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Abstract

Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection,
which in the absence of treatment leads to AIDS and death in almost all infected individuals.
HIV infection elicits a vigorous immune response starting about 2-3 weeks post infection
that can lower the amount of virus in the body, but which cannot eradicate the virus.
How HIV establishes a chronic infection in the face of a strong immune response remains
poorly understood. It has been shown that HIV is able to rapidly change its proteins via
mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTL). Typically,
an HIV-infected patient will generate 4-12 CTL responses specific for different parts of viral
proteins called epitopes. Such CTL responses lead to strong selective pressure to change
the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the
viral population “escapes” from about half of the CTL responses by mutation in the first
year. Here we review experimental data on HIV evolution in response to CTL pressure,
mathematical models developed to explain this evolution, and highlight problems associated
with the data and modeling efforts.
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1 Introduction

Viruses replicate within cells. In order for the immune system to recognize that a cell is infected,
fragments of viral proteins or peptides, typically 8-10 amino acids in length, called epitopes, are
presented on the surface of infected cells bound to major histocompartibility complex (MHC)
class I molecules [1, 2]. These complexes of viral peptides and MHC-I molecules are then recog-
nized by cytotoxic T lymphocytes (CTLs) and this recognition leads to the death of virus-infected
cells [3].

Because CTLs can recognize and kill virus-infected cells, they play an important role in the
control of many viral infections. However, many viruses, including cytomegalovirus and HIV
persist, developing into chronic infections despite very strong virus-specific CTL responses [4, 5].
Viruses have evolved different strategies to avoid recognition by CTL including downregulation
of MHC-I molecules [6, 7] and generation of mutants that are not recognized by CTLs, a process
called “escape”. Some of these mutations affect binding of viral peptides to MHC-I molecules
and other mutations affect the ability of CTLs to recognize the peptide-MHC complex. As a
result, viral mutants that are not recognized by epitope-specific CTLs have a selective advantage
and accumulate in the population over time [5].

Escape of HIV from CTL responses has been documented from months to years after in-
fection [8, 9, 10, 5, 11, 12, 13] and escape from T cell immunity may potentially drive disease
progression [14]. Also escape from CTL responses may influence the efficacy of vaccines that aim
at stimulating T cell responses. Thus, understanding the contribution of different factors to the
rate and timing of viral escape from CTL responses may help in designing better HIV vaccines.

A number of mathematical models have been developed to describe the kinetics of viral escape
from T cell immunity. Here we review some of these models, show novel model developments,
and discuss directions of future research.

2 Modeling viral escape from a single CTL response

During acute HIV infection there are several HIV-specific CTL responses (on average around
7 [15, 10]), each recognizing a different viral epitope. As the virus can escape from all these
responses escapes do not generally occur at the same time; some escapes occur very early in
infection and some late [16]. Initial models of viral escape only examined virus evolution in
response to a single CTL response [17, 18, 19] and we will discuss these first.

2.1 Mathematical model

To describe virus escape from a single CTL response we start with the standard model for virus
dynamics in which virus infects target cells, i.e., cells susceptible to infection, and infected cells
produce virus (Figure 1). The model is formulated as a system of ordinary differential equations
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Figure 1: Schematic illustration of the model of virus dynamics and escape from a CTL response.
Symbols are defined in the text.

dT

dt
= λ− dT − βT (Vw + Vm), (1)

dIw
dt

= (1− µ)βTVw − (δ + k)Iw, (2)

dIm
dt

= µβTVw + βTVm − δIm, (3)

dVw

dt
= pwIw − cV Vw, (4)

dVm

dt
= pmIm − cV Vm, (5)

where T is the density of uninfected target cells, produced at rate λ and dying at per capita
rate d. Infection is assumed to occur via a mass-action like term with rate constant β. Cells
can be infected with either wild-type (the infecting strain) virus, Vw, or escape mutant virus, Vm

leading to the generation of infected cells, Iw and Im, respectively. Infected cells are assumed to
die at rate δ per cell due to viral cytopathogenic effects, and at rate k per cell due to killing by
CTLs. Since the escape variant is not recognized by CTLs, the term proportional to k is absent
in the Im equation. When an infecting virus is reverse transcribed errors in copying occur at the
mutation rate µ. We neglect back mutation from mutant to wild-type but this could easily be
added to the model. The constants pw and pm are the rates of virus production by cells that are
infected with the wild-type and escape viruses, respectively, and cV is the clearance rate of free
viral particles.

In this model we made several simplifying assumptions. We assumed that the wild-type and
escape viruses differ only in the rate of virus production; generally pw ≥ pm (but see [10]). It is
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also possible that mutations that lead to escape from the CTL response also affect viral infectivity,
β, especially if they occur in the envelope, reverse transcriptase or integrase-coding regions of
the viral genome. Because viral particles are short-lived in vivo [20, 21, 22], a quasi-steady state
is rapidly established in which the density of viral particles is proportional to the density of
virus-infected cells, Vw = Iwpw/cV and Vm = Impm/cV . Then by substituting r = pwβT/cV ,
c = 1− pm/pw, w = Iw, m = Im, we arrive at a simpler model for the dynamics of the density of
wild-type and mutant viruses:

dw(t)

dt
= (1− µ)rw(t)− (δ + k)w(t), (6)

dm(t)

dt
= r(1− c)m(t) + µrw(t)− δm(t), (7)

where r and r(1− c) are the replication rates of the wild type and the mutant, respectively; c is
the cost of the escape mutation defined as a selection coefficient [23, 24]. To analyze this model,
it is useful to rewrite eqns. (6)–(7) in terms of the dynamics of the ratio of the mutant to the
wild-type density, z(t) = m(t)/w(t)

dz(t)

dt
=

dm(t)

dt

1

w(t)
− z(t)

w(t)

dz(t)

dt
= µr + z(t) (k − r(c− µ)) , (8)

Assuming a constant replication rate, r, and CTL killing rate, k, eqn. (8) can be solved analyti-
cally, where the ratio, z(t), increases exponentially with the rate ε = k− r(c−µ) ≈ k− cr (when
µ � c) which we call escape rate, i.e.,

z(t) = z0e
εt +

µr

ε

�
eεt − 1

�
, (9)

where z0 is the ratio at t = 0. In the examples we give below, the initial time, t = 0, is the time
when patients are first identified as being HIV-infected and are enrolled in a clinical study. This
time of enrollment is likely to be several weeks after initial infection [25, 26]. Similarly, the onset
of CTL selection tends to be a few weeks after infection [25, 26]. Equation 9 is only valid after
the CTL selection has started and one has to allow for the uncertainty of t = 0 relative to the
onset of selection by adjusting z0.

The dynamics of the ratio in eqn. (9) is described by 3 parameters but only 2 parameters can
in general be estimated from the available viral sequence data. Therefore, two limiting cases of
the general model can be found. If rate of mutation is small and the escape variant is initially
present at a non-negligible frequency so that z0 > 0, then the generation of escape variants by
mutation may be neglected, and the frequency of the escape variant in the viral population is
given by the logistic equation

f(t) =
f0

f0 + (1− f0)e−εt
, (10)
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quantity symbol value references
average mutation rate µ 2× 10−5/base/gen [27]
net viral increase rate r − δ 0.9− 1.3 day−1 [28]
free virus decay rate cV 23 day−1 [21]
infected cell death rate δ 1− 2 day−1 [20, 29]
virus production per cell
(burst size)

B 5× 104 [30]

effective population size Ne 103 − 107 [20, 31, 32]
virus infectivity β varies —

Table 1: Parameters determining dynamics of HIV as estimated in some previous studies. Here the
viral increase rate is the rate at which HIV RNA accumulates in the blood during first weeks of infection,
r = βλpw/(cV d) (see eqn. (2)). There are no direct estimates of virus infectivity but its value can be
adjusted to satisfy the condition r − δ ≈ 1 day−1 observed during acute infection. Estimates of the
effective population size, which in case of HIV infection is the number of virally infected cells, vary
dramatically depending on the study. The rate of virus production by infected cells is p = Nδ. Not all
virions produced by infected cells are infectious; the ratio of infectious to noninfectious HIV is on the
order of 10−2 − 10−4 [33, 34, 35].

where f0 = z0/(1 + z0) is the initial frequency of the escape variant in the population. Alterna-
tively, if the initially escape variant is not present and is generated by mutation from the wild
type (i.e., µ > 0 and z0 = 0) then the frequency of the escape variant in the population is given
by

f(t) =
z(t)

1 + z(t)
=

f0
f0 + (1− f0)e−εt

×
�
1− e−εt

�
, (11)

where now f0 = µr/ε. It should be noted that at large times tε � 1, the dynamics predicted by
eqn. (11) and eqn. (10) are identical. In a later section we discuss the situation where the escape
variant is generated stochastically by mutation.

By fitting eqn. (11) or eqn. (10) to experimental data, rates of viral escape ε from a given
CTL response can be estimated. In many previous studies, the logistic equation (eqn. (10))
that assumes that both wild-type and escape variant were present at t = 0, has been used
[18, 19, 10, 16].

The basic model assumes that the rate of viral escape from a given CTL response is constant
over time. Biologically, however, immune mediated selective pressure is likely to change over
time, for example, because of the change in magnitude of the epitope-specific CD8+ T cell
responses [10]. If the escape rate changes exponentially over time, e.g., ε(t) = ε0e−at, the change
in the frequency of the mutant virus in the population over time can be obtained analytically by
solving eqn. (8)
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z(t) =

�
z0e

ε0
a +

µ

a

�
φ
�ε0
a

�
− φ

�
ε0e−at

a

���
exp

�
−ε0e−at

a

�
, (12)

f(t) =
z(t)

1 + z(t)
, (13)

where φ(x) = −
�∞
x

e−t

t dt. As before to reduce the number of parameters in the model we can
assume that either the escape variant is present at t = 0 (µ = 0) or is generated by mutation
(z0 = 0).

2.2 Data and estimating model parameters

Evasion of the CTL response by HIV occurs as the virus mutates epitopes that are recognized by
virus-specific CTLs. This escape process can be studied by monitoring the sequence composition
of the viral population during infection. Over the last few years, detection of viral escape
mutations has been improved in two major ways. First, HIV RNA isolated from peripheral
blood is diluted to the point that a single RNA molecule is expected to be present in a given
sample. Then the RNA is reverse transcribed, amplified, and sequenced resulting in the sequence
for a given virus being obtained (so-called single genome amplification and sequencing, SGA/S).
When multiple viruses are sequenced by SGA/S (in general about 10 to 20 per time point),
the sequences are compared at sites coding for a CTL epitope and changes in the percent of the
wild-type/transmitted sequence in the population are followed over time [10, Figure 2A]. Second,
deep sequencing can be done in which a relatively short RNA region (about 150-300 nucleotides)
is sequenced in the population [36]. Although deep sequencing only allows one to follow changes
in a small region in the viral genome many more sequences can be obtained than in the SGA/S
protocol (from 102 to 104).

An example, taken from ref. [10], of such time course data of HIV immune escape is shown
in Figure 2. The figure shows a schematic of the sequenced genomes and the frequencies of
escape mutations estimated as the fraction of times a mutation is observed in the sample. Since
samples are small (about 10-20 sequences each), the frequency estimates come with substantial
uncertainty. Using data of this kind, we would like to infer the escape rates associated with
different CTL epitopes using the models discussed above.

Previously, data on viral escape have been analyzed by assuming that some mutants are
present at time t = 0, using a logistic equation [17, 18, 19] and fitting the model to the data
using nonlinear least squares leaving f0 completely unconstrained. This yields results as shown
in Figure 2B). Although this method often provides a reasonable description of the data it does
not weigh the different data points according to the uncertainty associated with them. Although
weighted least squares can take this uncertainty into account, we propose here to use a more
direct approach based on calculating the likelihood of the data given our model. The likelihood
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of sampling a certain number of mutants at different time points, given a particular escape rate
and initial mutant frequency, f0, is derived as follows.

Finding k mutations in a sample of size n when the true frequency is f(t) has the binomial
probability �

n

k

�
fk(1− f)n−k. (14)

The data set in general contains several samples of different sizes, ni, sampled at different times
ti. Given a frequency trajectory, f(t), such a data set therefore has the likelihood

L =
�

i

�
ni

ki

�
f(ti)

ki(1− f(ti))
ni−ki . (15)

Our model parameterizes the frequency trajectory of individual escapes with the escape rate
�, and the initial frequency f0. Ignoring all terms that do not depend on � or f0 (or ε and µ), we
obtain up to a constant

L = logL =
�

i

[ki ln(f(ti)) + (ni − ki) ln(1− f(ti))] . (16)

By maximizing this log-likelihood, we can obtain maximum likelihood estimators of the pa-
rameters f0 and �. The confidence interval of this estimator can be obtained by calculating the
curvature of the likelihood surface or by bootstrapping the data using a binomial distribution
[16]. Furthermore, to constrain some of the parameters of the model (e.g., the initial frequency
of the escape variant) we can use a prior favoring some values over other.

We applied both nonlinear least squares and likelihood methods to the data shown in Figure
2B on escape of HIV from five different CTL responses in patient CH40 [10, 16]. While both
methods allow a reasonable description of the data, the estimates of the escape rates obtained are
often different (Table 2). For example, for viral escape from the Rev49-specific CTL response,
likelihood predicts more rapid escape than the nonlinear least-squares method. In part, this
arises because of the oscillations in the measured frequency of the mutant sequence in the viral
population which initially increased, then decreased, and then increased again. A similar argu-
ment applies to the data on escape from the Pol80-specific CTL response, although estimates of
the escape rate are rather similar with the two methods.

There are two problems with some of the model fits. First, some of the fits predict a very
high mutant frequency at time t = 0 (e.g., for Pol80 f0 ≈ 0.2), which is inconsistent with the
experimental data. Second, the confidence intervals on the estimated escape rates are very large
(results not shown and [16]). The underlying reason for the latter ambiguity is that without
sufficient data, the initial mutant frequency and escape rate are correlated, and in general larger
initial frequencies lead to lower escape rates. To reliably estimate two parameters, we have to
have at least two measurements where the mutant frequency is between 10 and 90% (and the
data needs to be consistent with logistic growth; more on that below).
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Figure 2: Schematic representation of experimental data on HIV escape from CTL responses (panel
A) and fits of the mathematical model to such data (panel B). In panel A, a small number of sequences
covering either the 3’ or 5’ half of the HIV genome has been obtained at 5 different time points. Escape
mutations are indicated as colored dots. Typical sequence sample sizes range between 10 and 20. In
panel B we show the fits of the mathematical model (eqn. (10)) to experimental data using nonlinear
least squares (dashed lines) and likelihood (solid lines) methods. We estimate two parameters: the rate
of escape, ε, and the initial frequency of the escape variant in the population, f0. The estimated escape
rate obtained by both methods is shown in Table 2.

Epitope NLS/single escape Likelihood/single escape Likelihood/all escapes
Pol80 0.015 0.011 0.05
Rev49 0.011 0.024 0.03
Vif113 0.043 0.013 0.02
Gag389 0.17 0.17 0.15
Nef185 0.22 0.14 0.18

Table 2: Estimates of the escape rate ε (in day−1) found using either the model of a single escape
(eqn. (10), first 2 columns) or using a model for multiple escapes fit to experimental data using different
methods. We used eqn. (11) and nonlinear least squares or likelihood (eqn. (16)) to estimate the rates
of escape. Alternatively, we used simulations (see below) and the likelihood method to estimate escape
rates from five CTL responses at once. It was assumed that CTL selection started 30 days before the
first sample. For two escapes, different methods give different estimates of the escape rate.
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Figure 3: Constraining the initial mutant frequency, f0, increases the estimate of the escape rate. By
adding an extra penalizing term 1010

5(f0−fc) to the log-likelihood (eqn. (16)) we constrain the initial
mutant frequency to not exceed the value fc = 10−4. The constraint results in much higher estimates
of the escape rate (panel A and Table 3). The model that assumes that escape rate changes over the
course of infection (panel B and eqn. (13)) improves the fit of the constrained model to data in 3 out 5
epitopes (Table 3).

Model Constant ε Decreasing ε
epitope ε, day−1 ε0 day−1 a, day−1

Pol80∗ 0.060 2.55 0.090
Rev49 0.047 0.07 0.005
Vif113∗ 0.030 0.76 0.022
Gag389 0.27 0.53 0.035
Nef185∗ 0.51 1.04 0.077

Table 3: Estimates of the escape rate in the model where the initial frequency of the escape variant
is constrained to be lower than 10−4. For 3 epitopes (indicated by ∗) allowing escape rate to change
over time (eqn. (13)) significantly improved the quality of the model fit to data (likelihood ratio test,
p < 0.0001).
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To circumvent both of these problems, one might be inclined to constrain f0 to be less than
a prescribed cut-off (e.g., f0 < 10−4). Doing so reduces the variability of the fits and generally
results in larger estimates of the escape rates (Figure 3A and Table 3). At the same time, the
fits of the model to data on late escapes get substantially worse as early data points are not
described by the model. These inferior fits point toward the inadequacy of the model. One
potential explanation for this discrepancy between data and the model is that the escape rate
may be changing over the course of infection [19]. Indeed, over time the magnitude of the CTL
response may decrease leading to a decreased selection pressure on the virus, and as a result,
a slower rate of escape later in infection. Indeed, allowing the escape rate to change over the
course of infection leads to a significantly better description of the data at least for some escapes
(Figure 3B and Table 3). Another feature that is missing from the model is the simultaneous
escape from multiple epitopes, which we discuss at greater length below.

In summary, the model for viral escape from a single CTL response can be used to estimate
CTL-mediated pressure on the wild-type transmitted virus using different statistical methods.
If enough data is available for a reliable estimate of ε and f0 and the parameters are compatible
with the observed data, direct estimation by fitting a logistic involves the smallest number
of assumptions. The estimated escape rate might still be an underestimate due to variable
selection strength and the escape rate estimated using eqn. (11) or eqn. (10) should be treated
as the average escape rate in the observed time period [19, 16]. With limited data, more robust
estimates can be obtained by constraining the initial frequency of escape mutants at the first
time point, but its validity rests on additional data on the time when the CTL response to a
given epitope is generated.

With these caveats in mind, the estimates nevertheless suggest that virus-infected cells are
killed by the virus-specific CTL responses with rates ranging from 0.01 day−1 to 0.4 day−1

[18, 16, 36], and if the escape rate changes with the time since infection for a given epitope,
killing rates could be even higher (Table 3). Given that HIV-infected cells have a death rate of
∼ 1 day−1 [20], this work suggests that CTL responses contribute substantially to the control of
HIV at least during acute infection.

2.3 Effects of sampling depth and frequency on fitting performance

To perform a more systematic analysis of the fidelity of the different fitting methods, we simulated
escape trajectories using the computational model for escape dynamics introduced below. From
this simulated data, we can produce a series of samples of different size and mutant frequency
and try to reconstruct the parameters that were used in the simulation. The question we address
here is: if we want to improve estimates of the escape rate how should the data collection be
improved.

Figure 4 A&B show two runs of the simulation with shallow and infrequent (A) and deep
and frequent sampling (B). Deep sampling will be readily achieved in forthcoming experiments
since new sequencing technologies allow deep sampling at low cost. The frequency of sampling,
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however, will likely remain limited. Panel C shows how well the escape rate of epitope 4 can
be reconstructed from sample series of different depth and frequency. The fitting procedure
that attempts to determine both f0 and � is rather noisy and biased for small and infrequent
sampling. Both deep and frequent sampling allows one to overcome this problem. On the other
hand, the method that only fits the escape rate and assumes that variants are present at a small
frequency, f0, when selection starts, consistently underestimates the escape rate, but does not
fluctuate a lot. We will see below that this underestimate is a consequence of delayed escape due
to interference between different epitopes.

In order to estimate the escape rate and the initial frequency reliably, we need to sample
a trajectory at least twice at intermediate frequency. This can be achieved both by deep or
frequent sampling. We would like to caution, however, that low frequencies are very susceptible
to fluctuations and rare variants found in a deep sequencing experiment should not be assumed
to follow a deterministic trajectory.

3 Modeling viral escape from multiple CTL responses

While the model of viral escape from a single CTL response gives a general idea of the rates
involved in CTL escape, it is not a priori obvious whether ignoring the simultaneous escape of
other epitopes is justified. Different epitopes are encoded by the same viral genome and as such
are not independent. In the next section, we formulate a model for multiple simultaneous escapes
as well as for mutation and recombination that give rise to novel combinations of epitopes.

3.1 Mathematical model

We assume that there are in total n CTL responses that control viral growth and, potentially,
the virus can escape from all n responses. A CTL response that recognizes the ith epitope of the
virus kills virus-infected cells at rate ki, and escaping from the ith CTL response leads to a viral
replicative fitness cost ci. We denote a viral genome by a vector i = (i1, i2, . . . , in) with ij = 0 if
there is no mutation in the jth CTL epitope and ij = 1 if there is a mutation leading to escape
from the jth CTL response. The death rate of an escape variant due to the remaining CTL
responses is then simply

�n
j=1 kj(1− ij), where k1, k2, . . . , kn are the death rates of infected cells

due to killing by the jth CTL response. Note that we have assumed that killing of infected cells
by different CTL responses is additive. Extending models fo viral escape with other mechanisms
of CTL killing is an important area for future research.

Escape from a given CTL response incurs a fitness cost to the virus. Assuming multiplicative
fitness, the fitness of a variant i is

�
j(1 − cjij). Although there is evidence for compensatory

evolution in and around individual epitopes, we do not expect strong epistasis between mutations
in epitopes in different parts of the genome.

Given that most HIV infections start with a single transmitted/founder virus [37], we need
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Figure 4: Influence of sampling frequency and sampling depth on escape rate estimate fidelity. The top
left and right panel show mutation frequencies in population samples for infrequent shallow sampling
(n = 10, left), and more frequent deep sampling (n = 200, right). Obviously, more frequent and deeper
sampling will improve the estimates. This is quantified in the bottom panel. It shows the mean estimate
of the escape rate of epitope 4 and its standard deviation as a function of sampling depth for different
sampling frequencies. The estimates are shown relative to the true value of the simulated escape rate,
hence a systematic deviation from one represents a bias. The dashed lines show the results of fitting
only the escape rate, �, while fixing f0. Those fits show a systematic bias towards lower estimates, but
have small variance and are insensitive to sample depth or frequency. The solid lines correspond to
estimates where both � and f0 were fitted, while constraining f0 to be smaller than 10−4. These fits
show much larger variance and a strong bias at small sampling frequencies, but are unbiased at frequent
and deep sampling.
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Figure 5: Each HIV particle contains two copies of its RNA genome, from which one complementary
DNA strand is produced and integrated into the host cell genome. The two RNA strands are com-
bined by template switching of the reverse transcriptase enzyme, which can happen up to 10 times
per replication [38]. The in vivo recombination rate, however, is limited by the probability that a host
cell is infected by genetically distinct viruses, illustrated on the left. The effective recombination rate
combining these two processes is estimated to be on the order of 10−5 per nucleotide per generation
[39, 40, 41], which implies a coinfection rate on the order of a few percent.

to describe the generation of the escape variants from the founder strain. Even though the viral
population during acute infection may attain a large peak where there might be around 1010

infected cells, we cannot assume that all possible viral genotypes are present early on. Because
µ3 ≈ 10−14 is so small we do not expect to generate a virus with more than two mutations in
a single generation. Multiple mutations therefore have to accumulate in the course of infection
and the appearance of these multiple mutants is delayed, as illustrated with simulation data in
Figure 6. Mutation dynamics therefore has to be included in the model. Genotype i can arise
by mutation with rate µ per epitope if a cell gets infected with a viral strain lacking one of the
mutations in i:

µ
�

j∈i

V (i\j) (17)

where i\j denotes genotype i without mutation j and V (i) is the abundance of virus with genotype
i. We are mainly interested in the generation of escape mutations and will therefore ignore back
mutations. Similarly, we will for now ignore that genotypes are lost by mutations at all sites
that have not yet escaped (this term will be reinstantiated later). Both of these contributions
have negligible effects on the dynamics since they do not involve genotypes that are favored by
selection. Furthermore, back mutations will occur at a slower rate because escape mutation may
occur at several positions in the epitope (8-10 amino acids) while back mutations have to occur
in the same place as the escape mutation.

In addition to mutation, novel genotypes can also be generated by recombination of two
existing HIV genomes. Diversifying recombination in HIV requires coinfection of a host cell with
virions carrying different genomes, which are crossed over by template switching in subsequent
generations [38], see illustration in Figure 5. The coinfection frequency was estimated to be
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on the order of a few percent or less [39, 40, 41] and is denoted here with the symbol ρ. We
could extend the model to include cells coinfected with different viral genotypes, but we will
simply assume that the fraction of viruses that are heterozygotes (see Figure 5) with genotypes
j and k is proportional to product of the fraction of genotypes j and k in the total population,
i.e., N−2V (j)V (k), where N =

�
i V (i) is the total number of virus particles. After infection

with such a heterozygote virus, template switching will produce a chimeric cDNA which is
then integrated into the target cell’s genome. Within this model, cells get infected with the
recombinant genotype i at rate

βTρ

N

�

j,k

C(i|j,k)V (j)V (k) (18)

where C(i|j,k) is the probability of producing genotype i from j,k by template switching. In
this expression, one factor of N got canceled since eqn. (18) accounts for the total production of
recombinant virus, rather than the fraction of total. The genotypes that recombine are lost when
producing the recombinant genotype, which can be accounted for by a loss term −βTρV (i). The
mutation and recombination terms are easily incorporated into the equations describing the viral
population.

dT

dt
= d(T0 − T )− βT

�

i

V (i), (19)

dI(i)

dt
= βT

�
V (i) + µ

�

j∈i

V (i\j) + ρ

N

�

j,k

C(i|j,k)V (j)V (k)− ρV (i)

�

−I(i)

�
δ +

n�

j=1

kj(1− ij)

�
, (20)

dV (i)

dt
= p(i)I(i)− cV V (i) (21)

where I(i) is the abundance of cells infected with strain i. The fitness costs of escape mutations
are hidden in the rate of virus production p(i) = p0

�
j(1− cjij). Assuming the viral population

is in a quasi-steady state, we substitute V (i) = p(i)I(i)
cV

, denote βTp(i)
cV

by f(i), and normalize using
mi = I(i)/M with M =

�
j I(j), to obtain

d

dt
mi(t) =

�
f(i)(1− ρ)− δ −

n�

j=1

kj(1− ij)−
Ṁ

M

�
mi

+ µ
�

j∈i

fi\jmi\j + ρ
M

NβT

�

j,k

C(i|j,k)fjmjfkmk,

(22)

The term in big parentheses accounts for selection and the loss due to recombination, while
the two terms on the second line account for the gain of genotype i through mutation and
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recombination, respectively. In the quasi-steady state, the average clearence of infected cells
≈ δM has to equal the number of new infections, given by the product of the number of virus
particles N , the infectivity β, and the target cell number T . The prefactor of the recombination
term is therefore approximately equal to ρ/δ. Since different viral genotypes reproduce with
different efficiency f(i), the effective mutation and recombination rates at the level of infected
cells have become genotype dependent. However, we will neglect this strain dependence in the
following since it only leads to small changes in the mutational input and the recombination
process. Defining the effective growth rate of a strain as �i = fi − δ +

�n
j=1 kj(1 − ij) and the

average growth rate ��� = Ṁ
M , and an effective recombination rate ρe, we can simplify the above

to

d

dt
mi(t) = (�i − ���)mi + µ




�

j∈i

mi\j −
�

j /∈i

mi



+ ρe

�
�

j,k

C(i|j,k)mjmk −mi

�
, (23)

where we have restored the loss µ
�

j /∈i mi due to mutations at wild-type epitopes.

The three terms account for changes in frequency due to differential replication and killing,
mutation, and recombination, respectively. The mutation and recombination terms account both
for influx and efflux of genotypes. The effective recombination rate should be thought of as the
rate at which novel genotypes are produced from existing genotypes and accounts for coinfection,
copackaging, and the average relatedness of copacked genomes. Within our additive model, the
growth rate �i is a sum of terms accounting for the fitness costs of the escape mutations and the
avoided killing.

Equation 23 provides a simpler description of the viral population than eqn. (19). The
dynamics of the free virus has been slaved to the frequencies of infected cells and the complex
parameters describing virus reproduction and killing have been subsummed in a simple growth
rate. Models of this type have been studied intensively in population genetics. For a review of
theoretical work on the evolution of multi-locus systems we refer the reader to [42].

Equation 23 still describes deterministic dynamics. Stochastic effects, however, are impor-
tant whenever a particular genotype is present in small numbers. The stochastic features of the
dynamics can be easily incorporated in computer simulations where each individual can repli-
cate, mutate, and recombine with a certain probability each time step, see below. Examples
of such stochastic simulations are shown in Figure 6, where the frequencies of escape muta-
tions in stochastic simulations are compared to the deterministic solution of the system. The
stochastic trajectories deviate from the deterministic ones and fluctuate, in particular when the
recombination rate is low.

To appreciate how stochasticity, in combination with selection, and recombination can affect
the viral population dynamics, it is useful to consider the extreme case of no recombination,
i.e., asexual evolution. To produce a genotype with multiple beneficial mutations, a series of
mutations in the same lineage is required since mutations happening on different genomes cannot
be combined in the absence of recombination. Hence the only mutations that can successfully
spread through the population are those that happen on already very fit virus and produce
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Figure 6: Influence of stochastic effects on CTL escapes. The allele frequency trajectories of the
stochastic model (dashed lines, 10 realization) are delayed relative to the deterministic model (solid
lines) when coinfection is small (left, coninfection rate is 0.01). This delay is partly due to interference
between escapes, as it is strongly reduced at increased coinfection frequency (right, coninfection rate is
0.2). Population size is 106.

new exceptionally fit genomes. All other mutations, even if beneficial, are lost since they are
outcompeted by fitter genotypes – a phenomenon often called selective interference [43]. Since
this seeding of new exceptionally fit genotypes is a rare process that involves a very small number
of viruses, and the existence or absence of such fit virus determines the future dynamics, the
stochasticity of the population dynamics is important.

A particular escape mutation might have to arise multiple times until it is finally falls onto a
genome that is successful. This interference can substantially delay the accumulation of muta-
tions as is apparent in Figure 6, which shows that competition between different mutations can
have substantial effects on the allele frequency trajectories. When such delays are not accounted
for, the estimates of escape rates can be biased as apparant in Figure 4.

At large recombination rates genotypes are constantly taken apart and reassembled from the
existing genetic variation. Escape mutations that happen on different genomes can be com-
bined by recombination to produce better adapted virus. Hence recombination accelerates the
production of recombinant virus and reduces the fluctuations of allele frequency trajectories.

The crossover between a more or less asexual population to one that behaves like a fully
sexual one depends on the strength of selection. Selection operates on the fitness of entire
genotypes and changes the genetic composition of the population on time scales that are inversely
proportional to the fitness differences in the population. If this time scale is much shorter than
the inverse recombination rate, recombination has a small impact on the dynamics. It does,
however, occasionally produce new genotypes similar to mutation. If recombination is faster than
selection, genotypes are taken apart and reassembled by recombination before their frequency is
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changed substantially by selection. In this case the frequency of the genotype is the product of
the frequencies of the alleles it is composed of. In other words, recombination decouples different
loci along the genome and the dynamics of allele frequencies at each locus are well described by
the single epitope model.

The recombination rate of HIV is such that both of these limits are important in different
phases of the infection. The frequency of recombination between distant parts on the viral
genome (distance l > 1 kb) is limited by the probability of coinfection, which is estimated to be
on the order of a few percent or less [39, 40, 41]. For loci closer together than a distance l, the
recombination rate will be approximately 10−5× l per generation [39]. The parameters estimated
above suggest that changes in genotype frequencies are much more rapid than decoupling by
recombination, at least during the early part of the infection. Hence in order to estimate the
parameters of the model, we have to take the complex dynamics of a stochastically evolving
population into account. During later stages of the infection, changes in genotype frequencies
are much less rapid, such that distant parts of the viral genome are essentially decoupled. The
effect of selection in partly sexual populations like HIV has been studied in greater detail in
[44, 45, 46].

In essence, the two regimes of high and low recombination differ in what the relevant dynam-
ical variables are. In the early regime where selection is strong, fit viral strains are amplified by
selection, while mutation and recombination produce novel strains at a smaller rate. The rele-
vant quantities are the frequencies of different strains, which happen to be the variables of our
model. Later in infection, however, when recombination dominates over selection, the frequencies
of mutations evolve approximately independently of each other and genotypes frequencies are
slaved to these mutation frequencies [42].

Whether one or the other description is appropriate matters for the interpretation of the data.
The rapid rise of several mutations that occur together as one genotype is most likely driven by
the joint effect of all of these mutations. Estimates of an escape rate from the slope of the
frequency trajectory would therefore correspond to an escape rate of a genotype rather than an
individual mutation. Later in the infection, when recombination and selection are of comparable
strength, the trajectory of a particular mutations would reflect selection on this mutation alone,
even if other mutations escape at the same time.

The problem of the accumulation of competing beneficial mutation in large sexual and asexual
population is an active area of research in population genetics [47, 48, 44, 45]. Analytic results
have only been obtained for drastically simplified models, which are not suitable for the inference
of model parameters of the sort we are interested in here. On the other hand, we are typically
interested in the evolution of just a few sites, which can be efficiently simulated.

3.2 Simulation of multiple CTL escapes

We have implemented the simplified model described above as a computer simulation using a
discrete time evolution scheme. The simulation keeps track of the abundance mi of each of the
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2n possible viral genotypes, where n is the number of epitopes. In each generation, mi is replaced
by with mieε(i)−�ε�, which accounts for selection. To implement recombination, we calculate the
distribution of recombinant genomes resulting from random pairing of genotypes after selection.
It is assumed that all loci reassorted at random, which is justified if all epitopes are further apart
than 1000 bp. A genetic map could be implemented easily. A fraction, ρ, of the population is
replaced by recombinant genomes in each generation. Similarly, mutations change the genotype
distribution by moving µmi individuals with genotype i to genotype mi and vice versa for every
possible i and j. To account for the stochastic nature of viral reproduction, the population is
resampled according to a Poisson distribution after selection, recombination, and mutation. The
average population size can be set at will in this resampling step. The program source code
and brief documentation is available as supplementary information. Due to recombination, the
computational complexity scales as 3n and a simulation of n = 10 epitopes for 500 days runs for
about one second on a typical 2011 desktop computer.

3.2.1 Inferring escape rates by multi-locus simulations

Given our model of multi-epitope viral escape and a simulation to generate trajectories, we can
try to infer the escape rates by adjusting the parameters of the model to maximize the likelihood
of the observed escape trajectories. In absence of any tested fitting procedure for such a problem,
we simulated the dynamics for a large number of parameters and determined the likelihood of
sampling the observed mutations from the simulation (we tested 21 values of the escape rates
for each epitope, i.e., 215 rate combinations).

In addition to the escape rates of the different epitopes, we introduced an additional parameter
τ that specifies the onset of CTL selection relative to the time of the first available patient sample.
Other parameters such as µ = 2×10−5 and ρ = 0.01 are taken from the literature. The population
is initialized as a homogeneous population without any escape mutations τ generations prior to
the first sample.

The likelihood of the data given the escape mutant frequencies is calculated using eqn. (15).
Empirically, we find that there is a single (broad) maximum of the likelihood surface and that
fits are best with CTL selection onset 20− 30 days before the first sample. The values in Table
2 correspond to τ = −30. However, we would like to emphasize that the agreement between
the simulation and the data is never terribly good, which, as discussed above, is possibly due to
changing selection pressure over time.

4 Conclusions & Future directions

We have discussed several models of the dynamics of immune escape at single or multiple loci. We
have shown how the model fit depends on the assumptions made by the model. By applying the
inference procedures to simulated data, we investigated how the sampling depth and sampling
frequency affects the fidelity of the estimates.
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The models and procedures outlined have a number of short-comings that need to be ad-
dressed to obtain more meaningful estimates of the parameters governing the co-evolution of the
viral population and the immune system. The models are both too simple and too complex.
On one hand, there is mounting evidence that the models miss several important aspects of the
immune system/virus interaction. On the other hand, the models already contain too many
parameters to allow for their robust estimation from the available data.

It has recently become clear that the adaptive immune system is able to control the virus
by other means than the direct killing of infected cells, for example, by production of antiviral
cytokines and chemokines [16, 49, 50]. Furthermore, the immune systems produces a very dy-
namic environment for the virus where the selection pressure on different epitopes is changing.
We have generalized the single locus models to allow for exponentially decaying escape rates, but
introducing one additional parameter per locus makes the fit near degenerate unless a constraint
on the initial frequency of the escape mutant is introduced. We have also ignored the possibility
of compensatory mutations, competition between multiple escape variants at a single epitope,
and epistatic interactions between mutations.

Another potential extension of the model is to allow the processes of mutation and selection
due to escape from CTL responses to start at different times post infection. Indeed, mutation
from the founder virus starts at the beginning of infection while most CTL responses do not arise
until 2-4 weeks post infection [5]. Also, it is not well understood how multiple CTLs that are
specific for different viral epitopes interact to kill virally infected cells, e.g., whether the death
rate of cells expressing different viral epitopes is the sum of the killing rates due to individual
epitope-specific CTL responses. Recent work has shown that competition between different CTL
responses may influence the timing and speed of viral escape [16].

The analysis of multi-locus data is hampered by the large number of possible genotypes,
which grows exponentially with the number of loci considered. The dynamics of this genotype
distribution is governed by a non-linear equation and solving the model involves considerable
computational effort, such that one would expect fitting parameters of the model to be slow and
ridden with many suboptimal local minima. The problem, however, is not as daunting as it
seems.

The majority of the possible genotypes will never exist and the population is always dominated
by a small number genotypes. Furthermore, the escape mutations accumulate in the inverse order
of their escape rates, which implies that early mutations affect the dynamics of later mutations,
but not vice versa.

Lacking an analytical solution of the multi-locus dynamics, fitting parameters will require
repeated simulation of the population dynamics and comparison of the simulated trajectories
with the data. The underlying dynamics of the population, however, is stochastic and different
runs of a stochastic simulation will result in different outcomes, such that fitting to a stochastic
simulation is ambiguous.

All of these additions will provide interesting future directions, particularly when deep and
dense data are available to constrain the models.
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