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Abstract

New nonparametric procedure for estimating the probability density function of a positive random variable is suggested.
Asymptotic expressions of the bias term and Mean Squared Error are derived. By means of graphical illustrations and evaluating
the Average of L2-errors we conducted comparisons of the finite sample performance of proposed estimate with the one based on
kernel density method.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Laplace transform; Nonparametric estimation; Mean squared error; Kernel density estimation

1. Introduction

In this paper we propose new nonparametric procedure to estimate the density function of a positive random
variable that is based on the moment-recovered approach proposed in Mnatsakanov et al. [1].

There are many articles devoted to investigation of the properties of nonparametric density estimators based on
the kernel-smoothing technique. A common method for estimating a density function is obtained by using a fixed
symmetric kernel density estimate (KDE) with bounded (unbounded) support and choosing the optimal bandwidth
(Silverman [2]). The properties of such estimator have been studied by Mielniczuk [3], Zhang [4], among many others.
There are series of papers where the asymmetric kernels are used (Bouezmarni and Rolin [5], Chen [6], Mnatsakanov
and Ruymgaart [7], and Mnatsakanov and Sarkisian [8]).

Also there are several well-known techniques, e.g. Lejeune and Sarda [9] as well as Nielsen at al. [10] worked
on the local linear estimation. Jones [11] and Jones and Forster [12] investigated the performance of the estimates
based on boundary kernels, Müller [13] studied the smoothed optimum kernels, and Marron and Ruppert [14] used
transformation approach.
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Fig. 1. Estimates f̂α,b (dashed curve) and f̂h (dotted curve) (a): when X i ∼ Gamma(3, 1/2) with α = 120, b = 1.9, n = 500; (b): when
X i ∼ Exp(3/2) with α = 120, b = 1.15, n = 500; (c): when X i ∼ Weibull(2, 2) with α = 100, b = 1.23, n = 800; (d): when X i ∼ Pareto(1, 2)
with α = 100, b = 1.55, n = 800.

To reduce the boundary effect for nonnegative data, Chen [6] proposed the estimator based on asymmetric gamma
kernels. Jones [11] and Chen [15] showed that the local linear estimator achieves better results than the boundary
kernel estimator of Müller [13]. Bouezmarni and Rolin [5] derived the exact asymptotic constants for uniform and
L1-errors of the kernel density estimator defined by asymmetric beta kernels.

Bouezmarni et al. [16] studied another estimator based on the gamma kernels. It was shown that such construction
is free of boundary effect and achieves the optimal rate of convergence in terms of integrated mean squared error.
Similar properties of the so-called varying kernel density estimates have been established in [7] and [8] as well.

The main goal of the current work is to introduce totally different approach for estimating the density function f
of a positive random variable via the values of its scaled Laplace transform. It is based on the empirical counterpart of
approximate fα,b suggested in Mnatsakanov et al. [1] (see also (2) in Section 2). The proposed approach provides a
unified estimation method that could be applied for estimating the density functions in several indirect models as well,
including the right-censored one. The properties of corresponding estimates will be investigated in the forthcoming
paper. Simulation study justifies that suggested estimate does not have the edge effect in contrary to those based on
symmetric KDE. In particular, when f (0) > 0, we recommend the use the estimate defined in (4) instead of traditional
KDE (see, for example, plots (b) and (d) in Fig. 1). Besides, it is shown that proposed estimate (in the case of direct
model) is reduced to the one based on asymmetric beta kernel density construction.

The rest of the paper is organized as follows. In Section 2, we describe the construction of new nonparametric
estimate f̂α,b defined in (4). In Section 3, the finite sample properties of f̂α,b are investigated. In particular, the bias
and the Mean Squared Error (MSE) of f̂α,b are derived. Section 4 is devoted to simulation study. Here we evaluated
the average L2-errors of proposed estimate and compared it to the one based on KDE. Several graphs of the estimate
are displayed as well. The advantages of the proposed estimates are discussed in Section 5.
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2. Some preliminaries and notations

Assume F is an absolutely continuous distribution supported by R+ = [0, ∞). Let f be its probability density
function (pdf) with respect to the Lebesgue measure on R+. In this section we introduce the estimate based on
approximation of the Laplace transform inversion that recovers f . Denote by X a random variable distributed
according to F .

Assume that we are given the sequence L (F) = {Lt (F), t ∈ Nα} of the values of the scaled Laplace transform
of F :

Lt (F) =

∫
∞

0
e−ctx d F(x), t ∈ Nα = {0, 1, 2, . . . , α}. (1)

To simplify the notations, assume in (1) that the scaling parameter c = ln b, for some 1 < b ≤ exp(1). Besides, denote
the pdf of a Beta (p, q) distribution by

β(u, p, q) =
Γ (p + q)

Γ (p)Γ (q)
u p−1(1 − u)q−1, 0 < u < 1.

Here the shape parameters p, q > 0, are defined as follows: p = [αb−x ] + 1 and q = α − [αb−x ] + 1. Denote also
β∗

α,x (·) := β(·, p, q). Consider the following approximation of f introduced in Mnatsakanov et al. [1]. Namely, for
each x ∈ R+, define fα,b(x) := (B−1

α L (F))(x), with

(B−1
α L (F))(x) =

ln b [αb−x ]Γ (α + 2)

α Γ ([αb−x ] + 1)

α−[αb−x ]∑
m=0

(−1)mLm+[αb−x ](F)
Γ (m + 1)Γ (α − [αb−x ] − m + 1)

. (2)

In a general setting, the proposed construction (2) can be applied when the
√

n-consistent estimate of the Laplace
transform of F , say, L̃ (F) = {L̃t (F), t ∈ Nα} is available, while F is not observed directly. Hence, using L̃ (F)
instead of L (F) in (2), we arrive at the estimate of f :

f̃α,b(x) = (B−1
α L̃ (F))(x), x ∈ R+. (3)

In the current work, we apply (2) in direct model, i.e., when the sample of i.i.d. random variables X1, . . . , Xn from
F is given. In this case, one can consider the empirical Laplace transform L̂ (F) instead of L̃ (F) in (3). As a result,
the following estimate of f (after multiplying by α/(α + 1)) is derived:

f̂α,b(x) =
α

α + 1
(B−1

α L̂ (F))(x), x ∈ R+. (4)

Recall that

L̂t (F) =

∫
R+

e−ctx d F̂n(x), (5)

and F̂n is the empirical cdf of the sample X1, . . . , Xn .

Remark 1. In order to simplify the evaluations of the bias and variance of estimate f̂α,b, the normalizing factor in
α/(α + 1) is used (4). Also note that

L̂t (F) =

∫
R+

b−t x d F̂n(x) =
1
n

n∑
i=1

b−t Xi . (6)

Finally, note that given the observations X1, . . . , Xn drawn from F , the estimate f̂α,b is reduced to:

f̂α,b(x) =

( α

α + 1

) [αb−x ] ln(b)Γ (α + 2)
α Γ ([αb−x ] + 1)

1
n

n∑
i=1

α−[αb−x ]∑
m=0

(−1)mb−(m+[αb−x ])Xi

m!(α − [αb−x ] − m)!

=
[αb−x ] ln(b)Γ (α + 2)
(α + 1)Γ ([αb−x ] + 1)

1
n

n∑
i=1

α−[αb−x ]∑
m=0

(−b−Xi )m(b−Xi )[αb−x ]

m!(α − [αb−x ] − m)!
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=
[αb−x ] ln b

α + 1
1
n

n∑
i=1

β(b−Xi , [αb−x ] + 1, α − [αb−x ] + 1)

=
[αb−x ] ln b

α + 1
1
n

n∑
i=1

β∗

α,x (b−Xi ), x ∈ R+, (7)

with β∗
α,x (·) defined in Section 2.

It is worth mentioning that construction (3) has a unified form, and can be applied as in direct as well as in indirect
models. As a special case, it reduces to the asymmetric beta density kernel estimator (see last line in (7)) when
underlying density f is observed directly via the data-sets {X i }

n
i=1 (cf. with [5,16,15]).

In Section 3 it will be assumed that the following conditions are satisfied:

f ∈ C (2)(R+), sup
x∈[0,∞)

|bkx f ′(x)| < ∞, k = 1, 2, and sup
x∈[0,∞)

|bx f ′′(x)| < ∞. (8)

3. Mean squared errors of f̂α,b

In this section we investigate the asymptotic behavior of the estimate f̂α,b(x) defined in (4). In particular, to derive
the upper bound for MSE of f̂α,b(x). Recall that

MSE{ f̂α,b(x)} := E | f̂α,b(x) − f (x)|
2

= var{ f̂α,b(x)} +
(
Bias{ f̂α,b(x)}

)2
,

where Bias{ f̂α,b(x)} = fα,b(x) − f (x) and fα,b(x) := E( f̂α,b(x)), for each x ∈ R+.

Theorem 1. If conditions (8) are satisfied, then for MSE of f̂α,b(x) we have:

MSE{ f̂α,b(x)} ≤ n−4/5
[(

2 bx
| f ′(x)|
ln b

+
b2x

| f ′(x)|
2 ln2b

+
bx

| f ′′(x)|
2 ln b

)2

+
f (x) ln b

√
π (bx − 1)

]
+ o(n−4/5) (9)

provided that we choose α = α(n) ∼ n2/5, n → ∞.

The proof of Theorem 1 is based on investigating the asymptotic behavior of the bias and variance terms of
MSE{ f̂α,b(x)}.

Lemma 2. (i): fα,b(x) converges uniformly to f (x) as α → ∞, and for each x > 0, the absolute value of the bias
term of f̂α,b(x) is estimated from above as follows:

|Bias{ f̂α,b(x)}| ≤
1

α + 1

{
2 bx

| f ′(x)|
ln b

+
b2x

| f ′(x)|
2 ln2b

+
bx

| f ′′(x)|
2 ln b

}
+ o

( 1
α

)
,

as α → ∞.
(ii): For each x > 0, the asymptotic expression for variance of f̂α,b(x) we have

var{ f̂α,b(x)} =

√
α

n
f (x) ln b

√
π (bx − 1)

+ o
(√

α

n

)
,

as
√

α/n → 0, α, n → ∞.

Proof of Lemma 2. Because f̂α,b = (α/(α + 1))B−1
α L̂ (F) has representation (7), we have

E f̂α,b(x) =
[αb−x ] ln b

α + 1
1
n

n∑
i=1

Eβ(b−Xi , [αb−x ] + 1, α − [αb−x ] + 1)

=
ln b Γ (α + 1)

Γ ([αb−x ])Γ (α + [αb−x ] + 1)

∫
∞

0
(b−u)[αb−x ](1 − b−u)α−[αb−x ] f (u)du. (10)
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The change of variable under integral in (10) with τ = b−u gives

E f̂α,b(x) =
ln bΓ (α + 1)

Γ ([αb−x ])Γ (α + [αb−x ] + 1)

∫ 1

0
τ [αb−x ](1 − τ )α−[αb−x ] f (−logbτ )

τ ln b
dτ

=
Γ (α + 1)

Γ ([αb−x ])Γ (α + [αb−x ] + 1)

∫ 1

0
τ [αb−x ]−1(1 − τ )α−[αb−x ] f (−logbτ )dτ

=

∫ 1

0
β(τ, [αb−x ], α − [αb−x ] + 1)q(τ )dτ, (11)

where q = f ◦ φ denotes the composition of functions f and φ(τ ) = −logb(τ ). Therefore for the expected value of
f̂α,b we have

fα,b(x) = E f̂α,b(x) =

∫ 1

0
βα,x (τ )q(τ )dτ, q(τ ) = f (−logbτ ). (12)

Here, βα,x (·) := β(·, [αb−x ], α − [αb−x ] + 1). To complete the proof of Lemma 2(i) one can proceed in a similar way
as it is done in Mnatsakanov et al. [1].

Namely, let us mention that the first and second derivatives of q with respect to τ can be written as

q ′(τ ) = ( f ′
◦ φ)(τ )φ′(τ ) (13)

q ′′(τ ) = ( f ′′
◦ φ)(τ )φ′′(τ ) + ( f ′

◦ φ)(τ )φ′′(τ ). (14)

Evaluation of q ′ and q ′′ at τ = b−x gives: q ′(b−x ) =
bx f ′(x)

ln b and q ′′(b−x ) =
b2x f ′(x)

ln2b
+

bx f ′′(x)
ln b . Now, note that the

sequence {βα,x (·), α = 1, 2, . . . } represents the sequence of δ-functions with the mean and variance specified as
follows:

ηα :=

∫ 1

0
τβα,x (τ )dτ =

[αb−x ]
α + 1

(15)

σ 2
α :=

∫ 1

0
(τ − ηα)2βα,x (τ )dτ =

[αb−x ](α − [αb−x ] + 1)
(α + 1)2(α + 2)

<
1

α + 1
, (16)

and

|ηα − b−x
| ≤

2
α + 1

. (17)

To derive the asymptotic form of the Bias{ f̂α,b(x)} = fα,b(x) − f (x) let us write

fα,b(x) − f (x) =

∫ 1

0
βα,x (τ ){q(τ ) − q(b−x )}dτ. (18)

Applying the Taylor expansion of q(τ ) around τ = b−x we get:

Bias{ f̂α,b(x)} =

∫ 1

0
βα,x (τ )

{
(τ − b−x )q ′(b−x ) +

1
2

(τ − b−x )2q ′′(τ̃ )
}

dτ. (19)

Now adding and subtracting ηα from the first and second terms in the right hand side of (19) we obtain the upper
bound for the absolute value of Bias{ f̂α,b(x)}:⏐⏐⏐⏐∫ 1

0
βα,x (τ )(τ − ηα)q ′(b−x )dτ + (ηα − b−x )q ′(b−x )

∫ 1

0
βα,x (τ )dτ

+
1
2

∫ 1

0
βα,x (τ )(τ − ηα)2 q ′′(τ̃ )dτ +

1
2

(ηα − b−x )2
∫ 1

0
βα,x (τ )q ′′(τ̃ )dτ

⏐⏐⏐⏐
≤ |ηα − b−x

||q ′(b−x )| +
1
2

σ 2
α ∥q ′′

∥ +
1
2

(ηα − b−x )2
∥q ′′

∥. (20)

Now taking into account the bounds for σ 2
α and |ηα − b−x

| mentioned in (16) and (17), respectively, we obtain for the
bias of f̂α,b:

|Bias{ f̂α,b(x)}| ≤
1

α + 1

{
2 bx

| f ′(x)|
ln b

+
b2x

| f ′(x)|
2 ln2b

+
bx

| f ′′(x)|
2 ln b

}
+ o(

1
α

) (21)

as α → ∞. The uniform convergence of fα,b to f follows from (21) and the conditions (8).
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Now, consider the variance of f̂α,b. Taking into account (7) and (12), we obtain:

var{ f̂α,b(x)} =
1
n

{ [αb−x ] ln b
α + 1

}2
var{β∗

α,x (b−X1 )}

=
1
n

{ [αb−x ] ln b
α + 1

}2
Eβ∗2

α,x (b−Xi ) −
1
n

{ [αb−x ] ln b
α + 1

}2
(Eβ∗

α,x (b−X ))2. (22)

At first let us investigate the asymptotic behavior of the first term in (22). We have

1
n

{ [αb−x ] ln b
α + 1

}2
Eβ∗2

α,x (b−Xi ) =
1
n

{ [αb−x ] ln b
α + 1

}2
∫

∞

0
β∗2

α,x (b−u) f (u)du

=
1
n

( ln bΓ (α + 1)
Γ ([αb−x ])Γ (α − [αb−x ] + 1)

)2
∫

∞

0
(b−u)2[αb−x ](1 − b−u)2α−2[αb−x ] f (u)du

=
1
n

( ln bΓ (α + 1)
Γ ([αb−x ])Γ (α − [αb−x ] + 1)

)2
∫ 1

0
τ 2[αb−x ]−1(1 − τ )2α−2[αb−x ]q(τ )

dτ

ln b

= ξα(x)
∫ 1

0
β(τ, 2[αb−x ], 2α − 2[αb−x ] + 1)q(τ )dτ. (23)

Here

ξα(x) =
ln b
n

(
Γ (α + 1)

Γ ([αb−x ])Γ (α − [αb−x ] + 1)

)2 Γ (2[αb−x ])Γ (2α − 2[αb−x ] + 1)
Γ (2α + 1)

.

and according to Lemma 2(i):∫ 1

0
β(τ, 2[αb−x ], 2α − 2[αb−x ] + 1)q(τ )dτ → f (x) as α → ∞,

uniformly with the rate of 1/α. The order of magnitude of ξα(x) in (23) is specified as follows: for each x > 0 we
have

ξα(x) ∼
ln b
√

π

α1/2

n

(
b−x

1 − b−x

)1/2

, α, n → ∞. (24)

Hence, for the first term in the right-hand side of (22) we can write:

1
n

{ [αb−x ] ln b
α + 1

}2
Eβ∗2

α,x (b−X1 ) =

√
α

n
f (x) ln b

√
π (bx − 1)

+ o(
√

α

n
), (25)

as α, n → ∞. Consider the second term of (22):

1
n
{
[αb−x ] ln b

α + 1
}

2(Eβ∗

α,x (b−X ))2
=

1
n
{
[αb−x ] ln b

α + 1
}

2
(

Γ (α + 2)
Γ ([αb−x ] + 1)Γ (α − [αb−x ] + 1)

)2

×

(∫
∞

0
(b−u)[αb−x ](1 − b−u)α−[αb−x ] f (u)du

)2

=
1
n

(
ln bΓ (α + 1)

Γ ([αb−x ])Γ (α − [αb−x ] + 1)

)2 (∫ 1

0
τ [αb−x ]−1(1 − τ )α−[αb−x ]q(τ )

dτ

ln(b)

)2

=
1
n

(∫ 1

0
βα,x (τ )q(τ )dτ

)2

=
1
n

(
f (x) + O(

1
α

)
)2

, as α → ∞. (26)

Finally, from (22), (25), and (26) we obtain

var{ f̂α,b(x)} =

√
α

n
f (x) ln b

√
π (bx − 1)

+ o(
√

α

n
), (27)

as
√

α/n → 0, α, n → ∞. □
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Table 1
Records of the average L2-errors (d̂n), when X ∼ Gamma (3, 1/2) and R = 50.

b n = 300 n = 500 n = 800

α=80 α=100 α=120 α=80 α=100 α=120 α=80 α=100 α=120

1.05 0.154 0.1153 0.0969 0.1492 0.1213 0.0998 0.1507 0.1209 0.0948
1.15 0.0404 0.0294 0.0227 0.0397 0.0257 0.0179 0.0404 0.0269 0.0196
1.21 0.0235 0.0158 0.0125 0.0219 0.0154 0.0084 0.0244 0.0154 0.0119
1.23 0.0219 0.0140 0.0104 0.0217 0.0134 0.0090 0.0232 0.0147 0.0081
1.25 0.0167 0.0111 0.0091 0.0166 0.0105 0.0092 0.0177 0.0109 0.0127
1.26 0.0147 0.0104 0.0087 0.0175 0.0103 0.0120 0.0158 0.0111 0.0101
1.27 0.0156 00103 0.0082 0.0145 0.0103 0.0104 0.0168 0.0096 0.0119
1.28 0.0144 0.0099 0.0093 0.0144 0.0099 0.0102 0.015 0.0094 0.0117
1.29 0.0139 0.0101 0.0136 0.0159 0.0101 0.0122 0.0158 0.0269 0.0095
1.30 0.0130 0.0984 0.0107 0.0123 0.0098 0.0106 0.0137 0.0095 0.0099
1.50 0.0097 0.0063 0.0061 0.0089 0.0063 0.0064 0.0106 0.0075 0.0059
1.80 0.0079 0.0039 0.0055 0.0073 0.0039 0.0058 0.0068 0.0042 0.0025
1.90 0.0079 0.0049 0.0069 0.0057 0.0049 0.0021 0.0053 0.0037 0.0017
2.0 0.0058 0.0071 0.0052 0.0051 0.0071 0.0039 0.0051 0.0039 0.0030

Proof of Theorem 1. Combining the statements (i) and (ii) of Lemma 2, we obtain:

MSE{ f̂α,b(x)} ≤
1

(α + 1)2

{
2 bx

| f ′(x)|
ln b

+
b2x

| f ′(x)|
2 ln2b

+
bx

| f ′′(x)|
2 ln b

}2

+

√
α

n
f (x) ln b

√
π (bx − 1)

+ o(
√

α

n
). (28)

Finally, taking α ∼ n2/5 in (28), we arrive at (9). □

4. Simulation study

In this section we evaluated the average errors using L2-norm of estimate (4) when the normalizing factor α/(α+1)
is removed. The following notation is used:

d̂n =
1
R

R∑
r=1

(
1
m

m∑
j=1

( f̂ (x j ) − f (x j ))2
)1/2

. (29)

Here by R we denote the number of replications, and {x j , j = 1, . . . , m} represents the partition of support of f . In
this section, simulations from three different models (Gamma, Weibull, and shifted Pareto) with three different values
of the sample size n = 300,500, and 800, combined with the number of replications R = 50 are conducted.

Now, let us simulate a random sample from X ∼ Gamma(a, β). In addition, the Average L2-errors are computed
for different values of α, b, and n, as it is shown in Table 1.

The records from this table specify the optimal values for parameters (α, b) as follows: (100, 1.8), (120, 2.0), and
(120, 1.9) for n = 300,500, and 800, respectively. Corresponding average errors d̂n are equal to 0.0039, 0.0021, and
0.0017, respectively. Hence, the Average L2-error is decreasing as a function of sample size n.

Also, we compared f̂α,b(x) with the KDE f̂h when X ∼ Gamma(3, 1/2) and X ∼ Exp(2/3). Assume the kernel
density function K is specified as the Gaussian one and the bandwidth h = n−1/5 1.06 σ̂ (cf. with Silverman [2]). Here
σ̂ represents the standard deviation of the sample X1, . . . , Xn . In plots (a) and (b) of Fig. 1, the performances of f̂α,b

and f̂h are compared graphically. Two cases when X i ∼ Gamma(3, 1/2) and X i ∼ Exp(rate = 2/3) are considered
when α = 120, b = 1.9, and α = 120, b = 1.15, respectively. In both plots the sample size n = 500. In plots (c) and
(d) of Fig. 1, the Weibull (2, 2) and shifted Pareto (1, 2), respectively, are considered when α = 100 and n = 800. We
can say that f̂α,b performs better if compared to KDE when f (0) > 0 (see plots (b) and (d) in Fig. 1).

Table 2 displays the Average L2-errors of f̂α,b evaluated for several values of parameter α when b = 1.23 and of f̂h

when X ∼ Gamma (3, 1/2) and n = 300,500. Here the number of replications R = 50. From this table we conclude
that performances of f̂α,b and f̂h are similar to each other when X ∼ Gamma (3, 1/2).
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Table 2
Comparison of Average L2-errors of f̂α,b , when α = 80, 100, 120, and
b = 1.23, and of KDE f̂h when h = n−1/5 1.06 σ̂ . Here X ∼ Gamma
(3, 1/2) and R = 50.

n f̂80,b f̂100,b f̂120,b f̂h

300 0.01004 0.0097 0.01071 0.01108
500 0.0084 0.0088 0.0083 0.0088
800 0.0083 0.0080 0.0077 0.0081

5. Conclusion

The paper deals with investigation of asymptotic properties of nonparametric density estimate f̂α,b defined in
(4). The main advantages of the proposed construction are: (a) it can be used in models where the only available
information about the underlying distribution F represents the finite values of the scaled Laplace transform of F ; (b)
the estimate (3) has a unified form and can be easily implemented in different incomplete models as soon as there
exists a consistent estimate of the Laplace transform of f . In the forthcoming paper we are planning to study the
properties of corresponding estimates in the models with right-censored and the length-biased observations. Note also
that in the case of direct model, the proposed estimate f̂α,b is reduced to the one based on asymmetric beta kernel
density construction (see (7)).

It is worth mentioning that the values of f̂α,b(x) became constant for x > ln α/ ln b. That is why it is recommended
to choose the values of b closer to 1 (from the right), when one is dealing with distribution having a long tail.

We compared the finite sample performances of f̂α,b with its counterpart based on the kernel density construction
f̂h . We found out that it behaves a little bit better in terms of average L2-errors and is free from the edge effect.
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