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Flatness properties of acts over semigroups

Valdis Laan*, Ülo Reimaa, Lauri Tart, and Elery Teor

Abstract. In this paper we study flatness properties (pullback flatness,
limit flatness, finite limit flatness) of acts over semigroups. These are defined
by requiring preservation of certain limits from the functor of tensor mul-
tiplication by a given act. We give a description of firm pullback flat acts
using Conditions (P) and (E). We also study pure epimorphisms and their
connections to finitely presented acts and pullback flat acts. We study these
flatness properties in the category of all acts, as well as in the category of
unitary acts and in the category of firm acts, which arise naturally in the
Morita theory of semigroups.

Introduction

Acts over monoids have been studied actively since the beginning of 1970s.
The monograph [16] contains a detailed overview of main properties that
have been studied, and also a list of publications in this area.

From the very beginning, the so-called flatness properties have played an
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important role. These are defined by requiring the preservation of diagrams
of certain types from the functor of tensor multiplication. For example, an
act is called pullback flat if the functor of tensoring by it preserves pull-
backs. Bo Stenström in his article [24] introduced a property which was
later called strong flatness and which means preservation of both pullbacks
and equalizers. He proved that strong flatness is equivalent to certain easy-
to-check Conditions (P) and (E). Later, Sydney Bulman-Fleming [5] showed
that strong flatness and pullback flatness coincide.

Much less has been said about flatness properties of acts over semigroups,
partially because the study of these properties can be reduced to studying
the monoid case. There are some papers about absolutely flat semigroups
(e.g. [8]) where preservation of monomorphisms by tensor functor (usually
called just flatness) has been considered. Also, unitary projective acts over
semigroups have been studied in [10] and [9].

It appears that for an act the condition of being flat and unitary is
notably different from merely being flat. Additionally, when considering
flatness in terms of categories of unitary acts or firm acts — notions that
naturally arise when studying the Morita theory of semigroups (for example,
[21], where the term ‘closed’ was used instead of ‘firm’) — a unitary or
firmness assumption on acts is natural. In the case of non-unital rings, firm
flat modules have been studied for example in [23].

We show how to adapt the flatness results of [24] for the semigroup
case. Following that we show that under some natural assumptions, these
flatness conditions are equivalent to ones formulated in terms of unitary
acts and in terms of firm acts. Pure epimorphisms of acts are used to
give a characterization of pullback flatness independent of tensor products.
Along the way, we show that under certain assumptions on a semigroup, the
category of firm acts is locally finitely presentable.

1 Preliminaries

Throughout this paper S will stand for a (possibly empty) semigroup and
S1 will denote the monoid obtained from S by adjoining an external identity
1 (even if S has an identity element). A right S-act is a set A together with
a mapping A × S → A, (a, s) 7→ as satisfying (as)s′ = a(ss′) for all a ∈ A,
s, s′ ∈ S. Left S-acts are defined dually. We also allow acts to be empty,
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since we want the category ActS of all right S-acts to have all limits. Clearly
every S-act AS can be considered as an S1-act AS1 if we define a1 = a for
each a ∈ A.

The tensor product A ⊗S M of a right S-act AS and a left S-act SM
is defined as the quotient set of A×M by the smallest equivalence relation
identifying all pairs (as,m) and (a, sm), where a ∈ A, s ∈ S, m ∈ M . The
equivalence class of (a,m) is denoted by a ⊗ m. We will often write just
A⊗M instead of A⊗SM . Note that A⊗SM = A⊗S1 M for all S-acts AS
and SM .

Definition 1.1. An act AS is called firm if the mapping

µA : A⊗S S → A, a⊗ s 7→ as,

is bijective.

Definition 1.2. An act AS is called unitary if each a ∈ A can be written
as a = a′s for some a′ ∈ A and s ∈ S. This is equivalent to saying that µA
is surjective.

We will denote by UActS (FActS) the full subcategory of ActS generated
by unitary (firm) acts. Note that if S is a monoid then the act AS is unitary
if and only if a1 = a for every a ∈ A. Thus UActS coincides with the category
of acts that is usually considered in the monoid case (see, e.g., [16]).

Let AS be a right S-act. There exists the functor AS ⊗− : SAct → Set
of tensoring by AS (see [16]), defined by

(AS ⊗−)(SM) := A⊗M,

(AS ⊗−)(f) := 1A ⊗ f
for every left S-act SM and every homomorphism f of left S-acts.

Definition 1.3. We call an act AS pullback flat (equalizer flat, finite limit
flat, limit flat), if the functor AS ⊗ − : SAct → Set preserves pullbacks
(equalizers, finite limits, limits).

The next lemma allows us to deduce several results about acts over
semigroups from well-known results about unitary acts over monoids.
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Lemma 1.4. There is an isomorphism of categories SAct→ S1UAct which
takes each SB to S1B and each morphism f to f .

Lemma 1.5. For any category D, the functor A⊗S− : SAct→ Set preserves
D-limits if and only if the functor A⊗S1− : S1UAct→ Set preserves D-limits.

Proof. If F : SAct→ S1UAct denotes the functor from Lemma 1.4, then

(A⊗S1 −) ◦ F = A⊗S − ,

because A⊗S1 B = A⊗S B for every SB ∈ SAct.

We will also use the following conditions (first two of them appearing
first in [24] for the monoid case) for an S-act AS :

(P): If as = a′s′, a, a′ ∈ A, s, s′ ∈ S, then there exist a′′ ∈ A, u, v ∈ S
such that

a = a′′u, a′ = a′′v, us = vs′.

(E): If as = as′, a ∈ A, s, s′ ∈ S, then there exist a′ ∈ A, u ∈ S such
that

a = a′u, us = us′.

(LC): If a, a′ ∈ A, then there exist a′′ ∈ A, u, v ∈ S such that

a = a′′u, a′ = a′′v.

If S is a monoid, then Condition (LC) means precisely that AS is locally
cyclic in the sense of [7]. We also emphasize, that if AS satisfies (LC) then
AS is unitary, but if AS1 satisfies (LC) then it is not necessarily so.
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Remark 1.6. Each nonempty act AS can be identified with a semipre-
sheaf (a contravariant semifunctor into Set) on a one-object semicategory
(see Definition 2.1 in [13]), where morphisms are the elements of S. Such
presheaf induces a semicategory of elements ([3, Definition 1.6.4]), which we
denote by El(AS) and which can be presented (up to equivalence) as follows:

• objects are the elements of the set A,

• morphisms a → a′ are the elements s ∈ S (or more formally triples
(a, s, a′)) such that as = a′,

• the composite s′ ◦ s of morphisms s : a → a′ and s′ : a′ → a′′ is the
product ss′ ∈ S.

Note that a nonempty act AS

• satisfies (E) and (LC) if and only if El(AS) is a cofiltered semicategory
(cf. [3, Definition 2.13.1] or [22, page 211]),

• satisfies (E) and (P) if and only if El(AS) is a pseudo-cofiltered semi-
category (cf. [22, page 216]),

• satisfies (LC) if and only if any two objects of El(AS) are joined by a
span (cf. [3, Example 7.7.3]).

Lemma 1.7. If AS satisfies Condition (P) ((E), (LC)), then AS1 has the
same property.

Conversely, if AS is unitary and AS1 satisfies Condition (P) ((E), (LC)),
then AS has the same property.

Proof. Let us prove the claim for (P) (for the other two conditions the proof
is similar). Assume that AS satisfies Condition (P) and as = a′s′ where
a, a′ ∈ A and s, s′ ∈ S1. There are four possibilities.

1) s, s′ ∈ S. Then Condition (P) for AS provides the required a′′, u, v.
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2) s ∈ S, s′ = 1. Then we take a′′ = a, u = 1 and v = s.
3) s = 1, s′ ∈ S. Then we take a′′ = a′, u = s′ and v = 1.
4) s = s′ = 1. Then we take a′′ = a and u = v = 1.
Assume now that AS is unitary and AS1 satisfies Condition (P). Suppose

that as = a′s′, where a, a′ ∈ A and s, s′ ∈ S. Then there exist a′′ ∈ A,
u, v ∈ S1 such that a = a′′u, a′ = a′′v and us = vs′. Since AS is unitary, we
can find a ∈ A and z ∈ S such that a′′ = az. Hence

a = a(zu), a′ = a(zv), (zu)s = (zv)s′,

where zu, zv ∈ S.

2 Acts satisfying Condition (P)

First we examine when an act satisfies Condition (P). Very similarly to
Proposition 2.1 in [5] one can prove the following result.

Lemma 2.1. Let S be a nonempty semigroup. If AS satisfies Condition (P)
then for any left act SM and elements a, a′ ∈ A, m,m′ ∈ M , if
a ⊗ m = a′ ⊗ m′ in A ⊗ M then there exist a′′ ∈ A and u, v ∈ S such
that a = a′′u, a′ = a′′v, um = vm′.

Proposition 2.2. If an act AS satisfies Condition (P) then the functor
AS ⊗− : SAct→ Set preserves monomorphisms.

Proof. Both in Set and SAct, the monomorphisms are the injective mor-
phisms. Let f : SB → SC be a monomorphism in SAct. Suppose that
a ⊗ f(b) = a ⊗ f(b′) in A ⊗ C. By Lemma 2.1, there exist a′′ ∈ A and
u, v ∈ S such that a = a′′u = a′′v and uf(b) = vf(b′), whence ub = vb′,
because f is injective. Now

a⊗ b = a′′u⊗ b = a′′ ⊗ ub = a′′ ⊗ vb′ = a′′v ⊗ b′ = a⊗ b′

in A ⊗ B. This means that the mapping 1A ⊗ f : A ⊗ B → A ⊗ C is
injective.

Lemma 2.3. For any right S-act AS the multiplication map

µS
1

A : A⊗ S1 → A , a⊗ s 7→ as



Flatness properties of acts 65

is an isomorphism in ActS. Moreover, the functor −⊗ S1 : ActS → ActS is
naturally isomorphic to the identity functor of ActS.

Proof. The mapping µS
1

A is clearly a morphism of right S-acts. Since
A ⊗S S1 = A ⊗S1 S1, it is the multiplication map of the unitary act AS1

over the monoid S1. Therefore it is bijective (see Proposition 2.5.13 in [16]).
Clearly, µ is a natural transformation.

Proposition 2.4. If a right S-act AS is unitary and the functor
AS ⊗− : SAct→ Set preserves monomorphisms, then AS is firm.

Proof. Let i : S → S1 denote the inclusion and let us view it as a morphism
of left S-acts. Notice that µA : A⊗S S → A factors as

A⊗S S 1A⊗i−−−→ A⊗S S1 = A⊗S1 S1 µS
1

A−−→ A .

The map µS1

A is bijective by Lemma 2.3 and the map 1A ⊗ i is injective by
assumption. So the composite µA must be injective. Since AS is assumed
to be unitary, µA is surjective and therefore also bijective, meaning that AS
is firm.

Corollary 2.5. If AS satisfies Condition (P), then AS is firm.

In the theory of acts over monoids, the acts for which the tensor multi-
plication functor preserves monomorphisms are usually called flat (see [15],
where flat acts were first defined, or [16], Definition 3.9.1). But one could
also say “monomorphism flat”.

We also point out that equalizer flat acts are flat. This follows from the
fact that each monomorphism in SAct is regular, precisely as in the case of
monoid acts (see [16, Theorem 2.2.44]).

Since SAct is a variety of algebras in the sense of Universal Algebra, we
know that it has all limits, including pullbacks. Note that, for some pairs of
morphisms, their pullback may be the empty S-act.

Weak pullbacks are defined like pullbacks, but without the uniqueness
requirement in the universal property (see Definition 2.2 in [14]). The proof
of Theorem 2.8 in [14] carries over from Set-endofunctors to functors T :

SAct→ Set. Specifying that theorem for T = AS ⊗− gives us the following
result.
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Proposition 2.6. For an act AS, the functor AS⊗− : SAct→ Set preserves
weak pullbacks if and only if for all morphisms f : SM → SQ, g : SN → SQ
and all pairs (a⊗m, a′⊗n) ∈ (A⊗M)× (A⊗N) with a⊗ f(m) = a′⊗ g(n)
there exists an element a′′ ⊗ (u, v) ∈ A⊗ P , where

SP = {(x, y) ∈M ×N | f(x) = g(y)},

such that
a′′ ⊗ u = a⊗m and a′′ ⊗ v = a′ ⊗ n .

We have the following characterization of acts satisfying Condition (P)
(cf. Lemma 2.2 in [5] for the monoid case).

Theorem 2.7. For an act AS over a nonempty semigroup S the following
assertions are equivalent.

1. AS satisfies Condition (P).

3. AS is firm and satisfies Condition (P).

2. AS is firm and the functor AS ⊗− : SAct → Set preserves weak pull-
backs.

Proof. If AS is the empty act then all three conditions are satisfied. Consider
a nonempty AS .

(1) ⇒ (2). This is a consequence of Corollary 2.5.
(2) ⇒ (3). Assume that AS is firm and satisfies Condition (P). We

employ Proposition 2.6. Let (a ⊗ m, a′ ⊗ n) ∈ (A ⊗ M) × (A ⊗ N) be
such that a ⊗ f(m) = a′ ⊗ g(n) in A ⊗ Q. By Lemma 2.1, there exist
a′′ ∈ A, u, v ∈ S such that a = a′′u, a′ = a′′v and uf(m) = vg(n). It follows
that f(um) = g(vn), and therefore (um, vn) ∈ P = {(x, y) ∈ M × N |
f(x) = g(y)}. Moreover,

a′′ ⊗ um = a′′u⊗m = a⊗m and a′′ ⊗ vn = a′′v ⊗ n = a′ ⊗ n .

(3) ⇒ (1). Suppose that as = a′s′, where a, a′ ∈ A and s, s′ ∈ S.
Consider the left S-act morphisms

f :SS → SS, x 7→ xs,

g :SS → SS, x 7→ xs′.
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Since AS is unitary, there exist a1, a
′
1 ∈ A, r, r′ ∈ S such that a = a1r

and a′ = a′1r
′. Then a1f(r) = a1rs = as = a′s′ = a′1r

′s′ = a′1g(r′) or
µA(a1 ⊗ f(r)) = µA(a′1 ⊗ g(r′)). Using injectivity of µA we conclude that
a1 ⊗ f(r) = a′1 ⊗ g(r′) in A⊗ S. By assumption and Proposition 2.6, there
exists a′′ ⊗ (u, v) ∈ A ⊗ P , where SP = {(x, y) ∈ S × S | xs = xs′}, such
that

a′′ ⊗ u = a1 ⊗ r and a′′ ⊗ v = a′1 ⊗ r′

in A ⊗ S. This implies a′′u = a1r = a and a′′v = a′1r
′ = a′. Moreover, as

(u, v) ∈ P , we have us = vs′. Thus AS satisfies Condition (P).

3 Pullback flat acts

The aim of this section is to give a characterization and examples of unitary
pullback flat acts. First we make the following observation.

Proposition 3.1. An act AS is pullback flat if and only if the act AS1

satisfies Condition (P) and Condition (E).

Proof. This follows from Lemma 1.5 and Theorem 5.3 in [24].

Corollary 3.2. The empty S-act is pullback flat.

Pullback flat acts need not be unitary.

Example 3.3. Let S = X+ be the free semigroup on an alphabet X.
Then SS is not a unitary act while the act SS1 satisfies Condition (P) and
Condition (E) and hence SS is pullback flat.

In the next theorem we will give a characterization of unitary pullback
flat acts. The following well-known result (see, e.g., paragraph 1.439 in [12])
will be needed.

Proposition 3.4. Let A be a category with finite products. If a functor
G : A → B preserves pullbacks then it preserves equalizers.

Theorem 3.5. The following assertions are equivalent for an act AS over
a nonempty semigroup S.

(i) AS is unitary and pullback flat.
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(ii) AS is firm and pullback flat.

(iii) AS is firm, pullback flat and equalizer flat.

(iv) AS satisfies Condition (P) and Condition (E).

Proof. The empty act satisfies all four conditions of the theorem. Consider
a nonempty act AS .

(i) ⇒ (ii). If AS is unitary and pullback flat then the functor A ⊗S − :

SAct→ Set preserves monomorphisms. By Proposition 2.4, AS is firm.
(ii) ⇒ (iii). If AS is firm and pullback flat then due to Proposition 3.4

AS is also equalizer flat.
(iii) ⇒ (iv). Let AS be firm, pullback flat and equalizer flat. Then

the functor A ⊗S − : SAct → Set preserves pullbacks and equalizers. By
Lemma 1.5, the functor A ⊗S1 − : S1UAct → Set also preserves pullbacks
and equalizers. By [24, Theorem 5.3], AS1 satisfies conditions (P) and (E).
Since AS is unitary, Lemma 1.7 implies that AS satisfies Conditions (P) and
(E).

(iv) ⇒ (i). If the act AS satisfies Conditions (P) and (E), then also AS1

satisfies these conditions by 1.7. Hence the functor A⊗S1 − : S1UAct→ Set
preserves pullbacks due to [24, Theorem 5.3]. By Lemma 1.5, AS is pullback
flat. It is unitary, because it satisfies Condition (P).

Remark 3.6. If S = ∅ but A 6= ∅ then AS has (P) and (E), but it cannot
be unitary (firm), because the mapping µA : A⊗∅→ A is not surjective.

The next result, which follows from Theorem 2 in [10], describes all
unitary acts that are projective objects in the category ActS .

Theorem 3.7. For an act PS over a semigroup S the following assertions
are equivalent.

1. PS is unitary and projective in ActS.

2. PS is firm and projective in ActS.

3. PS ∼=
∐
i∈I eiS where e2

i = ei ∈ S.

Proof. Equivalence of (1) and (3) is proved in Theorem 2 in [10]. Obviously,
(2) implies (1).
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(3) ⇒ (2). If e ∈ S is an idempotent, then est = es′t′ implies

es⊗ t = e⊗ est = e⊗ es′t′ = es′ ⊗ t′

in eS ⊗ S for all s, t, s′, t′ ∈ S. Thus acts of the form eS and also their
coproducts are firm.

Corollary 3.8. If S is a semigroup then every unitary projective act in ActS
is pullback flat.

Proof. A straightforward verification shows that acts of the form eS where
e is an idempotent of S satisfy Conditions (P) and (E). The same is true for
their coproducts.

Given an arbitrary semigroup S without idempotents, do we have any
examples of firm pullback flat S-acts? The answer to this question is not so
obvious. For example the act SS is unitary only if S is factorisable (that is,
S = SS) and the act S1

S is never unitary when S is nonempty. Still there is
a general construction which produces firm pullback flat acts.

Construction 3.9: Consider any sequence s = (si)i>1 of elements of S and
construct a right S-act M s

S as the quotient act of the coproduct (disjoint
union) ∐

k>1

{k} × S1

over k ∈ {1, 2, . . .} of right S-acts S1
S by the relation

(k, s) ∼ (k′, s′) ⇐⇒ (∃n > k, k′) sn . . . sks = sn . . . sk′s
′ .

We denote the equivalence class of (k, s) by [k, s]. As in [17] one can show
thatM s

S is a firm right S-act. A similar construction probably first appeared
in the proof of Lemma 1 in [11], where left acts over monoids were considered.
We call the acts M s

S the sequence acts over S.

Lemma 3.10. Sequence acts satisfy Condition (P) and Condition (E).

Proof. We prove (P), for (E) the proof is similar. Suppose that [k, s]z =
[k′, s′]z′. Then [k, sz] = [k′, s′z′] and there exists n > k, k′ such that

sn . . . sksz = sn . . . sk′s
′z′ .
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Putting u = sn . . . sks and v = sn . . . sk′s
′ we have uz = vz′,

[k, s] = [n+ 1, u] = [n+ 1, 1]u and [k′, s′] = [n+ 1, v] = [n+ 1, 1]v,

because

(sn+2sn+1 . . . sk)s = (sn+2sn+1)u, (sn+2sn+1 . . . sk′)s
′ = (sn+2sn+1)v .

Corollary 3.11. Sequence acts are firm and pullback flat.

Proposition 3.12. Let AS be a unitary act. Then every a ∈ A is in the
image of some morphism f : M s

S → AS for some s ∈ SN.

Proof. Let AS be a unitary act and a0 ∈ A. Then we can find sequences
(ai)i>1 and (si)i>1 of elements of A and S, respectively, such that

ai−1 = aisi

for each i ∈ N. Put s := (si)i>1 and define a mapping f : M s
S → A by

f([k, s]) := ak−1s.

(If s is the external identity in S1 then by ak−1s we mean ak−1.) To prove
that f is well defined, suppose that (k, s) ∼ (k′, s′). Then sn . . . sks =
sn . . . sk′s

′ for some n > k, k′. Hence

ansn . . . sks = ansn . . . sk′s
′,

which reduces to aksks = ak′sk′s
′ and finally to ak−1s = ak′−1s

′, as needed.
It is clear that f is a homomorphism of right S-acts. Also

f([1, 1]) = a01 = a0 .

The following is a semigroup theoretic analogue of Lemma 2.4 in [23].

Proposition 3.13. Every unitary right S-act is a homomorphic image of a
firm pullback flat S-act.
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Proof. Let AS be a unitary act. By previous proposition, for every a ∈ A we
can find a sequence sa ∈ SN and a homomorphism fa : M sa

S → AS such that
a lies in the image of fa. The coproduct (disjoint union) of acts satisfying
(P) and (E) satisfies (P) and (E). So taking

BS :=
∐

a∈A
M sa
S

we obtain a firm pullback flat act which maps surjectively on AS .

Directed colimits play an important role in relation to flatness. We recall
that a poset I is said to be up-directed, if it is non-empty and every two ele-
ments have an upper bound in I. We can view a poset I as a category in the
standard way (see page 11 in [22]). An up-directed system ((Ai)i∈I , (ϕij)i6j)
in a category C is our way of presenting the data of a functor I → C, where
i 7→ Ai and (i 6 j) 7→ ϕij .

Proposition 3.14. In the category ActS the directed colimit of any up-
directed system ((Ai)i∈I , (ϕij)i6j) exists, and may be constructed as
(A/θ, (ϕi)i∈I), where

1. A =
∐
i∈I

Ai;

2. a θ a′ (a ∈ Ai, a′ ∈ Aj) if and only if ϕik(a) = ϕjk(a
′) for some k > i, j;

3. for each i ∈ I and a ∈ Ai, ϕi(a) = [a]θ.

Lemma 3.15. Directed colimit of acts satisfying Condition (P) (Condition
(E)) also satisfies Condition (P) (Condition (E)).

Proof. We use the description given in Proposition 3.14. To prove the claim
for (P), suppose that [a]s = [a′]s′ where a ∈ Ai and a′ ∈ Aj . Then there
exists k > i, j such that ϕik(as) = ϕjk(a

′s′) in Ak. Since Ak satisfies (P),
we can find a′′ ∈ Ak and u, v ∈ S such that ϕik(a) = a′′u, ϕjk(a′) = a′′v and
us = vs′. Then ϕik(a) = ϕkk(a

′′u) and ϕjk(a′) = ϕkk(a
′′v), which implies

[a] = [a′′u] = [a′′]u and [a′] = [a′′v] = [a′′]v .

For Condition (E) the proof is analogous.
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Corollary 3.16. Any directed colimit of sequence acts over a semigroup S
satisfies Condition (P) and Condition (E).

We end this section with a small observation about equalizer flat acts.

Proposition 3.17. Unitary equalizer flat acts satisfy Condition (E).

Proof. If the functor A ⊗S − : SAct → Set preserves equalizers, then, by
Lemma 1.5, the functor A ⊗S1 − : S1UAct → Set also preserves equalizers.
Due to [16, Proposition 3.15.3], the act AS1 satisfies Condition (E). Since
AS is unitary, Lemma 1.7 implies that AS satisfies Condition (E).

4 Finite limit flatness and limit flatness

We will now look at the stronger condition of finite limit flatness. Directly
from the monoid case, we have the following.

Proposition 4.1. A nonempty act AS is finite limit flat if and only if the
act AS1 satisfies Condition (E) and is locally cyclic.

Proof. This follows from Lemma 1.5 and Theorem 3.1 in [7].

Analogously to pullback flatness, if we add the assumption of unitarity,
we can consider Conditions (E) and (LC) on AS itself.

Theorem 4.2. A nonempty act AS over a nonempty semigroup S is unitary
and finite limit flat if and only if it satisfies Conditions (E) and (LC).

Proof. Necessity. If A ⊗S − preserves finite limits then also A ⊗S1 −
preserves finite limits. Hence AS1 is locally cyclic and satisfies Condition
(E) by Theorem 3.1 in [7]. Now Lemma 1.7 implies that AS satisfies (E)
and (LC).

Sufficiency. Assume that AS satisfies Conditions (E) and (LC). Then
AS1 has the same properties by Lemma 1.7. By Theorem 3.1 in [7], A⊗S1−
preserves finite limits. But then also A⊗S − preserves finite limits.

For any semigroup, there exist a number of unitary finite limit flat acts.
The sequence acts, and any directed colimit thereof, provide a family of
examples.



Flatness properties of acts 73

Proposition 4.3. Any directed colimit of sequence acts is unitary and finite
limit flat.

Proof. A directed colimit of sequence acts satisfies Condition (E) by Corol-
lary 3.16. Every sequence act M s

S satisfies (LC), because it is a union of
cyclic subacts

[1, 1]S1 ⊂ [2, 1]S1 ⊂ [3, 1]S1 ⊂ . . . .
To complete the proof we need to show that a directed colimit of locally
cyclic acts is locally cyclic. We do this using the notation of Proposition
3.14, where Ai, i ∈ I, are assumed to satisfy (LC).

Take [a1]θ, [a2]θ ∈ A/θ. Then there exist i, j ∈ I such that a1 ∈ Ai and
a2 ∈ Aj . Since I is up-directed, there exists k > i, j. Using that Ak satisfies
(LC), for its elements ϕik(a1) and ϕjk(a2) there exist a ∈ Ak and s1, s2 ∈ S1

such that ϕik(a1) = as1 and ϕjk(a2) = as2. Now, in A/θ, we have

[a1]θ = ϕi(a1) = (ϕkϕik)(a1) = ϕk(as1) = ϕk(a)s1 = [a]θs1 ,

and, similarly, [a2]θ = [a]θs2.

Unitary limit flat acts, contrary to unitary finite limit flat acts, need not
exist. This turns out to be the case precisely when the semigroup S contains
no idempotents.

Proposition 4.4. A nonempty act AS is unitary and limit flat if and only
if AS ∼= eSS for some idempotent e ∈ S.

Proof. Necessity. If A⊗S− preserves limits then A⊗S1− preserves limits.
By Theorem 3.5 in [7], AS1

∼= eS1
S1 for some idempotent e ∈ S1. Then also

AS ∼= eS1
S . If e = 1 then eS1

S = S1
S , which is not unitary, a contradiction.

Hence e ∈ S and AS ∼= eS1
S = eSS .

Sufficiency. If AS ∼= eSS for some idempotent e ∈ S, then also
AS1
∼= eS1

S1 . By Theorem 3.5 in [7], A⊗S1 − preserves limits and thus also
A⊗S − preserves limits.

Remark 4.5. In some of the following results we have the assumption that
S is a firm semigroup, meaning that SS is a firm act, or equivalently that the
multiplication map S ⊗ S → S is invertible. We will note that all of these
statements can be reformulated (applying the methods used in [19]) for the
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more general case of factorisable semigroups (meaning SS = S) with minor
modifications to the statements and proofs. We have done this to improve
the clarity of the text for the reader.

Knowing that the categories UActS and FActS are coreflective subcat-
egories of ActS will help us with calculating limits and colimits in these
subcategories.

Lemma 4.6. If S is a factorisable semigroup, then the inclusion functor
UActS → ActS has a right adjoint U : ActS → UActS, which maps an act
AS to the subact

U(A) = AS = {as | a ∈ A, s ∈ S} .
On morphisms U acts by restricting the domain and the codomain. The
coreflection functor U preserves directed colimits.

Proof. The functor U is the coreflection functor by [18, Proposition 3.10]. To
see that U preserves directed colimits, let a colimit of an up-directed system
((Ai)i∈I , (ϕij)i6j) in ActS be constructed as in Proposition 3.14. Consider a
cocone (BS , (ψi)i∈I) on the system ((AiS)i∈I , (U(ϕij))i6j) in UActS . Define
a mapping ν : (A/θ)S → B by putting

ν([a]s) := ψi(as)

for every [a]s ∈ (A/θ)S, where a ∈ Ai. If [a]s = [a′]s′, a ∈ Ai, a
′ ∈ Aj ,

s, s′ ∈ S, then ϕik(as) = ϕjk(a
′s′) for some k > i, j. Hence

ψi(as) = (ψkU(ϕik))(as) = (ψkU(ϕjk))(a
′s′) = ψj(a

′s′) ,

so ν is well defined. Clearly ν is a morphism of right S-acts and unique with
the property that νU(ϕi) = ψi for all i ∈ I.

Lemma 4.7. If S is a firm semigroup, then the inclusion functor FActS →
ActS has a right adjoint −⊗ S : ActS → FActS, which is simply the functor
of tensoring on the right with the biact SSS. The coreflection functor −⊗S
preserves all colimits.

Proof. The functor −⊗ S is a coreflection functor according to [18, Propo-
sition 3.9]. It preserves all colimits, because it has a right adjoint

ActS(S,−) : FActS → ActS

induced by the tensor-hom adjunction.
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We will recall how to calculate limits and colimits in coreflective subcat-
egories.

Remark 4.8. Suppose H is a coreflective subcategory of a complete and
cocomplete category C with a coreflector functor F : C → H. Then, given a
diagram D : D → H in the subcategory H, we have

• limH(D) ∼= F (limC(D)) and

• colimH(D) = colimC(D).

In particular, this implies that when we are talking about a colimit of firm
acts (unitary acts), we do not need to specify whether we are taking the
colimit in FActS (UActS) or ActS , since the colimits will coincide.

Lemma 4.9. If S is a semigroup, AS is a firm S-act and SB any left S-act,
then we have an isomorphism A ⊗ SB ∼= A ⊗ B natural in A ∈ FActS and
B ∈ SAct.

Proof. Let i : SB → B denote the inclusion and let νB be the multiplication
map S ⊗B → SB, s⊗ b 7→ sb.

Let us define the inverse h : A ⊗ B → A ⊗ SB of the mapping
1⊗ i : A⊗ SB → A⊗B as the composite map

A⊗B µ−1
A ⊗1−−−−→ A⊗ S ⊗B 1⊗ν−−→ A⊗ SB .

Naturality of the map 1 ⊗ i is trivial, so let us check that 1 ⊗ i and h are
mutually inverse. Take arbitrary a ∈ A and b ∈ B. Since AS is unitary,
there exist a′ ∈ A and s ∈ S such that a = a′s = µA(a′ ⊗ s). Then

((1⊗ i)h)(a⊗ b) = ((1⊗ i)(1⊗ ν)(µ−1
A ⊗ 1))(a⊗ b)

= ((1⊗ i)(1⊗ ν))(a′ ⊗ s⊗ b)
= (1⊗ i)(a′ ⊗ sb)
= a′ ⊗ sb
= a′s⊗ b
= a⊗ b .
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Also, for any a ∈ A, b ∈ B and s ∈ S we have

(h(1⊗ i))(a⊗ sb) = ((1⊗ ν)(µ−1
A ⊗ 1))(a⊗ sb)

= ((1⊗ ν)(µ−1
A ⊗ 1))(as⊗ b)

= (1⊗ ν)(a⊗ s⊗ b)
= a⊗ sb .

We are now ready to prove that for a firm semigroup, the notion of
pullback flatness (finite limit flatness) could just as well be defined with
respect to the category of firm acts.

Theorem 4.10. The following statements are equivalent for a firm semi-
group S, a firm right S-act AS and a small category D:

1. the functor A⊗− : SAct→ Set preserves D-limits,

2. the functor A⊗− : SUAct→ Set preserves D-limits,

3. the functor A⊗− : SFAct→ Set preserves D-limits.

Proof. (1)⇒ (2). By the left-right dual of Lemma 4.6 we know that SUAct is
a coreflective subcategory of SAct, with the coreflection functor U : SAct→
SUAct given by B 7→ SB = {sb | s ∈ S, b ∈ B}.

Now, let AS be such that A⊗− : SAct→ Set preserves D-limits. Given
a diagram D : D → SUAct, we can calculate as follows:

A⊗
SUAct

lim
i

D(i) ∼=A⊗ S(
SAct

lim
i
D(i)) (by Remark 4.8)

∼=A⊗
SAct

lim
i
D(i) (by Lemma 4.9)

∼=
Set
lim
i

(A⊗D(i)). (by assumption)

(2)⇒ (1). Let AS be such that A⊗− : SUAct→ Set preserves D-limits.
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Then for a diagram D : D → SAct we have

A⊗
SAct

lim
i
D(i) ∼= A⊗ U(

SAct

lim
i
D(i)) (by Lemma 4.9)

∼= A⊗
SUAct

lim
i

D(i) (by Remark 4.8)

∼=
Set
lim
i

(A⊗D(i)) . (by assumption)

(1) ⇔ (3). Analogous to the proof of (1) ⇔ (2), with the identity
A ⊗ SB ∼= A ⊗ B replaced by A ⊗ (S ⊗ B) ∼= A ⊗ B, since the coreflec-
tion functor SAct→ SFAct is given by SB 7→ S ⊗B (Lemma 4.7).

How far is pullback flatness from being firm and pullback flat? In general,
we do not know a canonical way of turning a pullback flat act into a firm act
while retaining pullback flatness. When S is firm, then the canonical firm
act associated with an act AS is A ⊗ S. We observe that this assignment
need not always preserve pullback flatness.

Proposition 4.11. The functor − ⊗ S : ActS → ActS preserves pullback
flatness (equalizer flatness, finite limit flatness) if and only if SS is a pullback
flat (equalizer flat, finite limit flat) right S-act.

Proof. We will prove this for pullback flatness. The proof is similar for the
other flatness properties.

Necessity. Suppose that − ⊗ S : ActS → ActS preserves pullback
flatness. By the dual of Lemma 2.3, the functor SS1 ⊗ − : SAct → SAct is
naturally isomorphic to the identity functor of SAct, in particular it preserves
pullbacks. Then the functor S1 ⊗ − : SAct → Set also preserves pullbacks,
that is, S1

S is a pullback flat right S-act. By assumption, the right S-act
S1 ⊗ S ∼= SS (the dual of Lemma 2.3) is pullback flat.

Sufficiency. Assume that the functor S ⊗ − : SAct → Set preserves
pullbacks. Then S ⊗ − : SAct → SAct also preserves pullbacks. Therefore,
whenever AS is a right S-act and A ⊗ − : SAct → Set preserves pullbacks,
the functor

(A⊗ S)⊗− ∼= A⊗ (S ⊗−) = (A⊗−) ◦ (S ⊗−) : SAct→ Set

preserves pullbacks, meaning that A⊗ S ∈ ActS is pullback flat.
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Example 4.12. The following four-element semigroup S is firm but the act
SS does not satisfy Conditions (E), (P) or (LC):

0 a b c

0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
c 0 0 b c

.

Indeed,

• S is firm, because c is a right identity element;

• SS does not satisfy (LC), because the Cayley table has no row con-
taining both a and b (there is no span connecting a and b in the
semicategory El(SS));

• SS does not satisfy (P), because a and b are connected by a cospan in
El(SS) (a0 = b0), but not by a span;

• SS does not satisfy (E), because for the parallel morphisms a, b : a→ 0
in El(SS) (aa = ab = 0), there is only one arrow into a, namely
c : a→ a (ac = a), but ca = 0 6= b = cb.

On the other hand, if a semigroup has a left identity element e, then S
is firm and SS = eSS has (LC), (E) and (P) (see the diagram in Section 8).

5 Pure epimorphisms

In this section we look at a description of firm pullback flat acts using pure
epimorphisms. The advantage of this description is that it can be formulated
in purely category theoretic terms (which we will do in Section 6). The
approach is that of Section 4 of [24], which we will translate to the semigroup
case using the isomorphism of categories in Lemma 1.4, starting with finitely
presentable acts.

An act is finitely presentable if it can be given a presentation with a
finite number of generators and a finite number of equations. To be more
precise, an act is finitely presentable if it is isomorphic to a quotient of a
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free act on a finite set by a congruence generated by a finite relation. We
will now explain in more detail what this means.

First we take a look at free acts on sets. Let us consider an assignment
F which takes a nonempty set X to the right S-act X × S1 with the action

(x, s)t := (x, st)

and a nonempty mapping f : X → Y to a right S-act morphism

F(f) : X × S1 → Y × S1, (x, s) 7→ (f(x), s) .

Also, F will take the empty set to the empty act, and empty mappings to
empty mappings. It is easy to check that F : Set→ ActS is a functor.

Lemma 5.1. The functor F is left adjoint to the forgetful functor U :
ActS → Set.

Proof. The unit η : 1Set ⇒ UF and the counit ε : FU ⇒ 1ActS are defined
by

ηX : X → X × S1, x 7→ (x, 1),

εAS : A× S1 → A, (a, s) 7→ as.

A straightforward verification shows that η and ε are natural transforma-
tions. The triangle equalities hold because

(εX×S1 ◦ F(ηS))(x, s) = εX×S1((x, s), 1) = (x, s)1 = (x, s1) = (x, s),

(U(εA) ◦ ηU(A))(a) = εA(a, 1) = a1 = a.

Therefore the following definition is justified.

Definition 5.2. A right S-act is called free on a set X if it is isomorphic to
the act X × S1. Finitely generated free S-acts are those isomorphic to

{1, . . . , n} × S1

for some n ∈ N, and the empty act.

Proposition 5.3. Every free right S-act is projective in ActS.
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Proof. Consider a free S-act X×S1, an epimorphism (surjective morphism)
π : AS → BS and a morphism f : X × S1 → BS in ActS . For every x ∈ X
we choose ax ∈ A such that π(ax) = f(x, 1). Defining g : X × S1 → A by

g(x, s) := axs

we have πg = f .

Definition 5.4. We say that an S-act BS is finitely presentable if there exist
a finitely generated free act FS and a finite subset H ⊆ F × F such that

BS ∼= F/ρ(H) ,

where ρ(H) is the smallest congruence on FS containing the set H.

Example 5.5. Every free act on a finite set is finitely presentable, since
ρ(∅) is the equality relation and F/ρ(∅) = FS .

Next we consider pure epimorphisms of S-acts. Note that epimorphisms
in ActS are the surjective homomorphisms.

Definition 5.6 ([4]). A surjective S-act morphism ϕ : BS → AS is called a
pure epimorphism if for every finitely presentable S-act CS and morphism
ψ : CS → AS there exists a morphism µ : CS → BS such that ϕµ = ψ.

The following proposition is a version of Proposition 4.3 from [24] for
acts over semigroups.

Proposition 5.7. Let ϕ : BS → AS be a surjective morphism of S-acts.
Then the following assertions are equivalent:

1. ϕ is a pure epimorphism.

2. Whenever a1, ..., an ∈ A and

aα1s1 = aβ1t1
. . .

aαmsm = aβmtm

,

where αj , βj ∈ {1, ..., n} and sj , tj ∈ S1, there exist b1, ..., bn ∈ B such
that ϕ(bi) = ai for every i ∈ {1, . . . , n} and

bα1s1 = bβ1t1
. . .

bαmsm = bβmtm

.



Flatness properties of acts 81

Proof. We observe that AS is free or finitely presentable if and only if AS1

is free or finitely presented in the sense of [24]. Thus ϕ : BS → AS is a pure
epimorphism if and only if it is a pure epimorphism in UActS1 in the sense
of [24]. By Proposition 4.3 of that article, the latter is equivalent to the fact
that AS1 satisfies condition (2). But AS1 satisfies condition (2) if and only
if AS does so.

Corollary 5.8. For any S-act AS, the morphism µA : A⊗S → A is a pure
epimorphism if and only if it is an isomorphism (that is, when AS is firm).

Proof. Sufficiency being clear, let us prove necessity. If µA is a pure epi-
morphism then it is surjective. We need to check that it is injective. Sup-
pose that as = a′s′, a, a′ ∈ A, s, s′ ∈ S. By Proposition 5.7, there exist
a1⊗u, a2⊗v ∈ A⊗S such that (a1⊗u)s = (a2⊗v)s′, a = µA(a1⊗u) = a1u
and a′ = µA(a2 ⊗ v) = a2v. Hence

a⊗ s = a1u⊗ s = a1 ⊗ us = (a1 ⊗ u)s = (a2 ⊗ v)s′ = a2 ⊗ vs′
= a2v ⊗ s′ = a′ ⊗ s′

in A⊗ S.

Thus if AS is a unitary act which is not firm then µA is an epimorphism
which is not pure. Such acts indeed exist (see Example 2.12 in [20]).

We will now translate the purity-based description of pullback flatness
given in Theorem 5.3 of [24] to the setting of acts over semigroups.

Proposition 5.9. A right S-act AS is pullback flat if and only if every
surjection BS → AS is a pure epimorphism.

Proof. Theorem 5.4 in [24] applied to the monoid S1 tells us that AS1 is a
pullback flat unitary act over the monoid S1 precisely when every surjection
BS → AS is a pure epimorphism in UActS1 . We can observe that the iso-
morphism of categories in Lemma 1.4 preserves and reflects pullback flatness
(Lemma 1.5) and pure epimorphisms, so the result for AS follows.
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6 Purity and flatness in the category of firm acts

In this section our goal is to characterize flatness using pure epimorphisms
in the category FActS of firm right S-acts. We would like to do so without
the definitions being dependent on FActS being a subcategory of ActS . Un-
fortunately we can not translate Definition 5.4 directly to the case of FActS ,
since the forgetful functor from FActS to Set need not have a left adjoint
(cf. Lemma 5.1), meaning that we do not have a notion of a free firm act
on a set. We will switch to a definition of “finitely presentable” that does
not depend on the notion of freeness. In the setting of locally finitely pre-
sentable categories (standard reference: [1]), aspects of pure epimorphisms
were studied in [4]. To borrow their definition of flatness, we will start by
recounting basic definitions of that setting.

Definition 6.1 ([1, Def. 1.1]). An object A in a category C is said to be
finitely presentable if the representable functor C(A,−) : C → Set preserves
directed colimits.

Put into more elementary terms, if ((Ai)i∈I , (ϕij)i6j) is an up-directed
system in a category C with a colimit (A, (ϕi)i∈I), then a representable
functor C(C,−) : C → Set preserves that colimit if and only if

1. each morphism C → A factors through ϕi : Ai → A for some i ∈ I,

2. for each i ∈ I and g, h : C → Ai, if ϕig = ϕih, then ϕijg = ϕijh for
some j > i.

In any variety in the sense of Universal Algebra, an object satisfies Defi-
nition 6.1 precisely when it satisfies a condition in the style of Definition 5.4
([1, Theorem 3.12]), so our two notions of being finitely presentable are com-
patible. Using this new definition, a pure epimorphism can be defined in any
category as an epimorphism B → A, through which every morphism C → A,
with C finitely presentable, factors.

In ActS , as well as in any other variety of algebras, finitely presentable
objects play a special role, in that we can fix some set of them, such that
every object is a directed colimit of objects in that set. A cocomplete cate-
gory with that property is said to be locally finitely presentable. Any variety
is an example of this (Corollary 3.7 of [1]), so we have the following.
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Proposition 6.2. ActS is a locally finitely presentable category.

In [4] an object A in a locally finitely presentable category is called flat if
every strong epimorphism B → A is a pure epimorphism. For convenience,
in the following this property will be referred to as BR-flatness. To see that
in the category ActS this condition coincides with the one in Proposition 5.9,
we will need to observe that strong epimorphisms in ActS are precisely the
surjective act morphisms.

Proposition 6.3. If S is a firm semigroup, then epimorphisms and strong
epimorphisms in ActS and FActS are precisely the surjective act morphisms.

Proof. By the dual of Lemma 1.4, the category ActS is isomorphic to UActS1 ,
which is the category of contravariant functors from S1 (viewed as a one ob-
ject category) to Set. Colimits and limits in a functor category are calculated
pointwise, which implies that epimorphisms in UActS1 , and by extension in
ActS , are precisely the surjective maps, and all epimorphisms are regular
and strong (see Example 4.3.10.g in [3]).

Since FActS is a coreflective subcategory of ActS by Lemma 4.7, a mor-
phism f : AS → BS is an epimorphism in FActS precisely when it is an
epimorphism in ActS , meaning that f is an epimorphism in FActS precisely
when it is surjective.

Since strong epimorphisms in FActS are epimorphisms, they must be
surjective. Conversely, suppose f : AS → BS is a surjective morphism in
FActS . Then it is a regular epimorphism in ActS , meaning that it is the
coequalizer of some pair of morphisms u, v : CS → AS in ActS . Since the
coreflection functor −⊗S : ActS → FActS preserves all colimits (Lemma 4.7),
the morphism f ⊗ 1S : A ⊗ S → B ⊗ S is the coequalizer of the pair of
morphisms u ⊗ 1S , v ⊗ 1S : C ⊗ S → A ⊗ S in FActS , which means that
f ⊗ 1S is a regular epimorphism in FActS .

From this it follows that f is a regular epimorphism in FActS , since the
naturality of µ implies that µB(f ⊗ 1) = fµA, in which µA and µB are
isomorphisms, because AS and BS are firm acts. This concludes the proof,
since regular epimorphisms are strong epimorphisms (Proposition 4.3.6 in
[3]).

Proposition 6.4. If S is a firm semigroup then
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1. a unitary right S-act is finitely presentable in UActS if and only if it
is finitely presentable in ActS,

2. a firm right S-act is finitely presentable in FActS if and only if it is
finitely presentable in ActS.

Proof. (1) Suppose AS is a unitary act finitely presentable in UActS and sup-
pose ((Ci)i∈I , (ϕij)i6j) is an up-directed system in ActS . Letting I : UActS →
ActS denote the inclusion functor (left adjoint to the functor U : ActS →
UActS), we have

ActS(A,
ActS

colimCi) = ActS(IA,
ActS

colimCi) (I is the inclusion)

∼= UActS(A,U(
ActS

colimCi)) (I a U)

∼= UActS(A,
UActS
colimU(Ci))
(U pres. dir. colimits by Lemma 4.6)

∼=
Set

colim UActS(A,U(Ci))
(A is finitely presentable in UActS)

∼=
Set

colim ActS(IA,Ci) (I a U)

=
Set

colim ActS(A,Ci) , (I is the inclusion)

meaning that the representable functor ActS(A,−) : ActS → Set preserves
directed colimits.

Conversely, if a AS is a unitary act such that ActS(A,−) : ActS → Set
preserves directed colimits of arbitrary acts, it will surely preserve directed
colimits of unitary acts.

(2) This can be proved similarly, using the fact that the coreflection func-
tor −⊗S : ActS → FActS preserves arbitrary colimits, since it is left adjoint
to the functor ActS(S,−) : FActS → ActS via the tensor-hom adjunction (see
Proposition 3.9 and the diagram on page 260 in [18]).

Example 6.5. In the following results, we have the condition of SS being
finitely presentable in ActS . Here are some examples of semigroups that
satisfy this condition:
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1. finite semigroups,
2. monoids,
3. right zero semigroups (semigroups satisfying the identity xy = y).

Proposition 6.6. Let S be a firm semigroup. Then the functor
− ⊗ S : ActS → FActS takes finitely presentable acts to finitely presentable
acts if and only if SS is finitely presentable in ActS.

Proof. Necessity. By the left-right dual of Lemma 2.3 we have that
SS ∼= S1 ⊗ S in ActS . Since S1

S is the free right S-act on one generator, it
is finitely presentable in ActS , which implies that SS ∼= S1 ⊗ S is finitely
presentable in FActS by assumption, and by Proposition 6.4 also finitely
presentable in ActS .

Sufficiency. Let AS be a finitely presentable act in ActS and let
((Ci)i∈I , (ϕij)i6j) be an up-directed system in FActS . Given a biact TBS ,
notice that if the representable functor ActS(BS ,−) : ActS → Set preserves
some specific colimit, then also ActS(TBS ,−) : ActS → ActT preserves that
colimit. Then

FActS(A⊗ S,
FActS
colimCi) = ActS(A⊗ S,

ActS
colimCi) (Remark 4.8)

∼= ActS(A,ActS(S,
ActS

colimCi))
(tensor-hom adjunction)

∼= ActS(A,
ActS

colim ActS(S,Ci))
(SS is finitely presentable)

∼=
Set

colim ActS(A,ActS(S,Ci))
(AS is finitely presentable)

∼=
Set

colim ActS(A⊗ S,Ci) (tensor-hom adjunction)

=
Set

colim FActS(A⊗ S,Ci) .

Corollary 6.7. If S is a firm semigroup such that SS is finitely presentable
in ActS, then FActS is a locally finitely presentable category.

Proof. By Proposition 6.2 ActS is locally finitely presentable, meaning any
firm act AS is a directed colimit of some system ((Ai)i∈I , (ϕij)i6j) of acts
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finitely presentable in ActS . By Proposition 6.6, AS ∼= A⊗ S is the colimit
(in FActS) of the directed system ((Ai ⊗ S)i∈I , (ϕij ⊗ 1S)i6j) of firm acts
finitely presentable in FActS .

Proposition 6.8. If S is a firm semigroup and SS is finitely presentable
in ActS, then a morphism f : AS → BS in FActS is a pure epimorphism in
FActS precisely when f is a pure epimorphism in ActS.

Proof. Necessity. By Proposition 3 of [2], a morphism in a locally finitely
presentable category C with pullbacks is a pure epimorphism if and only if it
is a directed colimit of split epimorphisms, taken in the category of arrows of
C (see Example 1.55(1) in [1]). The category of arrows of C is the category
of functors from the category with two objects and one nontrivial arrow
between them, to the category C. This means we can calculate colimits in the
category of arrows pointwise (separately for the domain and the codomain
of the arrow).

Note that both ActS and FActS have pullbacks. Additionally, ActS is
locally finitely presentable by Proposition 6.2 and FActS is locally finitely
presentable by Proposition 6.7. Since the inclusion FActS → ActS preserves
split epimorphisms and all colimits, it will preserve pure epimorphisms.

Sufficiency. Suppose f : A → B is a morphism of FActS , which is
a pure epimorphism in ActS . This means that every morphism P → B in
ActS with P finitely presentable factors through f . Since any object finitely
presentable in FActS is also finitely presentable in ActS by Proposition 6.4,
f is also a pure epimorphism in FActS .

Lemma 6.9 (Observation 11 in [2]). If C is a locally finitely presentable
category and f : A→ B and g : B → C are morphisms of C such that gf is
a pure epimorphism, then g must be a pure epimorphism.

We can now prove that for suitable firm semigroups, the pullback flatness
condition from Proposition 5.9 also works in the context of the category of
firm acts, similarly to how pullback flatness extends to the context of firm
acts via Theorem 4.10.

Theorem 6.10. Let S be a firm semigroup such that SS is finitely pre-
sentable. Then a firm act AS is BR-flat in FActS if and only if it is BR-flat
in ActS.
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Proof. Necessity. Given a firm act AS which is BR-flat in FActS , we will
show that AS is also BR-flat in ActS . Let BS be any right S-act along with a
surjective morphism f : BS → AS . Then the mapping f⊗1S : B⊗S → A⊗S
is also surjective and by firmness of AS , the map µA : A⊗S → A is surjective.
Therefore we have a surjective morphism fµB = µA(f ⊗ 1) : B ⊗ S → A,
which lies in FActS , because B ⊗ S is firm by Corollary 3.4 in [18].

B ⊗ S A⊗ S

B A .

f ⊗ 1

µB µA

f

By assumption fµB must be a pure epimorphism in FActS and by Proposi-
tion 6.8 also a pure epimorphism in ActS . Lemma 6.9 now implies that f is
a pure epimorphism in ActS . We have shown that AS is BR-flat in ActS .

Sufficiency. This is clear because of Proposition 6.8 and Proposi-
tion 6.3.

7 Flatness properties of acts over the free semigroup on one
generator

As an example, let us consider the case where S = (N,+) is the free semi-
group on one generator 1 ∈ S. Then a right N-act AN can be pictured using
a directed graph (where loops are allowed) with elements of A as vertices
and an arrow a→ a′ existing precisely when a1 = a′. This graph is obtained
from the semicategory El(AN) by discarding all arrows s, where s > 2. Two
acts AN and BN are equal or isomorphic precisely when the corresponding
graphs are.

By an infinite chain we mean a graph of the form

. . .→ an−2 → an−1 → an → an+1 → an+2 → . . . .
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By a cycle we mean a graph

a0 a1

a2

a3

an−1

. . .

including the length 1 cycles (loops). In such a case AN is isomorphic to
Z/nZ with N-action (z, n) 7→ z + n.

Proposition 7.1. A nonempty act AN

1. is unitary if and only if every vertex of its graph has at least one
incoming arrow,

2. satisfies Condition (E) if and only if its graph has no cycles,

3. satisfies Condition (LC) if and only if its graph is an infinite chain, a
cycle, or a downwards infinite chain with a terminating cycle on top
(as in Example 7.3(1)).

Proposition 7.2. For a nonempty act AN the following conditions are equiv-
alent:

1. AN satisfies Condition (P),

2. AN is firm,

3. every vertex of the graph of AN has precisely one incoming arrow,

4. AN is a disjoint union of subacts whose graph is either an infinite chain
or a cycle.

Example 7.3. 1. An act satisfying (LC), but neither (E) or (P):

. . . an−1 an an+1

an+2an+3

.
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2. An act satisfying Condition (E), but neither (P) or (LC):

. . . an−1 an an+1

bn−1. . .

. . .

.

3. An act satisfying Condition (P), but neither (E) or (LC):

. . . an−1 an an+1

b2

. . .

b1

b3b4

.

8 Conclusion

We end with a diagram that shows the relationships between properties of
nonempty acts over a nonempty semigroup S. The lines represent inclusions
between classes of acts, bigger classes being lower. We point out that, by
[9, Corollary 4.4], acts of the form eS where e2 = e ∈ S can be described up
to isomorphism as unitary S-acts AS such that the hom-functor ActS(A,−) :
ActS → Set preserves Rees exact sequences. We also mention that in some
sense the simplest act SS need not have any of the properties shown here,
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in sharp contrast with the monoid case.

S1 eS seq. act

free unit. proj. firm fin. lim. flat

fin. pres. proj. firm PF (LC)

(P) firm EF

unitary flat

firm

unitary

(E)
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