , �� = �) of � . More precisely, for every

arc � = (� � ,�), with � ≤ � < � and � ∉ {�0 = �, �1, · · · , � � , � �+1}, let �
�ℎ+1
�� be a shortest path from �

to � in �ℎ+1 (if any) and let � (� � , �) = (�0, · · · , � � , �
�ℎ+1
�� ). If � (� � , �) is simple, the representation �′ =

((�0, �0, · · · , �ℎ,�ℎ+1, � = (� � ,�),�ℎ+1), �� (�), � = 1) is added to ��������� with �� (�) = � (� (� � , �)) as
a key (note that the computation of �� (�) is done in constant time since, in particular, �ℎ+1 is already
computed). Otherwise, i.e., � (� � , �) is not simple, the representation �′′ = (�′′ = (�0, �0, · · · , �ℎ,�ℎ+1, � =

(� � ,�),�
′), �� (�), � = 0) is added to��������� , where� ′ is the name of the in-branching of � \ {�0, · · · , � � }

whose actual computation is postponed, and �� (�) = � (� (� � , �)) is a lower bound on the weight of the
path represented by �′′.

Case � = 0. In this case, the algorithm checks for the existence of a�ℎ-� path �
�ℎ+1
�ℎ�

. To do so, the in-branching
�ℎ+1 (whose computation had been postponed) is computed. Note that �ℎ+1 is an in-branching in � \

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 7

Algorithm 1 Sidetrack Based (SB) algorithm for the �SSP [24]

Require: A digraph � = (� ,�), a source � ∈ � , a sink � ∈ � , and an integer �
Ensure: � shortest simple �-� paths
1: Let ��������� ← ∅ and ������ ← ∅
2: �0 ← an SP in-branching of � rooted at � containing �
3: Add ((�0), � (��� (�0)), � = 1) to ���������
4: while ��������� ≠ ∅ and |������ | < � do

5: � = (� = ((�0, �0, · · · ,�ℎ, �ℎ = (�ℎ, �ℎ),�ℎ+1), ��, � ) ← a shortest element in ���������
6: if � = 1 then
7: Extract � from ��������� and add � to ������

8: for every deviation � = � ��
′ with � � ∈ �

�ℎ+1
�ℎ�

do

9: �′ ← (�0, �0, · · · ,�ℎ, �ℎ,�ℎ+1, �,�ℎ+1)

10: ��′ ← �� − � (�
�ℎ+1
�� �
) + � (�) + � (�

�ℎ+1
�′� )

11: if �′ represents a simple path then

12: Add �′ = (�′, ��′, � = 1) to ���������
13: else

14: � ′ ← the name of an SP in-branching of � � (�) // � ′ is not computed yet

15: Add �′′ = (�′′ = (�0, �0, · · · ,�ℎ, �ℎ,�ℎ+1, �,�
′), ��′, � = 0) to ���������

16: else

17: if �ℎ+1 has not been computed yet then
18: Compute �ℎ+1, an SP in-branching of �ℎ (�)

19: Let �′ = (�′ = (�0, �0, · · · ,�ℎ, �ℎ,�ℎ+1), �� + � (�
�ℎ+1
�ℎ�
) − � (�

�ℎ
�ℎ�
), � = 1)

20: Add �′ to ���������

21: return ������

{�0, · · · , �ℎ}, which ensures that, if ��ℎ+1�ℎ�
is found, the path �new = (� = �0, · · · , �ℎ, �

�ℎ+1
�ℎ�
) is guaranteed to be

simple. Moreover, �new has weight � (�new) = � ((� = �0, · · · , �ℎ,�ℎ)) + � (�
�ℎ+1
�ℎ�
). Then, the representation

�′ = (�′ = (�0, �0, · · · , �ℎ = (�ℎ,�ℎ),�ℎ+1), � (�new), � = 1) is added to ��������� . Finally, if no �ℎ-� path
can be found in �ℎ+1, � is discarded.

Analysis. Let us irst analyze the time complexity of the operations performed after the extraction of an element
� = (� = (�0, �0, · · · , �ℎ = (�ℎ,�ℎ),�ℎ+1), ��, � ) from��������� . When � = 0, the time complexity is dominated by
the computation of the in-branching �ℎ+1, which is done in time � (� + � log�) using an SP algorithm. When
� = 1, the algorithm irst extracts the path � = (� = �0, �1, · · · , �� = �ℎ, · · · , �� = �) from the representation � in
time � (�). Then, it associates a label �(�) to every vertex � ∈ � as follows. First, every vertex � � (for � ≤ � ≤ � )

of � is labelled with � . Then, each vertex � ∈ � (�ℎ+1) such that � � is the irst vertex of � reached from � in �
�ℎ+1
��

is labelled with � . Finally, the vertices not in � (�ℎ+1) ∪ {�0, · · · , ��−1} are labelled with 0 (these are the vertices
for which all shortest paths to � go through (�0, · · · , ��−1)). This labeling operation can be done in overall time
� (�) using DFS on �ℎ+1 to propagate the labels from the vertices �� , · · · , �� . Now, using the label �(�) associated
to the vertex �, it is possible to check in constant time if the path � (� � , �), with � ≤ � < � and � = (� � ,�), is

simple. Indeed, if �(�) ≤ � , the path �
�ℎ+1
�� intersects the subpath (�0, · · · , � � ) of � and so � (� � , �) is not simple.

Otherwise, the path � (� � , �) is simple. Altogether, the operations performed when � = 1 can be done in time
� (� +�).

ACM J. Exp. Algor.



8 • Al Zoobi et al.

In the worst case scenario, each irst extraction of a path from��������� leads to a non-simple detour, and then
a call of an SP algorithm. Note that no more than one call to an SP algorithm is done per vertex on a path, thanks
to the test of line 17 of Algorithm 1. So, the complexity of the SB algorithm is bounded by � (��(� + � log�)) as
the number of vertices of a simple path is bounded by � and the algorithm stops once � paths have been added to
������ .

There are two key improvements for which the SB algorithm has, in practice, out-performed all other algorithms
for solving the �SSP problem so far. First, it saves an SP algorithm call if the detour is simple. Second, if the
detour is not simple it is inserted with a lower bound on its weight and the corresponding call to an SP algorithm
is postponed. This way, if this detour leads to a long path (path with weight larger than the ��ℎ shortest path),
the call to an SP algorithm will never be performed.
However, as the SB algorithm stores complete in-branchings in memory, it has the drawback of possibly

consuming a large amount of memory (much more than the NC algorithm, which stores a single in-branching,
while keeping the whole description of the paths it computes).

3.3 The SB* algorithm

Here, we propose the SB* algorithm, a variant of the SB algorithm that is a tiny modiication of the SB algorithm
but leading to a signiicant speed up (see Section 6.2).
In fact, each time a representation (�0, �0,�1 · · · , �ℎ−1 = (�ℎ−1, �ℎ−1),�ℎ, �ℎ = (�ℎ, �ℎ),�ℎ+1) is extracted from

��������� with � = 0 and�ℎ+1 has not been computed yet (i.e., it is only a name), our algorithm does not compute
�ℎ+1 from scratch as the SB algorithm does. Instead, the SB* algorithm creates a copy � of �ℎ , discards vertices of
the path from �ℎ−1 to �ℎ in�ℎ , and updates the SP in-branching� using standard methods for updating a shortest
path tree [14]. Then, the name �ℎ+1 is associated with the new in-branching � .
It is clear that the SB* algorithm computes (and stores) exactly the same number of in-branchings as the SB

algorithm. The computational results presented in Section 6.2 show that this update procedure gives an average
speed-up factor of 1.1 to 1.2 on road networks.

4 SPACE - TIME TRADE-OFFS

4.1 The Parsimonious Sidetrack Based algorithm

Here, we present the Parsimonious Sidetrack Based (PSB) algorithm, which is an adaptation of the SB algorithm
allowing to reduce the memory consumption due to the storage of all in-branchings computed by the SB algorithm.
Here, we only focus on the diferences between the SB and the PSB algorithm.

The main diference is that the PSB algorithm stores two types of elements in ��������� . The irst type, of the
form (� = (�0, �0,�1, �1, · · · ,�ℎ, �ℎ = (�ℎ,�ℎ),�ℎ+1), ��), represents a simple �-� path � of weight ��. Contrary to
the SB algorithm, the in-branching �ℎ+1 has not necessarily been computed yet. The second type, of the form
(�, ���, ��), contains an extra ield ��� (explained below) and, in this case, all of the in-branchings �1, · · · ,�ℎ+1
are already computed.
Let us start by considering a step of the PSB algorithm when an element � = (� = (�0, �0,�1, �1, · · · ,

�ℎ, �ℎ = (�ℎ,�ℎ),�ℎ+1), ��) representing a simple path � is extracted from ��������� . �ℎ+1 is computed at this
step (if not already done) which allows to get � explicitly. Then, the PSB algorithm adds � = (� = �0, · · · , �� =

�ℎ, · · · , �� = �) to������ and (as for the SB algorithm), for every � ∈ {�� , · · · , �� }, and every deviation � with tail
� , the detour� (�, �) of � at � is considered. If� (�, �) is simple (this test is done as explained in the irst paragraph
of the analysis in Section 3.2), then �′ = ((�0, �0,�1, �1, · · · ,�ℎ, �ℎ,�ℎ+1, �,�ℎ+1), � (� (�, �))) is added to ��������� .
Otherwise, the deviation � is added to a list ��� (initially empty). Once all deviations have been considered, the
(unique) element (�, ���, ��′) is added to ��������� , where ��′ = min��=(� � ,�

′
� ) ∈���

� (� (� � , �� )). That is, ��� is

the list of all łnon-simple deviationsž of � at the vertices between�ℎ and � , ordered with respect to the index of

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 9

their tail on � , i.e., for two deviations �� = (�� , �
′
� ), �� = (� � , �

′
� ) ∈ ��� , �� ≤ �� if and only if � ≤ � . Finally, let ��′

be a lower bound on the weight of the detours at a deviation in ��� . The important diference between the SB
and the PSB algorithms comes from the fact that non-simple detours are considered as a unique object by the
PSB algorithm.
Now, let us consider a step when the PSB algorithm extracts an element � = (� = (�0, �0,�1,

�1, · · · , �ℎ, �ℎ,�ℎ+1), ��� = {�1, · · · , �� = (� � , �
′
� ), · · · , �� }, ��) from ��������� . As mentioned above, in this case, �

encodes a simple �-� path (�0, · · · , �� ). Let 1 ≤ ��� ≤ � be the smallest integer such that �� = � (� (����, ����)).
Then, the PSB algorithm proceeds as follows. For � decreasing from � to ���, an in-branching � ′� in � \

{�0, · · · , �� � = � � } is computed (but not stored!) until a path �
� ′�
�′� �

from �′� to � is discovered (if no such path exists,

� is decreased by one). If �
� ′�
�′� �

exists, then � � = (�0, �0,�1, �1, · · · , �ℎ, �ℎ,�ℎ+1, �� ,�
′
� ) represents a simple �-� path of

weight �� � = � ((�0, · · · , �� � )) + � (�� ) + � (�
� ′�
�′� �
). Then, the element � � = (� � , �� � ) is added to ��������� , but � ′� is

not stored (the PSB algorithm might have to recompute it later). A second key improvement is that to speed up
the computation, � ′� is actually computed by updating � ′�+1, which is done using standard tools from [14]. Then,

only when � =���, the in-branching � ′��� is stored and ���� = (����, �����) is added to ��������� . The reason
why � ′��� is stored (while other � ′� are not) is that ���� is expected to be extracted soon from ��������� (because

the path represented by ���� is expected to be short) and we want to avoid the recomputation of� ′��� . Finally, the
element �′ = (�, ��� ′ = {�1, · · · , ����−1}, ��

′) is added to ��������� , where ��′ is the minimum weight over the
non-simple detours in ��� ′.
The correctness follows from that of the SB algorithm. Moreover, since most of the computed in-branchings

are not stored, the memory used by the PSB algorithm is signiicantly smaller than for the SB algorithm.

4.2 Special variants of the PSB algorithm

A better space and time trade-of than the PSB algorithm can be achieved if each computed and stored in-branching
is going to be used in the future steps, i.e., it is used to extract a simple candidate path that is going to be extracted
from ��������� (before the ��ℎ shortest path). Unfortunately, such information cannot be aforded as the weight
of the ��ℎ path is not previously known. However, if computing an in-branching leads to constructing a path
with weight relatively short, e.g., less than a threshold value times the weight of the currently considered path,
then storing such in-branching is meaningful as the extraction of its corresponding element form ���������

is expected soon and storing it leads to save its redundant computation. Here, we present two variants of the
PSB algorithm: PSBv2 and PSBv3. The PSBv2 algorithm is a tiny improvement of the PSB algorithm leading
to consume less memory by storing less in-branching while the PSBv3 algorithm gives an adaptable trade-of
depending on the value of the threshold.
Let us consider, again, a step when the PSB algorithm extracts an element � = (�, ��� = {�1, · · · , �� =

(� � , �
′
� ), · · · , �� }, ��) from ��������� with 1 ≤ ��� ≤ � the smallest integer such that �� = � (� (����, ����)). The

PSB algorithm algorithm iterates on � , decreasing from � to��� as explained above, a corresponding in-branching
� ′� is computed for each � (but not stored). Then, only when � =���, the in-branching � ′��� is stored.

The PSBv2 algorithm does not naively store� ′��� . Instead,�
′
��� is stored only if the weight of its corresponding

detour is less than a threshold value � times the weight of the shortest simple path in ��������� . That is,

����� = � ((�0, · · · , �����
)) +� (�

� ′���

�����
) ≤ � ∗� (����� ), where ����� is the shortest simple path in��������� . As a

result, if the in-branching � ′��� leads to a (relatively) long path that is not expected to be extracted very soon
from ��������� , then it is freed from the memory.
The PSBv3 algorithm behaves on every deviation in ��� between��� and � the same way the PSBv2 algo-

rithm behaves with ���� . Precisely, for each deviation �� with��� ≤ � ≤ � , the PSBv3 algorithm computes its

ACM J. Exp. Algor.



10 • Al Zoobi et al.

corresponding in-branching � ′� . This in-branching (� ′� ) is stored only if the weight of its corresponding detour is

less than a threshold value � times the weight of the shortest simple path in ��������� .
The value of the threshold � could change dynamically during the execution. For instance, it could be related

to the ratio between the two upcoming paths, i.e., the two elements in ��������� with minimum weight.

5 POSTPONING THE DETOURS’ COMPUTATION

In this section, we present the Postponed Node Classiication (PNC) algorithm. The PNC algorithm has time
complexity � (��(� + � log�)) with a memory consumption similar to the one of the NC algorithm. However, it
is faster in practice than the NC algorithm.
Even though the NC algorithm consumes less time during each SP algorithm call than Yen’s algorithm, the

total number of calls remains equal to Yen’s algorithm. Here, with the help of a lower bound on the weight of a
simple detour, we propose (using an idea similar to the one of the SB algorithm) to postpone the calls in order to
avoid some of them. We prove that such postponement does not hurt the correctness of the algorithm.

Let us describe our algorithm PNC.
As in the NC algorithm, our algorithm starts by computing an SP in-branching � rooted at � that will be used

throughout the execution of the algorithm. Then, like the NC algorithm, the PNC algorithm proceeds by phases
where a new path is added to the output and its detours are computed and added in the set ��������� . Our
algorithm difers from the NC algorithm in how and when it computes the detours of the paths but also in the
structure of the elements in the heap ��������� .
Let us consider a phase when a �-� path � = (� = �0, �1, · · · , �� , · · · , ��−1, �� = �) is extracted from ��������� .

Let 0 ≤ � < � and consider the step when a shortest simple detour of � at �� is computed. Let � be the set
of neighbors � of �� such that the paths with preix (�0, · · · , �� , �) have already been added to ������ . Let
� ′ = � \ {(�� , �) | � ∈ � } and let �� (�) = � ′ \ (�0, · · · , ��−1).

Let us describe how the PNC algorithm inds a new shortest simple detour � ′ of � at �� . Recall that a detour
� ′ is said new if � ′ has not been added to the ������ yet. Let ��� ∈ �� (�) be a neighbor of �� (neither in �

nor in the preix of � ) such that the residual weight of (�� , ���) is minimum, i.e., � (�� , ���) ≤ � (�� , �
′) for every

� ′ ∈ � +
�� (� )

(�� ) (recall that � (�, �) = � (�, �) +� (���� ) −� (�
�
�� ) denotes the residual weight of arc �� as deined in

Section 2.2). Note that, by deinition of the residual weight, the path ��� = (�,�1, · · · , �� , �
�
����
) is a shortest new

detour (not necessarily simple) of � at �� , so in particular:

Claim 1. � (���) ≤ � (� ′) for any new simple detour � ′ of � at ��

Similarly to the SB algorithm (and in contrast to the NC algorithm), the PNC algorithm may add non-simple
paths to the set��������� . Precisely, each element in��������� has the form (� = (� = �0, · · · , �� = �), � (�), �, � )

where � is its deviation index and � is a boolean lag indicating whether the path � is simple or not.
The main idea of the PNC algorithm (Algorithm 2) is the following. Instead of computing naively all of the

shortest simple detours of � , i.e., a shortest simple detour at � � for all � ≤ � < � , the following procedure is used.
We irst label the vertices of the graph with respect to � using the procedure presented in Section 3.2 for testing
whether a deviation � (� � , �) is simple or not. Then, for each vertex � � ∈ � , with � ≤ � < � , we ind the neighbor
��� of � � (if any) such that the residual weight of (� � , ���) is minimum and we check whether �(���) > � or

not. If this is the case, the detour ��� = (�,�1, · · · , � � , �
�
����
) is simple and we add (���, � (���), �, � = 1) to the

set ��������� . Otherwise, i.e., if �(���) ≤ � , the detour ��� is added to the set ��������� (even though it is not
simple) with its weight � (���) as a key, i.e., the element (���, � (���), �, � = 0) is added to ��������� . The idea
is that, in the latter case, the non-simple path added to ��������� may never be extracted from ��������� , in
which case a call to an SP algorithm is saved.

When an element (�,� (�), �, � ) is extracted from��������� . If � = 1, the simple path � is added to the������
and its detours are added to��������� as explained above. Otherwise, i.e., � is not simple, it will be łrepaired" into

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 11

Algorithm 2 Postponed Node Classiication (PNC)

1: Input A digraph � = (� ,�), source � ∈ � , sink � ∈ � and an integer �
2: Output � shortest simple �-� paths
3: Let ��������� ← ∅ and ������ ← ∅
4: � ← an SP in-branching of � rooted at �
5: Add (��� (� ), � (��� (� )), 0, 1) to ���������
6: while ��������� ≠ ∅ and |������ | < � do

7: (� = (�,�1, · · · , �), � (�), �, � ) ← extract a shortest element from ���������

8: � ← (�,�1, · · · , ��−1)

9: ������ = {� = (�� , �) s.t. there is a path in ������ having �.� as preix}
10: if � = 1 (� is simple) then
11: Add � to ������
12: � ← labelling of the vertices of � with respect to � and �
13: for each vertex � � in (�� , · · · , �) do
14: (� � , ���) ← an arc in � \ ������ with minimum � among those with tail � �
15: ��� ← (�, · · · , � � , ���, �

�
����
)

16: � ′ ← 0
17: if �(���) > � (i.e., ��� is simple) then
18: � ′ ← 1

19: Add (���, � (���), �, �
′) to ���������

20: else

21: Compute a shortest �� -� path � in � ′ = (� \ �,� \ ������ )

22: if � exists then
23: Add (� ′ = �.�,� (� ′), �, 1) to ���������

24: return ������

a simple path and re-added to��������� . More precisely, after the extraction of � from��������� , an SP algorithm
is called to ind a shortest (simple) path � from �� to � in �� (�) and � is replaced by � ′ = (�,�1, · · · , ��−1, �).
Claim 1 ensures that the order of extraction of the simple paths from ��������� remains valid. And inally, such
postponement of this SP algorithm call may end up by skipping it.

6 EXPERIMENTAL EVALUATION

In this section we describe our experimental evaluation of the algorithms presented in this paper. We start by
describing our implementation and experimental settings (Section 6.1). Then, we discuss our experimental results
on road in Section 6.2 and present in Section 6.3 a reined comparison of the PNC and the SB* algorithms on road
networks with respect to the Dijkstra rank of the queries. We inally discuss our experimental results on complex
networks in Section 6.4.

6.1 Experimental setings

Here, we specify the details of the implementation and the setting used in our experiments.
We have implemented3 all the algorithms presented in this paper (Yen, NC [12], PNC, SB [24], SB* and PSB) in

C++ and our code is publicly available [2].

3Despite several queries, we have not been granted access to the code used for experiments in [12, 24].

ACM J. Exp. Algor.



12 • Al Zoobi et al.

Following [24], we have implemented a pairing heap data structure [13] supporting the decrease key operation,
and we use it for Dijkstra’s shortest path algorithm. Our implementation of the Dijkstra’s shortest path tree
algorithm is lazy. That is, it stops the computation as soon as the distance from query node � to � is proved to be
the smallest one. Further computations might be performed later for another node � ′ at a larger distance from
� starting from this partial shortest path tree already computed. Our implementation of Dijkstra’s algorithm
supports an update operation when a node or an arc is added to the graph. Moreover, we have implemented
a special copy operation that updates the in-branching when a set of nodes is removed from the graph. This
corresponds to the operations performed when creating an in-branching �ℎ+1 from �ℎ in the SB* algorithm.
Observe that, in our implementations, the parameter � is not part of the input, and so the sets of candidates

are simply implemented using pairing heaps. This choice enables us to use these methods as generators able to
return the next shortest path as long as one exists. Note that, if � were part of the input, the data structure used
to store the candidates could be changed in order to contain only the � best candidates, but the algorithm would
only be able to return � paths even if more exist. Moreover, for the SB, SB*, PSB, PSBv2 and PSBv3 algorithms,
following [24], we store the candidates in two heaps. The irst heap stores the simple candidates (��������������� )
and the second one stores the non-simple candidates (������������−������ ). Then, we extract candidates from
��������������� as long as the weight of a shortest simple path in ��������������� is smaller or equal than the
weight of a shortest non-simple path in ������������−������ . This way, we prioritize the extraction of simple
paths.
Concerning the PSBv2 and PSBv3 algorithms, based on preliminary experiments, we choose to update the

value of the threshold � dynamically as follows. Recall that, when looking for the ��ℎ path, a corresponding
in-branching will be stored only if the weight of that path is at most � times the weight of the (� − 1)�ℎ path.
Precisely, let ℓ� be the weight of a smallest element in ��������������� and let ℓ�� be the weight of a smallest
non-simple element in ������������−������ . If at least one of these sets is empty, � keeps its previous value.

Otherwise, let � = max( ℓ�
ℓ��

, ℓ��
ℓ�
). The value of � is set to 1 + � (� − 1), for some constant � > 0. The intuition is to

store an in-branching only if it is expected to be used soon, that is, while extracting one of the upcoming paths.
Observe that in our experiments we have set the factor � in the formula for computing � to � = 11, based on
preliminary experiments.

Test instances. We have evaluated the performances of our algorithms on some road networks from the 9th
DIMACS implementation challenge [8] and on several complex networks.
A road network of a city is the digraph modeling its roads, i.e., a vertex is associated to each crossroad, and

there is an arc of weight� between two vertices if and only if there is a road of physical length� (in km) between
their corresponding crossroads. Road networks are known to be sparse, almost planar and to have a bounded
degree [35]. The road networks ROME, DC and DE are referred to as small road networks, while the road networks
NY, BAY and COL are referred to as big ones. The characteristics of these graphs are reported in Table 1.

On the other hand, complex networks model diferent types of networks. Generally, they are characterized by
being small-world, i.e., they have a logarithmic diameter, a power-law degree distribution and a high clustering
coeicient [6]. For instance, the BIOGRID network represents mutation/deletion of genes resulting in lethality
when combined in a same cell [28]. The DIP network represents protein to protein interactions [30]. The FB
network represents social circles from Facebook [27]. Likewise, the LOC network is a graph provided from
Brightkite location-based social networking [26]. Finally, the P2P network is the peer-to-peer network of the
Gnutella ile sharing network [26] and the CAIDA (2013.11.01) network is the graph of the relationships between
the autonomous systems of the Internet [33]. As these networks are unweighted, we only consider the number
of edges as the weight of a path. For each network, we work only on its largest biconnected component. The
characteristics of these graphs are depicted in Table 1

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 13

network � � � ⟨�⟩ −� ⟨��⟩ Description

ROME 3 353 8 870 57 5.2 - 0.025 Road network of Rome [8]

DC 9 559 29 682 140 6.2 - 0.039 Road network of Washington DC [8]

DE 49 108 119 520 573 4.8 - 0.024 Road network of Delware [8]

NY 264 346 733 846 664 5.5 - 0.02 Road network of New York [8]

BAY 321 270 800 172 791 4.9 - 0.016 Road network of San Francisco Bay area [8]

COL 435 666 1 057 066 1 219 4.8 - 0.017 Road network of Colorado area [8]

BIOGRID 2 318 12 580 7 21.7 1.96 0.20 Mutation/deletion of genes resulting in cell lethality [28]

FB 3 698 85 963 6 93.0 - 0.61 Social circles from Facebook [27]

P2P 5 606 23 510 8 16.7 - 0.014 Peer-to-peer network of the Gnutella ile sharing network [26]

DIP 13 969 60 621 17 17.4 2.38 0.11 Protein-protein interaction network [30]

CAIDA 29 432 143 000 9 19.4 2.06 0.42 Relationships between Autonomous Systems of the Internet [33]

LOC 33 187 188 577 11 22.7 2.25 0.29 Brightkite location-based social networking service provider [26]

Table 1. Characteristics of the graphs used in �SSP experiments: number of nodes (�), number of edges (�), diameter (�),

average degree (⟨�⟩), exponent −� of the power-law degree distribution, and average clustering coeficient (⟨��⟩). For the

complex networks, these statistics refer to the largest connected component.

In our experiments, we have randomly selected 100 destinations per network. For each destination, we have
chosen one source with Dijkstra rank � for every � ∈ {2, 10, 102, · · · , 10⌊log10 �⌋, �}. That is, we have selected
about 100⌊log10 �⌋ queries (source-destination pairs of vertices) per network of order �. Recall that, during the
computation of an in-branching � rooted at � using Dijkstra’s algorithm, all vertices are settled in a ixed order
(the order in which Dijkstra’s algorithm removes the vertices from its priority queue). The Dijkstra rank �� (�) of
vertex � with respect root vertex � is its position in this order and we have �� (�) = 1 < �� (�) ≤ � for all � ∈ � \ {�}.
Then, for each network and for each source-destination pair, we have run each algorithm for values of � up to
1 000 on road networks and up to 10 000 on complex networks. Notice that, thanks to our choice of implementing
the �SSP algorithms as generators, we are able to measure the running time for obtaining � ′ paths, for several
values of � ′ ≤ � , while processing a query for extracting � paths. Because of the excessive running time of Yen’s
algorithm, we have chosen to run it only on small road networks.
We have measured the execution time and the number of stored SP in-branchings. Note that the number of

stored in-branchings gives an indication of the memory consumption that is independent from the implementation
and the architecture of the machine [21].

All reported computations have been performed on a computer equipped with a 3.70GHz Intel Core i9-10900K
processor, 64GB of RAM, and with operating system fedora 35.

6.2 Experimental results on road Networks

In this section, we describe and analyze our experimental results on road networks.
In Table 2, we have reported the average and the median of the algorithms’ running times in all considered

road networks when � = 1 000, and the number of stored in-branchings is reported in Table 3. Moreover, in
Figure 1, we report the evolution of the average and median running times of the algorithms in the COL and DC
networks when the number � of reported paths increases (the results are similar for the other road networks).
Finally, Figure 2 presents pairwise comparisons of the running times and number of stored in-branchings for all
source-destination pairs on COL network.

We irst observe from the results reported in Table 2 and Figures 1a and 1b that all algorithms are faster than
Yen’s algorithm on small road networks (the average speed up is between one and two orders of magnitude).
Similar experiments described in [12, 24] lead to the same conclusion on big road networks.

ACM J. Exp. Algor.



14 • Al Zoobi et al.

Rome DC DE NY BAY COL

Y
avg 1 053 4 470 73 727 - - -
med 388 423 9 434 - - -
max 16 382 67 434 1 611 504 - - -

NC
avg 229 471 5 565 34 915 45 447 66 048
med 112 220 3 686 14 654 24 854 39 043
max 1 310 2 387 16 978 137 266 136 564 212 174

PNC
avg 120 238 1 924 12 699 16 082 23 428

med 89 165 1 216 6 677 9 260 16 114

max 690 2 011 10 251 91 333 108 320 133 414

SB
avg 339 325 8 574 43 394 79 667 110 382
med 286 166 3 808 24 006 36 014 43 076
max 1 324 3 203 74 172 451 181 789 828 2 021 857

SB*
avg 269 298 7 208 36 433 68 001 97 679
med 218 150 3 381 18 290 31 930 37 263
max 1 275 3 167 58 293 449 570 663 995 1 453 920

PSB
avg 294 322 4 956 43 182 46 466 63 961
med 242 219 3 932 34 868 35 275 44 990
max 1 118 2 645 21 282 257 135 273 211 362 595

PSBv2
avg 302 332 4 845 42 003 44 426 60 089
med 258 230 3 888 34 481 32 966 43 096
max 1 134 2 538 22 811 228 794 257 373 325 434

PSBv3
avg 299 328 4 770 41 724 44 088 59 496
med 252 232 3 796 34 022 32 394 41 705
max 1 138 2 572 22 750 229 333 256 810 325 700

Table 2. Running time (ms) of the algorithms on road networks, (� = 1, 000)

Rome DC DE NY BAY COL

NC, PNC and PNC* 1 1 1 1 1 1

SB and SB* 1 397 651 1 698 1 550 1 727 1 737

PSB 827 447 633 700 629 655

PSBv2 766 454 578 604 569 580

PSBv3 776 470 598 615 580 594

Table 3. Average number of stored trees using some ���� algorithms on road networks, (� = 1, 000)

Next, the simulation results reported in Table 2 and Figure 1 conirm that the use of shortest path tree update
procedures in the SB* algorithm helps reducing the running time compared to the SB algorithm. More precisely,
the average and median running times of the SB* algorithm are signiicantly smaller than the ones of the SB
algorithm on all road networks. Note that, by design, the number of stored in-branchings is the same for both
algorithms. Concerning the PSB algorithm, as shown in Table 2 and Figures 2c and 2d, it is faster than the NC
algorithm and consumes less memory than the SB algorithm. It is also faster on average than the SB* algorithm
on some networks (DE, BAY, COL) but its median running time is always larger than the one of the SB* algorithm.

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 15

Moreover, from Tables 2 and 3, we observe that the two special variants of the PSB algorithm, namely the PSBv2
and the PSBv3 algorithms, lead to a small improvement of the running time (up to 5% time reduction) but to a
signiicant reduction of the memory consumption (up to 15% memory reduction).
The most important observation from the results reported in Table 2 and Figures 1a and 1b is that the PNC

algorithm outperforms all other algorithms on road networks when the number of requested paths is at least
20, except for the median running time on DC. When � = 1, 000, the average and median running times of the
PNC algorithm are between 2 and 5 times smaller than for the other algorithms. This is particularly interesting
considering that the memory consumption of the PNC algorithm is very small. The conclusion is however
diferent when the number of requested paths is less than 20. Indeed, we observe that the SB-like algorithms (SB,
SB*, PSB, etc.) ofer better performances for small values of � .
Another important observation from the results reported in Table 2 and Figures 1a and 1b is that, for all

algorithms, there is a signiicant gap between the average and the median running times. To better analyze this
observation, Figure 2 shows pairwise comparisons of the running times and number of stored in-branchings for
all source-destination pairs on COL network when � = 1, 000. In these scatter plots, we observe, for all algorithms,
huge variations in the running times depending on the source-destination pairs. These variations are suicient to
explain the gap between the average and the median running times. Actually, Table 2 shows that the maximum
running time for a source-destination pair can be up to 20 times larger than the average running time of an
algorithm and up to 50 times larger than its median running time (e.g., SB on COL). To better understand this
behavior, we analyse in Section 6.3 the impact of the Dijkstra rank of the queries on the running time of the
algorithms.
To conclude, among the considered algorithms, the PNC and the SB* algorithms are the fastest on road

networks. The PNC algorithm has a better average running time and is more stable than the SB* algorithm
whose performances are seriously afected by a few outliers. Furthermore, the memory consumption of the
PNC algorithm is very small compared to all SB-like algorithms. Hence, the PNC algorithm seems to be the best
compromise on road networks.

6.3 Impact of the Dijkstra rank of the queries

As noticed in Section 6.2, some algorithms have diferent behaviors with respect to the structure of the network
and the query’s properties. We therefore investigate in this section whether the Dijkstra rank of an �-� query may
explain the variations of the running time of the algorithms. To this end, we have reported in Figure 3 the average
and median running times of the algorithms on the COL road network for increasing values of the Dijkstra rank
of the queries. We have also reported the average numbers of stored trees and Dijkstra calls. Observe also that
the colors of the points in the scatter plots of Figure 2 correspond to the Dijkstra ranks of the queries.
We observe in Figures 3a and 3b that the Dijkstra rank of the queries has little impact on the running time

of the PNC algorithm. This can also be concluded from the scatter plots of Figures 2a and 2e. On the other
hand, we observe for the SB-like algorithms, and in particular for the SB* algorithm, that the running time
decreases drastically when the Dijkstra rank is large. More precisely, we observe almost one order of magnitude
reduction on average and up to two orders of magnitude on median. To explain these behaviors, let us compare
the operations performed by the PNC and the SB* algorithms after each extraction of a path � from ��������� .
We start when a simple path � = (� = �1, �1, · · · , �� = �) with deviation index � is extracted. In this case, both

algorithms start computing a labeling � of the vertices that will be used to determine if a considered deviation
leads to a simple detour or not. Then, while the SB* algorithm computes all its detours at once, the PNC algorithm
considers only one deviation per vertex � � with � ≤ � < � . More precisely, the SB* algorithm considers all the
detours starting from deviation (� � ,�), with � ≤ � < � and� ∈ � + (� � ), while the PNC algorithm considers for
vertex � � only one detour (� � , ���) with minimum residual weight, where ��� ∈ �

+ (� � ). Overall, although the SB*

ACM J. Exp. Algor.



16 • Al Zoobi et al.

(a) Average running time on DC (b) Median running time on DC

(c) Average running time on COL (d) Median running time on COL

Fig. 1. The running time of the �SSP algorithms on road networks with respect to the values of � .

algorithm do slightly more work than the PNC algorithm, the computational cost of the operations performed by
both algorithms when a simple path is extracted from ��������� is similar and cannot be used to explain the
diferences of behaviors of the algorithms.

Let us now consider the case when a non-simple path � with deviation index � is extracted from ��������� . In
this case, the PNC algorithm searches for a shortest simple ��-� path � (line 21 of Algorithm 2) in the digraph
using the residual weights. This is done using Dijkstra’s algorithm to compute an out-branching from �� and
computations are stopped as soon as � is extracted. Now, observe that, thanks to the use of the residual weights,
after the extraction of a vertex � from the priority queue of Dijkstra’s algorithm, the next vertex � ′ to be extracted
is likely to be an out-neighbor of � such that � (�, � ′) = 0. In other words, the algorithm tries to reach � as early as
possible while keeping the total number of extractions from the priority queue as small as possible. Hence, the
running time of the operations performed by the PNC algorithm to łrepairž a path is rather independent from
the distance between �� and � and also from the Dijkstra rank of the source-destination pair.

Concerning the SB* algorithm, it has to compute the SP in-branching�ℎ+1 of the sequence � = (�0, �0,�1, �1, · · · ,�ℎ, �ℎ,�ℎ+1),
representing the non-simple path � , until reaching the head �ℎ of arc �ℎ = (�ℎ,�ℎ). Clearly, the time needed

to ind the path �
�ℎ+1
�ℎ�

depends on the Dijkstra rank of �ℎ in the in-branching �ℎ+1, which increases with the
distance to � . Therefore, when considering a source-destination pair with large Dijkstra rank, the running time of
the SB* algorithm will be very small if all computed detours involve deviations that are near � (i.e., with small

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 17

(a) Running time of NC and PNC (b) Running time of SB and SB*

(c) Running time of SB and PSB (d) Number of trees of SB and PSB

(e) Running time of SB* and PNC

Fig. 2. Comparison of the running time and the number of stores trees on COL. Each dot corresponds to one pair

source/destination (� = 1, 000).

ACM J. Exp. Algor.



18 • Al Zoobi et al.

(a) Average running time (b) Median running time

(c) Average number of stored trees (d) Average number of Dijkstra calls

Fig. 3. Influence of the Dijkstra rank on the performances of the �SSP algorithms on COL (� = 1 000)

Dijkstra ranks) and very large if the deviations are far from � (i.e., with large Dijkstra ranks). This explains the
huge diference between the median and the average running times of the SB* algorithm for source-destination
pairs with large Dijkstra rank observed in Figures 3a and 3b. This also explains the fact that, in the scatter plots
of Figure 2e, the outliers (i.e., the queries which require much more time for the SB* algorithm than for the PNC
algorithm) are mostly of small Dijkstra ranks. To emphasis this latter fact, Table 4 represents the proportion of
the queries, for each Dijkstra rank, that the SB* algorithm solves faster than the PNC algorithm (recall that there
are exactly 100 queries per rank). Finally, the fact that the PNC algorithm is faster than the SB* algorithm on
both average and median running times for queries with small Dijkstra rank is due to the use of the residual
weights that speeds up the computation of the deviations.

Dijkstra rank 2 10 100 1000 10000 100000 421096

SB* 22.5 12.5 11.3 23.8 35.4 50.3 86.8

PNC 77.5 87.5 88.7 76.2 64.6 49.7 13.2

Table 4. Percentage of the number of times one of the SB* or PNC algorithms is faster than the other on COL per Dijkstra

ranks (� = 1 000)

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 19

6.4 Complex Networks

Here we analyse and we try to explain the behavior of the algorithms on complex networks, except for Yen’s
algorithm because of its excessive running time (as already mentioned above).
We have reported in Table 5 the average and the median of the algorithms’ running time in all considered

complex networks when � = 10 000, and in Table 6 the number of stored in-branchings. Furthermore, we have
reported in Figure 4 the evolution of the average and median running times of the algorithms in the CAIDA and
LOC networks when the number � of reported paths increases (the results are similar for the other complex
networks).

On complex networks, the PSB algorithm and its two variants PSBv2 and PSBv3 are the fastest �SSP algorithms
among the considered algorithms (Table 5 and Figure 4). Considering the memory consumption, all of the �SSP
algorithm have a small memory consumption even for � = 10, 000. Indeed, as shown in Table 6, the number
of stored in-branchings does not exceed 59 and can be as small as 3 on FB. It is also shown in Table 5 that the
running time of PSB and its two variants (PSBv2 and PSBv3) is similar.
In what follows, we give some qualitative arguments that may explain the fact that the PSB algorithm is the

fastest among all considered algorithms on complex networks.
Suppose that � is a shortest simple path from � to � . On complex networks, it is likely to have a vertex � on �

with high degree. Let us study the behavior of the diferent variants of the PSB algorithm when they compute the
detours of � at � , in contrast with the other algorithms.
First, the Yen’s, NC and PNC algorithms may compute, independently, for each vertex � ′ ∈ � + (�) neighbor

of � a shortest path from � ′ to � resulting with |� + (�) | shortest path algorithm calls to ind the shortest simple
detours at the neighbors of � . On the other hand, the SB* and the PSB algorithms compute at most one shortest
path in-branching � at � , that works for each neighbor � ′ of � . In other words, the SB* and the PSB algorithms
are favorable to iterate on � . Moreover, as � has a high degree, it is supposed that a large number of the neighbors
� ′ of � leads to simple candidates, i.e., ���′� ∩ (�, · · · , �) = ∅, where (� ...�) is the preix of the current path. So, the
number of shortest path in-branchings computed and/or stored using the SB* and the PSB algorithms is expected
to be small.

In addition, as the number of hops (i.e., number of edges) of a shortest path is łsmallž (remember that complex
network are small-worlds and so have small diameters), the number of calls of the shortest path in-branching
update is expected to be small for the PSB algorithm. As this procedure is faster for the PSB algorithm than for
the SB* algorithm and that the number of calls is similar, the PSB algorithm is faster than the SB* algorithm on
complex networks. This is not valid on road network because the number of hops of a shortest path may be big
and the shortest path in-branching update is called many more times.

To conclude, on complex networks, the PSB algorithm is the fastest among the considered algorithms. It has a
reasonable memory consumption and this seems to be related to the structural properties of complex networks.

7 CONCLUSION

In this paper, we have presented several algorithms for the �SSP problem. In particular, we have proposed several
new algorithms for this problem with the aim of reducing the running time and/or the memory consumption of
the algorithms.

Our simulation results show that the best algorithm to be chosen for solving the �SSP problem depends on the
use case. For instance, on the considered complex networks, the PSB algorithm achieves the best results. Indeed,
it is the fastest among the considered algorithms, and, similarly to the other algorithms, it has low memory
consumption. Besides, on road networks, the PNC algorithm seems very promising. Indeed, it is the fastest (on
average, when � ≥ 20) among the considered algorithms and it has a low memory consumption (it stores only
one in-branching in memory). Furthermore, it is very stable as its performances are barely inluenced by the

ACM J. Exp. Algor.



20 • Al Zoobi et al.

BIOGRID FB P2P DIP CAIDA LOC

NC
avg 1 431 753 2 679 7 766 30 522 15 598
med 859 695 1 605 3 853 10 432 7 416
max 10 346 15 504 27 028 79 790 219 322 285 726

PNC
avg 748 678 1 333 3 467 10 665 7 258
med 670 636 1 260 3 252 9 109 6 912
max 3 734 2 160 4 069 61 036 79 339 62 142

SB
avg 523 1 093 316 443 5 090 1 418
med 441 648 298 368 3 911 1 172
max 1 660 5 996 734 6 833 19 845 4 624

SB*
avg 495 1 125 242 404 4 740 1 314
med 425 776 238 343 3 808 1 113
max 1 508 5 654 480 7 047 17 963 4 250

PSB
avg 215 462 146 240 1 971 653

med 202 396 145 200 1 973 608

max 427 1 505 272 3 588 8 550 1 983

PSBv2
avg 220 447 147 240 1 981 657
med 203 361 145 201 2 005 612
max 532 1 310 253 3 594 8 581 2 018

PSBv3
avg 221 441 147 245 1 983 661
med 205 357 145 203 1 988 609
max 417 1 454 266 3 795 8 760 1 907

Table 5. Running time (ms) of the algorithms on Complex networks, (� = 10, 000)

BIOGRID FB P2P DIP CAIDA LOC

NC, PNC and PNC* 1 1 1 1 1 1

SB and SB* 12 4 41 39 7 9

PSB 12 3 33 31 7 9

PSBv2 13 4 34 32 7 9

PSBv3 25 6 58 59 12 18

Table 6. Average number of stored trees using some ���� algorithms on complex networks, (� = 10, 000)

Dijkstra rank of the source with respect to the destination. However, if we know that the Dijkstra rank of the
queries is large compared to the number of vertices of the digraph, and if large memory consumption is allowed,
then the SB* algorithm might be a good choice. Moreover, the SB* algorithm is faster than the PNC algorithm for
reporting a small number of paths (e.g., less than 20).

An empirical framework for the selection of the most appropriate �SSP algorithm with respect to the use case
is suggested in Figure 5.
An open problem is how to handle the �SSP problem on networks with arbitrary arc weights (including

negative weights). Another interesting question is how to design a data structure enabling to quickly answer
�SSP queries similarly to the data structures used by the hub labelling and contraction hierarchy schemes to
answer distance queries [4]. A probably more diicult question would be to address dynamic networks, i.e., where

ACM J. Exp. Algor.



Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 21

(a) Average running time of LOC (b) Median running time on LOC

(c) Average running time of CAIDA (d) Median running time on CAIDA

Fig. 4. The running time of the �SSP algorithms on complex network with respect to the values of �

the weights of the arcs evolve along time (e.g., in road networks where the traversal time of an arc may vary).
Would it be possible to quickly update the solutions after a modiication in the network?

�SSP

PSB (large memory consumption
and large Dijkstra rank)

or � ≤ 20

SB* PNC

Complex network Road network

Yes No

Fig. 5. A framework of the appropriate �SSP algorithm with respect to the use case

ACM J. Exp. Algor.



22 • Al Zoobi et al.

REFERENCES
[1] Ali Al Zoobi, David Coudert, and Nicolas Nisse. 2020. Space and Time Trade-Of for the � Shortest Simple Paths Problem. In 18th

International Symposium on Experimental Algorithms (SEA) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 160). Schloss

DagstuhlśLeibniz-Zentrum für Informatik, 18:1ś18:13. https://doi.org/10.4230/LIPIcs.SEA.2020.18

[2] Ali Al Zoobi, David Coudert, and Nicolas Nisse. 2021. k shortest simple paths (Version 2.0). https://gitlab.inria.fr/dcoudert/k-shortest-

simple-paths.

[3] M. Arita. 2000. Metabolic reconstruction using shortest paths. Simulation Practice and Theory 8, 1-2 (2000), 109ś125. https://doi.org/10.

1016/S0928-4869(00)00006-9

[4] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and

Renato F Werneck. 2016. Route planning in transportation networks. In Algorithm engineering. Springer, 19ś80.

[5] M. Betz and H. Hild. 1995. Language models for a spelled letter recognizer. In 1995 International Conference on Acoustics, Speech, and

Signal Processing, Vol. 1. IEEE, 856ś859. https://doi.org/10.1109/ICASSP.1995.479829

[6] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang. 2006. Complex networks: Structure and dynamics.

Physics reports 424, 4-5 (2006), 175ś308.

[7] S. Clarke, A. Krikorian, and J. Rausen. 1963. Computing the � best loopless paths in a network. J. Soc. Indust. Appl. Math. 11, 4 (1963),

1096ś1102. https://doi.org/10.1137/0111081

[8] Camil Demetrescu, Andrew V. Goldberg, and D. S. Johnson. 2006. 9th DIMACS Implementation Challenge - Shortest Paths. http:

//users.diag.uniroma1.it/challenge9/

[9] D. Eppstein. 1998. Finding the � Shortest Paths. SIAM J. Comput. 28, 2 (1998), 652ś673. https://doi.org/10.1137/S0097539795290477

[10] David Eppstein. 2016. Encyclopedia of Algorithms. Springer New York, Chapter �-Best Enumeration, 1003ś1006. https://doi.org/10.

1007/978-1-4939-2864-4_733

[11] David Eppstein and Denis Kurz. 2017. �-Best Solutions of MSO Problems on Tree-Decomposable Graphs. In 12th International

Symposium on Parameterized and Exact Computation (IPEC 2017), Vol. 89. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 16:1ś16:13.

https://doi.org/10.4230/LIPIcs.IPEC.2017.16

[12] G. Feng. 2014. Finding � shortest simple paths in directed graphs: A node classiication algorithm. Networks 64, 1 (2014), 6ś17.

https://doi.org/10.1002/net.21552

[13] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. 1986. The Pairing Heap: A New Form of Self-Adjusting Heap. Algorithmica

1, 1 (1986), 111ś129. https://doi.org/10.1007/BF01840439

[14] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. 2000. Fully Dynamic Algorithms for Maintaining Shortest Paths Trees. Journal of

Algorithms 34, 2 (2000), 251ś281. https://doi.org/10.1006/jagm.1999.1048

[15] Jun Gao, Huida Qiu, Xiao Jiang, Tengjiao Wang, and Dongqing Yang. 2010. Fast top-� simple shortest paths discovery in graphs. In

Proceedings of the 19th ACM international conference on Information and knowledge management. 509ś518.

[16] Zvi Gotthilf and Moshe Lewenstein. 2009. Improved algorithms for the � simple shortest paths and the replacement paths problems.

Inform. Process. Lett. 109, 7 (2009), 352ś355.

[17] Eleni Hadjiconstantinou and Nicos Christoides. 1999. An eicient implementation of an algorithm for inding � shortest simple paths.

Networks 34, 2 (1999), 88ś101. https://doi.org/10.1002/(SICI)1097-0037(199909)34:2<88::AID-NET2>3.0.CO;2-1

[18] Yijie Han and Tadao Takaoka. 2016. An� (�3 log log�/log2 �) time algorithm for all pairs shortest paths. Journal of Discrete Algorithms

38 (2016), 9ś19.

[19] J. Hershberger, M. Maxel, and S. Suri. 2007. Finding the � shortest simple paths: A new algorithm and its implementation. ACM

Transactions on Algorithms 3, 4 (2007), 45. https://doi.org/10.1145/1290672.1290682

[20] W. Jin, S. Chen, and H. Jiang. 2013. Finding the � shortest paths in a time-schedule network with constraints on arcs. Computers &

operations research 40, 12 (2013), 2975ś2982. https://doi.org/10.1016/j.cor.2013.07.005

[21] David S. Johnson. 2002. A theoretician’s guide to the experimental analysis of algorithms. Data structures, near neighbor searches, and

methodology: ifth and sixth DIMACS implementation challenges 59 (2002), 215ś250. https://doi.org/10.1090/dimacs/059/11

[22] N. Katoh, T. Ibaraki, and H. Mine. 1982. An eicient algorithm for � shortest simple paths. Networks 12, 4 (1982), 411ś427. https:

//doi.org/10.1002/net.3230120406

[23] D. Kurz. 2018. �-best enumeration - theory and application. Theses. Technischen Universität Dortmund. https://doi.org/10.17877/DE290R-

19814

[24] D. Kurz and P. Mutzel. 2016. A Sidetrack-Based Algorithm for Finding the � Shortest Simple Paths in a Directed Graph. In Int. Symp. on

Algorithms and Computation (ISAAC) (LIPIcs, Vol. 64). Schloss Dagstuhl, 49:1ś49:13. https://doi.org/10.4230/LIPIcs.ISAAC.2016.49

[25] Eugene L Lawler. 1972. A procedure for computing the � best solutions to discrete optimization problems and its application to the

shortest path problem. Management science 18, 7 (1972), 401ś405.

[26] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densiication and shrinking diameters. ACM transactions

on Knowledge Discovery from Data (TKDD) 1, 1 (2007), 2ś42. https://doi.org/10.1145/1217299.1217301

ACM J. Exp. Algor.

https://doi.org/10.4230/LIPIcs.SEA.2020.18
https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths
https://gitlab.inria.fr/dcoudert/k-shortest-simple-paths
https://doi.org/10.1016/S0928-4869(00)00006-9
https://doi.org/10.1016/S0928-4869(00)00006-9
https://doi.org/10.1109/ICASSP.1995.479829
https://doi.org/10.1137/0111081
http://users.diag.uniroma1.it/challenge9/
http://users.diag.uniroma1.it/challenge9/
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1007/978-1-4939-2864-4_733
https://doi.org/10.1007/978-1-4939-2864-4_733
https://doi.org/10.4230/LIPIcs.IPEC.2017.16
https://doi.org/10.1002/net.21552
https://doi.org/10.1007/BF01840439
https://doi.org/10.1006/jagm.1999.1048
https://doi.org/10.1002/(SICI)1097-0037(199909)34:2<88::AID-NET2>3.0.CO;2-1
https://doi.org/10.1145/1290672.1290682
https://doi.org/10.1016/j.cor.2013.07.005
https://doi.org/10.1090/dimacs/059/11
https://doi.org/10.1002/net.3230120406
https://doi.org/10.1002/net.3230120406
https://doi.org/10.17877/DE290R-19814
https://doi.org/10.17877/DE290R-19814
https://doi.org/10.4230/LIPIcs.ISAAC.2016.49
https://doi.org/10.1145/1217299.1217301


Finding the � Shortest Simple Paths: Time and Space Trade-Ofs • 23

[27] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data.

[28] Rose Oughtred, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher, Christie Chang, Nadine Kolas, Lara O’Donnell, Genie

Leung, Rochelle McAdam, et al. 2019. The BioGRID interaction database: 2019 update. Nucleic acids research 47, D1 (2019), D529śD541.

[29] Seth Pettie. 2004. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312, 1 (2004), 47ś74.

[30] Lukasz Salwinski, Christopher S Miller, Adam J Smith, Frank K Pettit, James U Bowie, and David Eisenberg. 2004. The database of

interacting proteins: 2004 update. Nucleic acids research 32, suppl_1 (2004), D449śD451.

[31] T. Shibuya and H. Imai. 1997. New lexible approaches for multiple sequence alignment. Journal of Computational Biology 4, 3 (1997),

385ś413. https://doi.org/10.1089/cmb.1997.4.385

[32] Douglas R Shier. 1979. On algorithms for inding the � shortest paths in a network. Networks 9, 3 (1979), 195ś214.

[33] The Cooperative Association for Internet Data Analysis (CAIDA). 2013. The CAIDA AS Relationships Dataset. http://www.caida.org/

data/active/as-relationships/.

[34] Virginia Vassilevska Williams and Ryan Williams. 2010. Subcubic equivalences between path, matrix and triangle problems. In IEEE 51st

Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 645ś654.

[35] Feng Xie and David Levinson. 2007. Measuring the structure of road networks. Geographical analysis 39, 3 (2007), 336ś356.

[36] W. Xu, S. He, R. Song, and S. S. Chaudhry. 2012. Finding the � shortest paths in a schedule-based transit network. Computers &

Operations Research 39, 8 (2012), 1812ś1826. https://doi.org/10.1016/j.cor.2010.02.005

[37] J. Y. Yen. 1971. Finding the � Shortest Loopless Paths in a Network. Management Science 17, 11 (1971), 712ś716. https://doi.org/10.1287/

mnsc.17.11.712

ACM J. Exp. Algor.

http://snap.stanford.edu/data
https://doi.org/10.1089/cmb.1997.4.385
http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/active/as-relationships/
https://doi.org/10.1016/j.cor.2010.02.005
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1287/mnsc.17.11.712

	Abstract
	1 Introduction
	2 Preliminaries
	2.1  Definition and Notation
	2.2 Yen's algorithm
	2.3 A Node Classification algorithm

	3 Sidetrack Based (SB) algorithm
	3.1 Compact representation of a path
	3.2 The SB algorithm
	3.3 The SB* algorithm

	4 Space - time trade-offs
	4.1 The Parsimonious Sidetrack Based algorithm
	4.2 Special variants of the PSB algorithm

	5 Postponing the detours' computation 
	6 Experimental evaluation
	6.1 Experimental settings
	6.2 Experimental results on road Networks
	6.3 Impact of the Dijkstra rank of the queries
	6.4 Complex Networks

	7 Conclusion
	References

