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Abstract

This chapter critically summarizes the main theoretical
aspects necessary for a correct processing and interpreta-
tion of the polarimetric information towards the develop-
ment of applications of synthetic aperture radar (SAR)
polarimetry. First of all, the basic principles of wave
polarimetry (which deals with the representation and the
understanding of the polarization state of an electromag-
netic wave) and scattering polarimetry (which concerns
inferring the properties of a target given the incident and
the scattered polarized electromagnetic waves) are given.
Then, concepts regarding the description of polarimetric
data are reviewed, covering statistical and scattering
aspects, the latter in terms of coherent and incoherent
decomposition techniques. Finally, polarimetric SAR
interferometry and tomography, two acquisition modes
that enable the extraction of the 3-D scatterer position
and separation, respectively, and their polarimetric char-
acterization, are described.

1.1 Theory of Radar Polarimetry

1.1.1 Wave Polarimetry

Polarimetry refers specifically to the vector nature of the
electromagnetic waves, whereas radar polarimetry is the sci-
ence of acquiring, processing and analysing the polarization
state of an electromagnetic wave in radar applications. This
section summarizes the main theoretical aspects necessary for
a correct processing and interpretation of the polarimetric
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information. As a result, the first part presents the so-called
wave polarimetry that deals with the representation and the
understanding of the polarization state of an electromagnetic
wave. The second part introduces the concept of scattering
polarimetry. This concept collects the topic of inferring the
properties of a given target, from a polarimetric point of view,
given the incident and the scattered polarized electromagnetic
waves.

1.1.1.1 Electromagnetic Waves and Wave
Polarization Descriptors

The generation, the propagation and the interaction with
matter of the electric and the magnetic waves are governed
by Maxwell’s equations (Balanis 1989). For an electromag-
netic wave that is propagating in the Z direction, the real
electric wave can be decomposed into two orthogonal
components X and ¥, admitting the following vector
formulation:

E, Eoy cos (wt — kz + &)
E(z,1) = | Ey | = | Eoycos (wf — kz + 5y) (1.1)
E, 0

which may be also considered in a complex form

one JOx e—jkzeiwl
EOy e Joy e -jkz ejwt

0

Ex
E(z0)= |E | = (1.2)
E,
where Ey, and E,, are the amplitudes of the waves in each
coordinate. The electric wave in (1.1) and (1.2) presents a
harmonic time dependence of the type ¢/, where w = 2xfis
the angular frequency and fis the time frequency. The propa-
gation direction of an electromagnetic wave is determined by
the propagation vector Kk that in case of (1.1) and (1.2) is
considered parallel to Z. The amplitude of the propagation
vector is represented by k = 2/, where 4 is the wavelength.

I. Hajnsek, Y.-L. Desnos (eds.), Polarimetric Synthetic Aperture Radar, Remote Sensing and Digital Image Processing 25,

https://doi.org/10.1007/978-3-030-56504-6_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56504-6_1&domain=pdf
mailto:carlos.lopez@tsc.upc.edu
https://doi.org/10.1007/978-3-030-56504-6_1#DOI

2

Finally, 6, and &, represent the wave phases in each compo-

nent. The magnetic wave ﬁ(z, t) can be also represented in
the same form.

According to the IEEE Standard Definitions for Antennas
(IEEE standard number 145 1983), the polarization of a
radiated wave is defined as that property of the radiated
electromagnetic wave describing a time-varying direction
and relative magnitude of the electric wave vector, specifi-
cally the figure traced as a function of time by the extremity
of the vector at a fixed location in space and the sense in
which it is traced as observed along the direction of propaga-
tion. Hence, polarization is the curve traced out by the end
point of the arrow representing the instantaneous
electric wave.

Let us consider the geometric locus described by the
electric wave, as a function of time, for a particular point in
space, which can be assumed z = zo, without loss of general-
ity. Under these hypotheses, the wave components E, and E|,

satisfy the following equation:
2 2
E, E\E, E,
- =2 — c0s (0y — O0x) + | =
(EOx} EoxEoy ( ! ) (EO})

= sin (5), — 5x).

(1.3)

The previous equation describes an ellipse that is called
polarization ellipse. As one may deduce from the previous
equation, the electric wave, as a function of time, describes in
the most general case an ellipse, whose shape does depend
neither on time nor on space. The polarization ellipse, for
some particular configurations, may reduce to a circle or to
a line.

As it may be deduced from (1.3), the polarization state is
completely characterized by three independent parameters:
the wave amplitudes E, and E, and the phase difference
0 = 0, — 0. Figure 1.1 presents the polarization ellipse for a
general polarization state. In addition to the previous three
parameters, it is also possible to describe the polarization
ellipse by a different set of parameters:

* Orientation or tilt angle ¢b. This angle gives the orientation
of the ellipse major axis with respect to the X axis in such a
way that ¢ € [—x/2, z/2]. This angle may be obtained as
follows:

E OxEOy

tan2¢p =2 ————-
¢ E(2)x_E(2)y

oS 4. (1.4)

 Ellipticity angle z. This angle represents the ellipse aper-
ture in such a way that v € [—z/4, z/4]. This angle may be
obtained as follows:
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A 9 E(r,t=0)

m
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xX> v

\

EOX
Fig. 1.1 Polarization ellipse
EoE
| sin 27 = 222" | sin §| (1.5)
EOX + EOy

* The polarization sense or handedness. This determines the
sense in which the polarization ellipse is described. This
parameter is given by the sign of the ellipticity angle .
Following the IEEE convention (IEEE standard number
145 1983), the polarization ellipse is right-handed if the
electric vector tip rotates clockwise for a wave observed in

the direction of propagation, given by K. On the contrary,
it is said to be left-handed. Therefore, for = < O the polari-
zation sense is right-handed, whereas for 7 > 0 it is left-
handed.

* The polarization ellipse amplitude A. For a major and

minor ellipse axes amplitudes a and b, respectively, A =
v/ a? + b*. This amplitude may be also obtained as

A= \JE + Ej,

* The absolute phase {. This phase represents the initial
phase with respect to the phase origin for = 0 in such a
way that { € [—z, z]. This term corresponds to the com-
mon phase in J, and &,. This absolute phase cannot be
directly measured as it corresponds to the exit phase from
the radar system at ¢ = 0.

(1.6)
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Considering the previous sets of parameters describing the
polarization state of a wave, one can identify some important
polarization states that can be considered as canonical polari-
zation states:

* Linear polarization state. Considering the expression for
the real electric wave in (1.1), two canonical linear polari-
zation states can be identified. Table 1.1 details the orien-
tation and the ellipticity angles for these polarization
states. These are the linear polarization states according
to the X and to the y axes, respectively. The linear polari-
zation states are characterized by presenting a phase dif-
ference of

6=06—6=ma,m=0,=%1, £2,... (1.7)
As it may be seen, the linear nature of the polarization
state is independent of the phase .

 Circular polarization state. In this particular case, also two
canonical circular polarization states can be defined.
Table 1.1 details the orientation and the ellipticity angles
for these polarization states. When the ellipticity angle
takes a value of —n/4, the circular polarization state is
right-handed, whereas this value is equal to z/4 when it is

left-handed. The circular polarization states are
characterized by presenting a phase difference of
5:5y—5x:m% m==+1, £3, £5, ...  (1.8)

and equal amplitudes for the components of the electric wave
Ey = Ey, = Ey,. Also for circular polarization states, the
polarization state is independent of the absolute phase .

e Elliptical polarization state. When there are not
restrictions on the orientation and ellipticity angle values,
the electric wave is said to present an elliptical polariza-
tion state.

As observed, the polarization ellipse may be completely
described by two equivalent sets of three independent
parameters: the set of wave parameters {Eo,, Eo,, 6} or the
set of ellipse parameters {¢, 7, A}. In addition to these, there
exist additional equivalent descriptors that are detailed in the
following.

Considering (1.1), the real electric wave vector can be
directly obtained from the complex electric wave vector

3
_ Eq.cos(wt—kz+38;) Eq.e /o o
E(Z,l) = =N ' e*jkze/mt _
Egycos (ot —kz+3y) Egye
=~ {Ee"} (19)

where 9{-} denotes the real part. The time dependence has
been removed from the wave description. This is possible as
the polarization state of the wave does not change with time.
In order to derive a simple and concise description of the
polarization state, it is also possible to remove the space
dependence of E(z) by considering the polarization state in
a particular point of the space. Without loss of generality, this
point can be z = 0. Hence, E)(O) reduces to

E=E(0) = [E‘”e'ﬂ. (1.10)

Eoye 76y

The two-dimensional complex vector E is referred to as
the Jones vector, and it is a concise representation of a
monochromatic, uniform plane wave with a constant polari-
zation (Jones 1941a; Jones 1941b; Jones 1941c).

In the rectangular coordinate system, the Jones vector can
be written as a function of the parameters that describe the
polarization ellipse (Huynen 1970):

—sing | [ cost
cos¢ | |jsinz]|
The Jones vector, considering the unitary vectors X and ¥,
may be also expressed as

[ cos¢

E_Ae’g{ sind (1.11)

cos¢p —sing|[ cost jsint
E~~y=A] | .
X, y,} singg cos¢ ||jsint cost
e 0.
X {0 eﬂ:]x (1.12)

where the sub-index {X, Y, } indicates that the Jones vector is
expressed in the linear basis {i Yy, }. The Jones vector
describes completely the polarization ellipse shape, as well
as the rotation sense of the electric wave vector. On the
contrary, handedness information cannot be included within
the Jones vector as propagation information has been
removed. The use of the Jones vector to describe the polari-
zation state is of enormous importance as it allows to define a
polarization algebra that makes possible to perform a mathe-
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Table 1.1 Geometrical parameters of the polarization ellipse for canonical polarization states in the rectangular coordinate system

‘ Linear x ‘ Linear y | Linear n/4
0 | a2 | l4
T 0 0 0

matical treatment and analysis of the wave polarization. This
treatment allows, for instance, the correct definition of
orthogonal polarization states. Finally, Table 1.2 details the
Jones vector, in the rectangular basis, i.e. E {; ?’}, for some

particular polarization states.
Another equivalent description of the wave polarization
state is the so-called complex polarization ratio:

B Eois).
Ex E()x

(1.13)

As in the case of the Jones vector, the complex polariza-
tion ratio is not able to determine the handedness of the
polarization state as propagation information is removed.

The Jones vectors, as well as the complex polarization
ratio, are complex quantities that describe the polarization
state of a wave. Sir G. Stokes introduced a wave polarization
and wave amplitude description based on four real quantities
in polarization wave optics (Stokes 1852). The Stokes vector,
in the rectangular coordinate system, is defined as (Stokes
1852)

g B+ |
0 2 2
g |E’f| - |EY’
g= - ) (1.14)
87 | g, 2%{@EJ
8 ~20{E.E}}

where the elements of the vector g are simply called Stokes
parameters. Consequently, the Stokes vector is a four-
dimensional real vector. Since the Stokes vector describes
the polarization state of an electromagnetic wave, it can be
directly obtained from the geometrical parameters that
describe the polarization ellipse, i.e. {¢, 7, A}:

A
| Acos (2¢) cos (27)
| Asin (2¢) cos (27) | (1.15)

Assin (27)

e

The polarization state of an electromagnetic wave is
completely characterized by means of three independent
parameters. These statements also hold for the Stokes

‘ Linear 37/4 ‘ Right hand circ. ‘ Left hand circ.
| 3a/4 | [—n2, 72] | [~n2, 72]
0 | -al4 | 24

parameters, since, as it may be deduced from (1.15), the
following relation applies

g=a+8+8 (1.16)
Table 1.3 details the Stokes vector, in the rectangular
basis, i.e. g {; ?} , for some particular polarization states.

1.1.1.2 Totally and Partially Polarized Waves
Single-frequency or monochromatic waves are completely
polarized, that is, the tip of the electric wave vector describes
an ellipse in the plane orthogonal to the propagation direc-
tion. The shape of this ellipse, neglecting attenuation propa-
gation effects which affect only the overall power, does not
change in time or space, and hence, the wave polarization is
constant. Completely polarized waves appear when the dif-
ferent parameters of the wave w, Ey,, Eo,, 6, and J, are
constant. Nevertheless, many waves present in the nature
are characterized by the fact that the previous parameters
depend on time or on space randomly. Hence, the tip of the
electric wave vector no longer describes an ellipse. These
waves are referred to as partially polarized waves. This loss
of polarization is due to the randomness of the illuminated
scene, to the presence of noise, etc.

The different parameters that characterize the electric
wave, i.e. w, Ey,, Ey,, O, and d,, may vary randomly. This
type of variation makes the electric wave to be modulated and
therefore to present a finite bandwidth, so waves can no
longer be considered as being monochromatic, but polychro-
matic. Under this circumstance, it would be also desirable to
have a complex representation of the electromagnetic wave
as shown in (1.10). Nevertheless, in most of the applications,
we are interested into electromagnetic waves that will only
have appreciable values in a frequency range which is small
compared to the mean frequency w. Under this situation,
waves are referred to as quasi-monochromatic waves. For
such signals, the phase terms ©.(z, ) and ©,(z, 1) change
slowly when compared to the mean frequency. Then, one
may represent the Jones vector of a quasi-monochromatic
wave as

(1.17)
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Table 1.2 Jones vector for some polarization states in the rectangular coordinate system, for A = 1

‘ Linear x ‘ Linear y Linear n/4
E e 1 0 1
- X,y L
M [ 1} V2 [ 1}
Table 1.3 Stokes vector for some polarization states in the rectangular coordinate system, for A = 1
‘ Linear x ‘ Linear y Linear z/4
g e 1 1 1
1 -1 0
0 0 1
0 0 0
As one may see, the Jones vector of a quasi-

monochromatic electric wave depends on time and on
space; thus, this vector is no longer constant. When the time
dependence of the Jones vector is deterministic, the polari-
metric properties of the wave also change in a deterministic
way through time. In this case, the description of the wave
polarization is not problematic and may be performed con-
sidering the different descriptors detailed in Sect. 1.1.1.1.
Nevertheless, if the time dependence is random, the analysis
of the polarization state of the electromagnetic wave must be
carefully addressed, as this description must take into account
the stochastic nature of the electric wave.

As previously mentioned, the variation of the parameters
Eyy, Eoy, 6, and 5, may be random, so the Jones vector will be
also random. In order to characterize the polarization of the
quasi-monochromatic electromagnetic wave expressed by
the variable Jones vector in (1.17), it is necessary to address
this characterization from a stochastic point of view. In the
frame of radar remote sensing, the wave transmitted by the
radar system may be considered monochromatic and hence
totally polarized. Nevertheless, the scattered wave
represented by the Jones vector in (1.17) results from the
combination of many different waves originated by the dif-
ferent elementary scatterers that form the scattering media.
The complex addition of these elementary waves resulting
from the scattering process for one component of the electric
wave can be represented as

N

, 1 .

Ad? = —— E aye 0 (1.18)
N n=1

where A represents the total wave and a,e / is originated
from the scattering from every elementary scatterer. Under
the assumption of N, i.e. the total number of scattered waves,
to be large enough and certain relations that may be
established between the amplitude and the phase of the ele-
mentary waves (Chandrasekhar 1960; Goodman 1976), it is
possible to demonstrate that the mean value of the electric
wave and the Jones vector are zero. Consequently, the Jones
vector cannot be employed to characterize the polarization

Linear 37/4 Right hand circ. Left hand circ.

sla) sl 1]

Linear 37/4 Right hand circ. Left hand circ.
1 1 1
0 0 0
-1 0 0
0 -1 1

state of a quasi-monochromatic wave. This characterization
shall be performed considering higher statistical moments.

The second-order moments may be arranged in a vector
form, giving rise to the so-called coherency vector of a quasi-
monochromatic vector, which is defined in the following
way:

E{EE}]
1-E{EQE} - iiy?% = jy (1.19)
Ty

E{E.E; }

where J stands for the temporal averaging, assuming the
wave is stationary, @) is the Kronecker product, (-)*
represents complex conjugation and E{-} is the ensemble
average. This vector is not zero for quasi-monochromatic
waves. The arrangement of the second-order moments can
be also done in a matrix, giving rise to the coherency matrix
of the wave:

E{eE} E{EE;}

L P o

[ )
Jye Ty
where the superscript ()" denotes vector transposition.

In the previous section, it was mentioned that monochro-
matic waves are completely polarized. This is not the case for
quasi-monochromatic waves. Indeed, completely polarized
waves present a polarization state that can be considered as
a limit in the sense that it is constant. The opposed extreme is
a completely unpolarized wave for which the polarization
state is completely random. Between both extremes, waves
are said to present a partial polarization state. In order to
characterize the degree of polarization, one may consider
the degree of polarization defined as a function of the trace
of matrix J as

(1.20)
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DoP = (1—4 (1.21)

1.1.1.3 Change of Polarization Basis
As seen in Sect. 1.1.1.1, an electromagnetic wave, consider-
ing the coordinate system {X, ¥, Z}, that propagates in Z may
be decomposed as the sum of two orthogonal components.
Separately, the electromagnetic wave of each component can
be considered as linearly polarized. Therefore, it is possible
to consider that the total electromagnetic wave results from
the sum of two orthogonal linear polarized waves. Indeed,
this representation must be extended in the sense that any
electromagnetic wave propagating in an infinite, lossless,
isotropic media can be decomposed as the sum of two orthog-
onal elliptically polarized waves. The advantage of this rep-
resentation is that the electric wave is decomposed in a pair of
orthogonal polarization states, so it is possible, through a
deterministic transformation, to obtain the electric wave for
any other pair of orthogonal polarization states. This process
is referred to as change of polarization basis or polarization
synthesis.

Given two vectors a and b, they are considered orthogonal
if they verify

(a,b) =a’ - b* =0 (1.22)

that is, the scalar (Hermitian) product of both vectors is zero.
In case of two electromagnetic waves, expressed in terms of
the corresponding Jones vectors, they are said to be orthogo-
nal if the scalar product of the Jones vectors is zero, consid-
ering that both Jones vectors refer to waves propagating in
the same direction and sense. The polarization ellipses
corresponding to two orthogonal Jones vectors presents the
same ellipticity angle, opposite polarization sense and mutu-
ally orthogonal polarization axis. That is, for a Jones vector
representing a polarization state characterized by an orienta-
tion angle ¢, an ellipticity angle = and an absolute phase ¢, its
orthogonal Jones vector presents an orientation angle of
value ¢ + 7, an ellipticity angle of value —z and an absolute
phase —¢. In terms of (1.12), the corresponding orthogonal
vector is

—sing —cosg| [ cost —jsinz]| [e* 0]
X
cos¢p —sing | | —jsint cost 0 et
cos¢p —sing] [ cost jsint
singg cos¢

e 0.
“lo e )

The symbol L denotes orthogonal Jones vector.

E oy

jsint cost

(1.23)
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Considering what has been indicated, an electromagnetic
wave propagating in an infinite, lossless, isotropic media may
be described in the following way:

E=EX+E)y=Eu,+EZu, (1.24)
where the notation referring to the unitary vectors has been
generalized. If (1.23) and (1.24) are considered, it may be
seen that the unitary Jones vectors corresponding to the linear
orthogonal polarization states X and y are transformed to the

Jones vector of any polarization state and the corresponding
orthogonal Jones vector through the transformation matrix U:

L cos¢p —sing| [ cosz jsinz|[e 7 0
{uu.}= .
jsint cost

MRS A
sing 0 e/é]

cos¢

wu,

ZU{M }{i?,} -
(1.25)

In the previous case, the matrix U {ﬁﬁ } indicates the

transformation matrix from the orthogonal basis {X, ¥y, } to
the arbitrary basis {u,u, }. Considering (1.24), the electro-
magnetic wave expressed in the orthogonal basis {u,u, }
takes the form

E=Eu+E,u,. (1.26)

Therefore, the Jones vector in the new basis {u,u, },
expressed in terms of the Jones vector in the basis {X, ¥, }, is

E, B U_l E,
EuJ_ B {EGL Ey .

The previous equation indicates that if an electromagnetic
wave has been measured in the linear orthogonal basis, it is
possible to calculate the same electromagnetic wave, but
measured in a different polarization basis, just multiplying
by the matrix U%‘l\ﬁ } That is, it is possible to synthesize the

LU L

(1.27)

electromagnetic wave for any arbitrary polarization basis just
measuring it in a particular polarization basis.

Table 1.4 and Table 1.5 detail the polarization ellipse
parameters, the Jones vector and the Stokes vector for differ-
ent polarization states for the rotated and the linear polariza-
tion bases, respectively.

1.1.2 Scattering Polarimetry
The previous section was concerned with the characterization

and the representation of the polarization state of an electro-
magnetic wave. Although this characterization is important
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Table 1.4 Polarization states expressed in the rotated linear polarization basis {ﬁ,,,/4,ﬁ,,/4}, when A = 1

Linear x Linear y Linear n/4

7 - ml4 /4 0
T 0 0 0

EGd) 2! 2! !

21 -1 211 0

~ ~ 1 1 1

U404

0 0 1

-1 1 0

0 0 0

Table 1.5 Polarization states expressed in the circular polarization basis {t, U, }, for A = 1

Linear x Linear y Linear n/4
@ ? ? zl4
T - nl4 nl4 0
Eqs. ! Q[ [1-i
V2| —j V2| 2l1—j
8fa. ! ! !
0 0 0
0 0 1
-1 1 0

when a radar system is considered, as it transmits and
receives electromagnetic waves, nevertheless, the interest is
on the scattering process itself. The radar system transmits an
electromagnetic wave, with a given polarization state, that
reaches the scatterer of interest. The energy of the incident
wave interacts with the scatterer, and as a result part of this
energy is reradiated to the space. The way this energy is
reradiated depends on the properties of the incident wave,
as well as on the scatterer itself. Consequently, it is possible
to infer some information of the scatterer under consideration
considering the properties of the scattered electromagnetic
wave with respect to the incident wave, which is basically the
transmitted wave by the radar. One possibility that can be
studied to characterize distant targets is to consider the
change of the polarization state that a scatterer may induce
to an incident wave.

In order to analyse the scattering problem, it is worth to
start describing the scattering process that occurs when an
incident wave reaches a flat transition between two dielectric,
infinite, lossless and homogeneous media in oblique inci-
dence. This scattering situation is exemplified in Fig. 1.2. In
this case, the incident wave that propagates in the first media
reaches the transition between media where part of the inci-
dent energy is scattered in the same media and part of the
energy is transmitted to the second media. In order to charac-
terize the scattering process, it is necessary to introduce the
concept of plane of scattering, which is defined as the plane
generated by the propagating vectors of the incident and the
scattered waves.

Linear 37/4 Right hand circ. Left hand circ.
72 ? ?
0 /4 -nl4
i B I B
1 2l -1+ 21—y
1 1 1
-1 0 0
0 0 0
0 1 -1
Linear 37/4 Right hand circ. Left hand circ.
37n/4 0 /2
0 0 0
] ) i
2 14j 0 1
1 1 1
0 1 —1
1 0 0
0 0 0

In order to examine specifically reflections at oblique
angles of incidence for a general wave polarization, it is
convenient to decompose the electric wave into its perpen-
dicular and parallel components, relative to the plane of
scattering. The total scattered and transmitted waves will be
the vector sum from each of these two polarizations. When
the wave is perpendicular to the plane of scattering, the
polarization of the wave is referred to as perpendicular polar-
ization or horizontal polarization as the electric wave is
parallel to the interface. When the electromagnetic wave is
parallel to the plane of scattering, the polarization is referred
to as parallel polarization or vertical polarization as the elec-
tromagnetic wave is also perpendicular to the interface. As

—i
indicated in Fig. 1.2, the total incident wave E can be
decomposed into two orthogonal components in the plane
orthogonal to the incident propagation vector K . These are

—i —i
the parallel E and the perpendicular E , components,

which can be written as

(R
EH =FEe ’< r>§ (1.28)

H ,
i

E = Eij_eij<ki’r>3'\l-

(1.29)

As observed, the incident wave has been defined with
. ~ ~ A .
respect to the coordinate system {x Y, Z } in such a way
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Fig. 1.2 Oblique incidence

that kK =7 . It may be shown that the scattered wave
components can be written similarly

s

E‘ = E‘ e Ing (1.30)
E, = E 0y (1.31)

but in this case according to {?’,?’,?’}.

Considering the equations of the incident and the scattered
wave, the question rising at this point is to determine whether
it is possible or not to express mathematically the scattering
process that occurs at the interface between both media. First
of all, it is of crucial importance to take into consideration
where, in the space, the expressions of the incident and
scattered waves are valid. The expressions in (1.28), (1.29),
(1.30) and (1.31) make reference to uniform plane waves. In
the case of the incident wave on the scatterer, such a descrip-
tion for the wave, i.e. the wave originated at the transmitting
antenna, is only valid if the scatter is in the far-field zone of
the transmitting antenna. In the case of the scattered wave,
this wave admits a uniform plane wave formulation if the
point where the wave is considered is in the far field of the
scatterer. In both cases, the waves in the far-field zone may be
considered spherical waves, which locally may be considered
as uniform plane waves. Considering a spherical coordinate
system centred in the scatterer and under the previous
assumptions, the incident wave on the scatter can be
expressed vectorially, in the far-field zone, as

i ES
H , Ef = ‘ (1.32)
E EY,

1

E =
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As observed, there are different points that need to be
considered in the analysis of this problem. The first one is
the use of different coordinate systems to characterize, in an
unambiguous way, the polarization state of the different
waves involved in the scattering process. The second aspect,
coupled to the previous one, is to determine the way the
scatterer under study changes the different components of
the wave. This section has studied this entire problem con-
sidering the analytical expressions of the waves.

1.1.2.1 The Scattering Matrix
This section will address the generalization of the previous
scattering problem, and it will introduce those concepts nec-
essary to address it in a vector form. The first aspect that
needs to be fixed is to determine the different coordinate
systems necessary to characterize the scattering problem
and the description of the incident and the reflected waves.
In the scattering problem, three coordinate systems must be
chosen. The first one is the coordinate system located at the
centre of the scatterer under consideration and referred to as
{X, ¥, z}. This coordinate system may be considered as a
kind of absolute or global coordinate system. In addition to it,
it is necessary to define two additional local coordinate
systems in order to determine, in an unambiguous way, the
polarization states of the incident and the scattered or
reflected waves, respectively. These two coordinate systems,
associated with the waves, are defined in terms of the global
coordinate system.

Let us consider an object illuminated by an electromag-
netic plane wave which may be described as

)

— EX +EY = Eh; +E¥V, (1.33)
where the unitary vectors X and ' are arbitrarily defined.
Hence, the propagation direction of the incident wave is

conveniently selected to be Kk =7 . The incident wave
reaches the object of interest and induces currents on it,
which in turn reradiates a wave. This reradiated wave, as
shown, is referred to as the scattered wave. In the far-field
zone, the scattered wave is an outgoing spherical wave that in
the area occupied by the receiving antenna can be
E =EX'+EY =Eh, +E¥,. (1.34)

The propagation direction of the scattered wave is there-
fore K =2 . The scattering process is finally analysed in
terms of the plane of scattering, which is the plane that
contains both the incident and the scattering propagating
vectors. The concepts of perpendicular and parallel wave

components, or horizontal and vertical wave components,
are defined with respect to the plane of scattering.
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Consequently, and as indicated in (1.33), the perpendicular
component of the wave admits to be considered as a horizon-
tal component, i.e. X = ﬁi, whereas the parallel one admits to
be considered as a vertical one, i.e. 37 =V,. In the case of the
scattered wave, the perpendicular component of the wave
admits to be considered as a horizontal component,
ie.x = ﬁs, whereas the parallel one admits to be considered
as a vertical one, i.e. ' = V,.

The incident and scattered waves in (1.33) and (1.34),
respectively, may be also vectorially expressed by means of
the Jones vectors:

(1.35)

. E E;
E=|" ,Ef—[ h}
E, E,

In the definition of the previous two Jones vectors, the
coordinate systems defined previously are assumed. By using
this vector notation for the electromagnetic waves, it is pos-
sible to relate the scattered wave with the one of the incident
wave by means of a 2 x 2 complex matrix:

e*jkr

E’ SE'. (1.36)

r

Here, r is the distance between the scatterer and the
receiving antenna, and k is the wavenumber of the
illuminating wave. The coefficient 1/r represents the attenua-
tion between the scatterer and the receiving antenna, which is
produced by the spherical nature of the scattered wave. On
the other hand, the phase factor represents the delay of the
travel of the wave from the scatterer to the antenna. Equation
(1.36) may be written as

E, 1 e [ Sm
E | r S

The matrix S is referred to as scattering matrix, whereas
its components are known as complex scattering amplitudes.
The arrangement of the scattering matrix indicates how these
complex scattering amplitudes are measured. The first col-
umn of S is measured by transmitting a horizontally polarized
wave and employing two antennas horizontally and vertically
polarized to record the scattered waves. The second column
is measured in the same form, but transmitting a vertically
polarized wave.

It is worth mentioning that the scattering matrix
characterizes the target under observation for a fixed imaging
geometry and frequency. In addition, the four elements must be
measured at the same time, especially in those situations where
the scatterer is not static or fixed. If they are not measured at the
same time, the coherency between the elements may be lost as
the different elements may refer to a different scatterer.

Sw ]| E:
’“] h (1.37)

Swll|E

As indicated, the scattering matrix represents the scatter-
ing process for particular incident and scattering directions,

ie. k and ﬁs, respectively. In addition to that, it is also
necessary to provide the horizontal and vertical unitary
vectors, for the incident and the scattered waves, as they are
necessary to define the polarization states of the waves.

In the most general case, which occurs in bistatic
configurations where the transmitter and receiver antennas
are located in different positions, the scattering matrix
contains up to seven independent parameters to characterize
the scatterer under observation. These parameters are the four
amplitudes and three relative phases; see (1.38). Indeed, any
absolute phase in the scattering matrix can be neglected as it
does not affect the received power:

|:Eil :| . ek o b

Absolute phase term

|Shle ) E;l
[Swle i(bw—bnn) Ei
v

N
|Synle 2(Pvn=n)

Relative scattering matrix

(1.38)

As it was already highlighted previously, the scattering
coefficients depend on the direction of the incident and the
scattered waves. When considering the matrix S, the analysis
of this dependence is of extreme importance since it also
involves the definition of the polarization of the incident
and the scattered waves. Since (1.37) considers the polarized
electromagnetic waves themselves, it is mandatory to assume
a frame in which the polarization is defined. There exist two
principal conventions concerning the framework where the
polarimetric scattering process is considered: Forward Scat-
ter Alignment (FSA) and Backscatter Alignment (BSA); see
Fig. 1.3. In both cases, the electric waves of the incident and
the scattered waves are expressed in local coordinate systems
centred on the transmitting and receiving antennas, respec-
tively. All coordinate systems are defined in terms of a global
coordinate system centred inside the target of interest.

The FSA convention (see Fig. 1.3), also called wave-
oriented since it is defined relative to the propagating wave,
is normally considered in bistatic problems, that is, in those
configurations in which the transmitter and the receiver are
not located at the same spatial position.

The bistatic BSA convention framework (see Fig. 1.3) is
defined, on the contrary, with respect to the radar antennas in
accordance with the IEEE standard. The advantage of the
BSA convention is that for a monostatic configuration, also
called backscattering configuration, that is, when the trans-
mitting and receiving antennas are collocated, the coordinate
systems of the two antennas coincide; see Fig. 1.4. This
configuration is preferred in the radar polarimetry commu-
nity. In the monostatic case, the scattering matrix in the FSA
convention, Syg4, can be related to the same matrix referenced
to the monostatic BSA convention Sgg, as follows:
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Fig. 1.3 (a) FSA and (b) BSA conventions
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0 (1.39)

SBSA = |: :|SFSA~

As it has been mentioned previously, in the radar polarim-
etry community, the monostatic BSA convention (backscat-
tering) is considered as the framework to characterize the
scattering process. The reason to select this configuration is
due to the fact that the majority of the existing polarimetric
radar systems operate with the same antenna for transmission
and reception. One important property of this configuration,
for reciprocal targets, is reciprocity, which states that
(1.40)

S hvgsa — S vhgsa s

ShVFSA = 7SVhFSA' (141)

Then, the formalization of the scattering process given by
(1.37), in the monostatic case under the BSA convention,

reduces to
E; —Jkr S S E
{ ’;} _° [ h ””] h (1.42)
Ev r S Sw Ei}
In the same sense, Eq. (1.38) takes the form
E; B eIk o i IS ISiwle (One=onn) E;l
Ei - r ISl (e —bn) ISyle J(bw—bnn) Elv :

Absolute phase term Relative scattering matrix

(1.43)
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The main consequence of the previous equation is that in
the backscattering direction, a given scatterer is no longer
characterized by seven independent parameters, but by five.
These are three amplitudes, two relative phases, and one
additional absolute phase.

A central parameter when considering the scattering pro-
cess occurring at a given scatterer consists of the scattered
power. For single-polarization systems, the scattered power is
determined by means of the radar cross section or the scatter-
ing coefficient. Nevertheless, a polarimetric radar has to be
considered as a multichannel system. Consequently, in order
to determine the scattered power, it is necessary to consider
all the data channels, that is, all the elements of the scattering
matrix. The total scattered power, in the case of a polarimetric
radar system, is known as Span, being defined in the most
general case as

SPAN(S) = trace(SS™)

= |Shh|2 + |Shv‘2 + |Shv|2 + |va|2- (14‘4)

In the backscattering case, due to the reciprocity theorem,
the Span reduces to

SPAN(S) = |Sm|” + 2|Sm|* + |Sw]*. (1.45)

The main property of the Span is that it is polarimetrically

invariable, that is, it does not depend on the polarization basis

employed to describe the polarization of the electromagnetic
waves.
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Fig. 1.4 (a) FSA and (b) BSA a
conventions in the
backscattering case

When the radar wave reaches a scatterer, part of the
incident energy is reflected back to the system. If the incident
wave is monochromatic, the target is unchanging and the
radar-target aspect angle is constant, the scattered wave will
be also monochromatic and completely polarized. Therefore,
both the incident and the scattered waves can be
characterized by their corresponding Jones vectors, and the
scattering process can be characterized by the scattering
matrix. These targets are referred to as point targets, single
targets or deterministic targets, as when a radar images this
type of scatterers, the scattered wave in the far-field zone
appears to be originated by a single point. In other words, the
target response is not contaminated by additional spurious, so
it is possible to infer some information about the target from
the single values of the scattering matrix. Table 1.6 shows the
scattering matrix, expressed in the linear polarization basis,
for some canonical bodies. These are referred to as canonical
due to the simplicity of their scattering matrix.

1.1.2.2 Scattering Polarimetry Descriptors

The scattering matrix introduced in the previous section is
indeed a scattering polarimetry descriptor that could be also
included in this section. Nevertheless, it merits a separate
section as this matrix represents the best vehicle to introduce
the description of the scattering process when polarimetry is
concerned, as the scattering matrix relates the Jones vectors
of the involved electromagnetic waves. Section 1.1.1.1
introduced additional descriptors for the polarization state
of an electromagnetic wave. As a consequence, some addi-
tional descriptors for the scattering process shall be
introduced in the following.

The 2 x 2 complex scattering matrix, as indicated,
describes the scattering matrix of a given target. Table 1.6
presented several examples for some simple or canonical
scatterers. Nevertheless, a real target presents always a com-
plex scattering response as a consequence of its complex
geometrical structure and its reflectivity properties. Conse-
quently, the interpretation of this response is obscure. As it
shall be presented later on, a possible solution to interpret this

scatterer scatterer

response is to decompose the original scattering matrix into
the response of canonical mechanisms. With this idea in
mind, but also with the objective to introduce a new
formulism to extract physical information, it is possible to
transform the scattering matrix into a scattering vector that
presents a clearer physical interpretation.

The construction of a target vector k is performed through
the vectorization of the scattering matrix:

k=V(S) = ltrace(S‘I‘).

5 (1.46)

¥ is a set of 2 x 2 complex basis matrices which are
constructed as an orthonormal set under a Hermitian inner
product. The interpretation of the target vector k depends on
the selected basis W. The most common matrix bases
employed in the context of the radar polarimetry are the
so-called lexicographic ordering basis and the Pauli basis.
The lexicographic ordering basis consists of the straightfor-
ward lexicographic ordering of the elements of the scattering
matrix:

=y oo o2i oo I}

(1.47)

The Pauli basis consists of the set of Pauli spin matrices
usually employed in quantum mechanics:

10
01

1 0
0 —1

[y o)) )
(1.48)

(e 3]

Note that the multiplying factor in both bases is necessary
in order to keep the total scattered power constant, i.e. trace
(SS*D.

The selection of the basis to vectorize the scattering matrix
depends on the final purpose of the vectorization itself. When
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Table 1.6 Scattering matrix for canonical bodies in the linear polarization basis {ﬁ, ?}

Canonical body Diagram Scattering matrix
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the objective is to study the statistical behaviour of the SAR
data or the radar measurement, it iS more convenient to
consider the lexicographic basis due to its simplicity, as it
shall be extended in the next sections. Nevertheless, when the
objective is the physical interpretation of the scattering
matrix, it is more convenient to consider the Pauli basis.
Assuming the Pauli decomposition basis, an arbitrary 2 x 2
scattering matrix may be written in the following terms:

S_[a—i—b c—jd}
c+jd a—>b
10 10 01
:a[o 1}“’{0 —1}“{1 0]
+d{9 J]. (1.49)
j 0

It is worth noting that the elements a, b, ¢ and d are
complex. If one considers the decomposition of the scattering
matrix as performed in (1.49), it is possible to identify the
four elements of the Pauli basis with some of the scattering
matrices of canonical bodies presented in Table 1.6. There-
fore, the elements a, b, c and d, i.e. the elements of the target
vector k, represent the contribution of every canonical mech-
anism to the final scattering mechanism. Therefore, the fol-
lowing interpretation is possible:

* a corresponds to the single scattering from a sphere or
plane surface.

e b corresponds to dihedral scattering.

e ¢ corresponds to dihedral scattering with a relative orien-
tation of #/4 rad in the line of sight.

* d corresponds to anti-symmetric, helix-type scattering
mechanisms that transform the incident wave into its
orthogonal circular polarization state (helix related).

All in all, what has been performed in (1.49) is a rarget
decomposition. This concept shall be analysed in depth in the
next. It is also worth to notice that the different components
of the Pauli basis, or scattering components, are orthogonal.
This means that from a practical point of view, the separation
indicated in (1.49) is possible without ambiguities.

Finally, the explicit expressions of the target vector in the
lexicographic and Pauli decomposition bases, considering the
expression of the scattering matrix, in the most general case
are:

S},h Shh + va
S Vv S - Sv
ko= ||k, = | T (1.50)
Svh \/§ Shv + Svh
va j(Shv - Svh)
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In the backscattering case, under the BSA convention, the
reciprocity property applies. Hence, the previous target
vectors admit the following simplification:

Shh 1 Shh + va
kl = \/ZShv > kp = % Shh - va (151)
va ZShv

The different 2 and /2 factors that appear in the definition
of the target vectors are necessary in order to maintain the
total scattered power or Span. As it is evident, the Span must
be constant and independent from the choice of the basis in
which the scattering matrix is decomposed. This is known as
total power invariance.

The concept of target vector, obtained as a vectorization of
the scattering matrix, makes it possible to obtain a new
formulation to describe the information contained in the
scattering matrix by means of the outer product of the target
vector with its conjugate transpose, or adjoint vector.

For a vectorization of the scattering matrix through the
lexicographic basis, in the most general case, the outer prod-
uct of the target vector with its transpose conjugate kzle*
leads to the matrix:

Nk SunSy,  SunSyy SwiSy,
SwSt 1Sl SwST SpS*
L |h|* S (1.52)
SunSpn - SunShy 1Sl SwSS,
SuSin SwSh, SwSh [Swl

Due to a language abuse, the matrix klkZT* is sometimes
referred to as covariance matrix and represented by C, but as
it will be shown in Sect. 1.1.2.4, the covariance matrix
presents a different definition. It is worth to observe that
(1.52) is a 4 x 4, complex, Hermitian matrix. The construc-
tion of this matrix, through the outer product of the vector k;
and its transpose conjugate, makes the matrix k! * have a
rank equal to 1. Consequently, klkZT* presents exactly the
same information as the scattering matrix, and hence it may
have up to seven independent parameters. In the case of the
backscattering direction under the BSA convention, and due
to the fact that the reciprocity relation applies, klle* can be
written, considering (1.51), as

Sul> V2SmSh,  SwST,
Kk = | V28,85, ISwl VZSwS, |- (1.53)
SwSiy V2SuSh  1Swl?

As in the previous case, the kzle* matrix presents a rank
equal to 1 as it is obtained as the outer product of a vector and
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its transpose conjugate. Nevertheless, in this case, the covari-
ance matrix may present up to five independent parameters,
that is, the same number of independent parameters as the
scattering matrix from which it derives.

A similar procedure can be applied when the scattering
matrix is obtained considering the Pauli basis. In this case,
the matrix is obtained from the outer product k,,k;*. Duetoa

|Shh + va|2
(Shh - va)(Shh + va)*
(Shv + Svh)(Shh + va)*

2
kpk;"* _ |Shh va |

As in the case of kjk/ ", k,k " presents a rank equal to

1, and therefore, it may present up to seven independent
parameters. Finally, if the backscattering direction is

|Shh + va|2
Kok, = | (S — S) (St + Sn)”
2Shv(Shh + va)*

Again, the previous matrix presents a rank equal to 1 and
may have up to five independent parameters.

The lexicographic and the Pauli target vector are just a
different transformation of the scattering matrix into a vector.
Hence, the covariance and coherency matrices are related by
the following unitary transformation in the most general
configuration:

k= 1

2
10 0 1 1 0 0
rooo klle*001J]
01 1 0 0 1 j
0 j —j 0 1 -1 0 0
(1.56)

In the case of the backscattering direction under the BSA
convention, the previous transformation reduces to

(Shh + va)(Shh - va)*

(Shv + Svh)(Shh - va)*
j(Shv - Svh)(Shh + va)* j(Shv - Svh)(Shh - va)*

(Shh + va)(Shh - SVV)*

C. Lépez-Martinez and E. Pottier

language abuse, this matrix is sometimes referred to as coher-
ency matrix and represented by T, but as it will be shown in
Sect. 1.1.2.4, the coherency matrix presents a different defi-
nition. Under the most general imaging configuration, con-
sidering (1.65), the coherency matrix can be written as

(Shn + Suw) (S + Sun)”
(Shn — Suv) (S + Sun)”
|Shy + Su”
7Sy = Sun) (Shy + Sun)”

(Shn 4 Sw) ( j(Sw — Sun))"
(Shh - SW)( j(Sllv - Svh))*
(Sny 4 Sun) (J(Sm — Sun))"
|Shy — S’
(1.54)

considered under the BSA convention, the coherency matrix
reduces to

Z(Shh + SVV)SZV

|Sin — S| 2(Shn — Sw)S;,, (1.55)
2Shv(Shh - SVV)* 4|Shv|2
| 1 0 1 1 1 0
kk =51 0 —1|kk"|0 0 V2. (1.57)
0 v2 0 1 =1 0

As it may be seen from all this section, the matrices k;le*
and k,,k;* contain the same information as the scattering
matrix, that is, they are rank 1 matrices. The necessity to
introduce these matrices is that they will allow to define the
covariance and coherency matrices.

The complex scattering matrix S is able to describe a
single physical scattering process, as well as kk/* and
kpk;*. All these descriptors are based on a wave representa-
tion of the data, which depend on the absolute phase from the
scatterer. On the contrary, a power representation of the
scattering process eliminates this dependence, as power
parameters become incoherently additive parameters. In the
most general case, assuming the BSA convention, one may
define the 4 x 4 Kennaugh matrix as follows:
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K=A" (s@s)pr1 (1.58)
where
1 0 O 1
1 0 0 -1
A= (1.59)
01 1 0
0o j — 0

The Kennaugh matrix can be written in the following
form:

Ao + By Cy, H, F,
K- C, Ao + By, E, G,
H, E, Ao — B, D,
F, G, D, —Aop + By
(1.60)
where

1
Ay = 1 S+ S|

1

By =7 1Sun — S |* + IS |?
1

Bl[/ = Z |Shh - va|2 - |Shv|2

Cy = 315w — Sul’

Dy, = j{ShhS:v}

Ey = 91{S},(Sun — Sw) }
Fy = J{8},(Sm — Sw)}
G, = R{S},(Sw + Sw) }
H, = j{S;v(Shh + va)}

(1.61)

In the previous definition, the sub-index y indicates that
the different parameters are roll angle dependent,
corresponding to the target rotation along the line of sight.

As detailed in Sect. 1.1.2.1, the scattering matrix relates
the scattered wave to the incident Jones vector. The
Kennaugh matrix is related to the associated Stokes vectors
defined in Sect. 1.1.1.1. In the forward scattering case, where
S is represented in the FSA coordinate formulation, this
matrix is named the 4 x 4 Mueller matrix and is calculated by

M :A(S@S)A—l.

The main difference of K and M, with respect to k,le* and
k,,k;*, is that the Kennaugh and the Mueller matrices are real

(1.62)

matrices, whereas the covariance and coherency matrices are
complex.

1.1.2.3 Partial Scattering Polarimetry

As indicated in Sect. 1.1.1.2, radar polarimetry is concerned
with two types of waves. The first type is monochromatic,
totally polarized electromagnetic waves where the polariza-
tion state is perfectly represented by the Jones vectors. Con-
sequently, the scattering process can be completely
represented by any of the scattering polarimetry descriptors
detailed in the previous section, and especially the scattering
matrix. This situation appears when the radar transmits a
perfectly monochromatic wave and this wave reaches an
unchanging scatterer, resulting in a perfectly polarized
scattered wave. As mentioned, these targets are referred to
as point targets or coherent targets. The most important point
to be considered when coherent scattering is addressed is to
determine the number of independent parameters necessary
to represent the scattering process. That is, to determine the
number of independent parameters necessary to represent the
operator able to characterize the change of the polarization
state of the scattered wave with respect to the incident wave
that occurs in the scattering process. In a monostatic configu-
ration, the scattering operator describing the scattering,
i.e. any of the matrix operators indicated in Sections 1.1.2.1
and 1.1.2.2, may present up to five independent parameters.
In the bistatic case, these descriptors may present up to seven
independent parameters.

The situation changes when the scattering properties of the
target being imaged by the radar system change in time, as it
would be the case for a forest being affected by the wind
conditions or, for instance, when the target presents more
than one scattering centre (a point at which the incident wave
can be considered to be reflected). Under this situation,
although the radar system transmits a perfectly polarized
wave, the wave scattered by the scatterer is partially
polarized. A scatterer of this category is normally referred
to as distributed scatterer, depolarizing scatterer or an inco-
herent scattering target. The change of the polarization state
of the scattered wave makes not possible to use the scattering
descriptors presented in Sects. 1.1.2.1 and 1.1.2.2 to describe
the scattering process, as these descriptors are not able to
describe the variation of the polarization state of the
scattered wave.

In the case of partially polarized waves, the description of
the polarization state must be addressed through polarization
descriptors relying on the second-order moments of the elec-
tromagnetic wave. If a wave is decomposed into two orthog-
onal components in the plane perpendicular to the
propagation direction, these second-order moments refer to
the power of each orthogonal component and to the correla-
tion between them. This information is perfectly represented
by the vector and the wave coherency matrix or the Stokes
vector. In the case of the description of the scattering process,
this information can be perfectly represented by the covari-
ance and coherency matrices as the mean values of these
matrices are not zero.
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1.1.2.4 Change of Polarization Basis

The scattering properties of a given scatterer, as
demonstrated, are contained within the scattering matrix S,
which, as shown previously, is measured in a particular
polarization basis. Since there exist an infinite number of
orthonormal polarization bases, the question rising at this
point is whether it is possible or not to infer the polarimetric
properties of the given target in any polarization basis from
the response measured at a particular basis. This question
presents an affirmative answer. The possibility to synthesize
any polarimetric response of a given target from its measure-
ment in a particular orthonormal basis represents the most
important property of polarimetric systems in comparison
with single-polarization systems. The most important conse-
quence of this process is that the amount of information about
a given scatterer can be increased, allowing a better charac-
terization and study. This polarization synthesis process is
based on the concept of change of polarization basis
presented in Sect. 1.1.1.3.

Before describing the polarization synthesis process in the
backscattering direction, it is necessary to analyse the scatter-
ing process given by (1.37) with respect to the direction of
propagation of the incident and the scattered waves. It must
be noticed that the incident wave propagates in the direction

given by the unitary vector Kk , whereas the scattered one

propagates in the opposite direction, given by —Kk. Conse-
quently, this difference in the propagation direction must be
taken into account when defining the polarization state of the
wave. Given a Jones vector propagating in the direction k, the
Jones vector of a wave presenting the same polarization state
but which propagates in the direction —K is obtained as

k — —k , E(i(\) :E*(—E)

where, as mentioned previously, the BSA convention is
considered. Under this assumption, the scattering matrix is
referred to as the coordinate system centred in the transmit-
ting/receiving system. Consider a polarimetric radar system
which transmits the electromagnetic waves in the following
orthonormal basis {u,u, }. In this particular basis, the inci-
dent and scattered waves are related by the scattering matrix
as follows:

(1.63)

(1.64)

Bl = Sea ) Bray

As shown in Sect. 1.1.1.3, given the Jones vector
measured in a particular basis, for instance, {u,u,}, it is
possible to derive it in any other polarization basis {ﬁ', ﬁl }
which may be rewritten as follows:

(1.65)

T~ A~
—qu,u,

- {uuL} {uui} {uuL
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Then, the incident and the scattered waves transformed in
the new basis may be considered:

By =V o) By (09
By Ve aay By (06D

In order to apply the transformation basis procedure to the

scattered waves E’ { , we need to consider that it
wu,

propagates in the opposite direction as the incident wave

E . } . The transformation indicated by (1.64) assumes
uwu;

that the incident and the scattered waves propagate in oppo-
site directions, but (1.66) and (1.67) assume that both waves
propagate in the same direction. Consequently it is necessary
to consider the transformation indicated by (1.63) in (1.67).
As a result, the transformation basis procedure applies to the
scattered wave as follows:

(1.68)

Es/\[/\[
u,u;

= Uiy ) B

where now the wave in (1.68) is assumed to propagate in
opposite direction with respect to the incident wave in (1.66).
Now, it is possible to introduce (1.66) and (1.68) in (1.64):

- B

(1.69)

(il Sl o ol A o A e

As the transformation matrix U is unitary, i.e. U= U,

ESNN
u,u;

{“ “L} {“UL} {“ Uy

(1.70)

=Vl fea S,

from where it can be clearly identified the following identity

S N~
u,u,

:( G {uuL})l e VR )

(1.71)

The transformation expressed in (1.71) receives the name
of con-similarity transformation. This transformation allows
to synthesize the scattering matrix in an arbitrary basis
{ﬁ', ﬁl} from its measure in the basis {u,a, }.

1.1.2.5 Scatterers Characterization by Single, Dual,
Compact and Full Polarimetry

The main objective behind the use of polarimetric diversity,

also known as full polarimetry, when observing a particular

scatterer is that this type of diversity allows a far more
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complete characterization of the scatterer than the characteri-
zation that could be obtained without polarimetric sensitivity,
or simply single-polarization measurements. Although this
improved characterization, if compared with single-
polarization data, the use of polarimetric diversity comes at
a price, as the average transmitted power must be doubled
and the swath width halved. In addition, a fully polarimetric
SAR is technologically more complex than a single-
polarization SAR system. In order to understand the differ-
ence between these two philosophies and the improvement in
the characterization of a scatterer provided by polarimetry, it
is necessary to introduce two important concepts, since they
will determine the way in which a target shall be
characterized. It may happen the scatterer of interest to be
smaller than the coverage of the radar system. In this situa-
tion, we consider the scatterer as an isolated scatterer, and
from a point of view of power exchange, this target is
characterized by the so-called radar cross section. Neverthe-
less, we can find situations in which the scatterer of interest is
significantly larger than the coverage provided by the radar
system. In these occasions, it is more convenient to charac-
terize the target independently of its extent. Hence, in these
situations, the target is described by the so-called scattering
coefficient.

The most fundamental form to describe the interaction of
an electromagnetic wave with a given scatterer is the
so-called radar equation. This equation establishes the rela-
tion between the power the scatterer intercepts from the
incident electromagnetic wave and the power reradiated by
the same scatterer in the form of the scattered wave. The radar
equation presents the following form:

PG, A,
T 4drr? " Amr?

(1.72)

where P, represents the power detected at the receiving
system. The term

PG,
Anr?

(1.73)

is determined by the incident wave, and it consists of its
power density expressed in terms of the properties of the
transmitting system. The different terms in (1.73) are the
transmitted power P, the antenna gain G, and the distance
between the system and the target r,. On the contrary, the
term

(1.74)
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contains the parameters concerning the receiving system: the
effective aperture of the receiving antenna A, and the distance
between the target and the receiving system r,. The last term
in (1.72), i.e. o, determines the effects of the scatterer of
interest on the balance of powers established by the radar
equation. Since (1.73) is a power density, i.e. power per unit
area, and (1.74) is dimensionless, the parameter ¢ has units of
area. Consequently, o consists of an effective area which
characterizes the scatterer. This parameter determines which
amount of power is intercepted from (1.73) by the scatterer
and reradiated. This reradiated power is finally intercepted by
the receiving system according to the distance r,. An impor-
tant fact which arises at this point is the way the scatterer
reradiates the intercepted power in a given direction of the
space. In order to be independent of this property, the radar
cross section shall be referenced to an idealized isotropic
scatterer. Thus, the radar cross section of an object is the
cross section of an equivalent isotropic scatterer that
generates the same scattered power density as the object in
the observed direction:

S}

S

=)

6 = 4nrt— 5= 47r|S|2

)
where ‘E‘ represents the intensity of the electromagnetic

(1.75)

=

wave and S is the complex scattering amplitude of the object.
The final value of ¢ is a function of a large number of
parameters which are difficult to consider individually: the
wave frequency, the wave polarization, the imaging geome-
try or the geometrical structure and the dielectric properties of
the scatterer. Then, the radar cross section ¢ is able to char-
acterize the target being imaged for a particular frequency
and imaging system configuration.

The radar equation, as given by (1.72), is valid for those
cases in which the scatterer of interest is smaller than the
radar coverage, that is, a point target or point scatterer. For
those targets presenting an extent larger than the radar cover-
age, we need a different model to represent the scatterer. In
these situations, a scatterer is represented as an infinite col-
lection of statistically identical point scatterers. The resulting

scattered wave ]_Ffs results from the coherent addition of the
scattered waves from every one of the independent scatterers
which model the extended scatterer. In order to express the
scattering properties of the extended target independently of
its area extent, we consider every elementary target as being
described by a differential radar cross section do. In order to
separate the effects of the target extent, we consider do as the
product of the averaged radar cross section per unit area
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¢° and the differential area occupied by the target ds. Then,
the differential power received by the systems due to an
elementary scatterer can be written as

PG, B A,
o Arr? 4rr2’

dP, (1.76)

Hence, to find the total power received from the extended
target, we need to integrate over the illuminated area Ag:

_ Pth 0 Ar
Pr= / / 477:rt26 4rr? ds.

Ao

(1.77)

It must be noted that the radar equation at (1.72) represents
a deterministic problem, whereas (1.77) considers a statistical
problem. Eq. (1.77) represents the average power returned
from the extended target. Hence, the radar cross section per
unit area ¢°, or simply scattering coefficient, is the ratio of the
statistically averaged scattered power density to the average
incident power density over the surface of the sphere of

radius r,:
1
. (1.78)

s
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The scattering coefficient 6° is a dimensionless parameter.
As in the case of the radar cross section, the scattering
coefficient is employed to characterize the scattered being
imaged by the radar. This characterization is for a particular
frequency f, polarization of the incident and scattered waves
and incident and scattering directions.

As it has been shown, the characterization of a given
scatterer by means of the radar cross section ¢ or the scatter-
ing coefficient qO depends also on the polarization of the

incident wave ﬁl. As one can observe in (1.75) and (1.78),
these two coefficients are expressed as a function of the
intensity of the incident and scattered waves. Consequently,
o and ¢° shall be only sensitive to the polarization of the
incident waves through the effects the polarization has over
the power of the related electromagnetic waves. Hence, if we
denote by p the polarization of the incident wave and by g the
polarization of the scattered wave, we can define the follow-
ing polarization-dependent radar cross section and scattering
coefficient, respectively:

s (2

=)

_ z‘ wl o _
Ogp = 4nr = 471}qu

2

, (1.79)
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As it has been shown, a given target of interest can be
characterized by means of the radar cross section or the
scattering coefficient depending on the nature of the scatterer
itself; see (1.75) and (1.78). Additionally, in (1.79) and
(1.80), it has been shown that these two coefficients depend
also on the polarization of the incident and the scattered
electromagnetic waves. A closer look to these expressions
reveals that these two real coefficients depend on the polari-
zation of the electromagnetic waves only through the power
associated with them. Thus, they do not exploit, explicitly,
the vectorial nature of polarized electromagnetic waves. A
SAR system that measures o or ¢° is usually referred to as
single-polarization SAR systems as, normally, the same
polarization is employed for transmission and for reception.
In this case, the products delivered by the SAR system are
real SAR images containing the information of & or 6°.

In order to take advantage of the polarization of the elec-
tromagnetic waves, that is, their vectorial nature, the scatter-
ing process at the scatterer of interest must be considered as a
function of the electromagnetic waves themselves. In Sect.
1.1.1.1, it was shown that the polarization of a plane, mono-
chromatic, electric wave could be represented by the
so-called Jones vector. Additionally, a set of two orthogonal
Jones vectors form a polarization basis, in which any polari-
zation state of a given electromagnetic wave can be
expressed. Therefore, given the Jones vectors of the incident
and the scattered waves, E' and E°, respectively, the scatter-
ing process occurring at the target of interest is represented by
the scattering matrix S. In contraposition to a single-polari-
zation SAR system, a fully polarimetric SAR system
measures the complete scattering matrix S. Therefore, the
product delivered by this type of SAR systems corresponds
to the 2 x 2 complex scattering matrix and not individual real
SAR images.

As it can be observed, the polarimetric sensitivity of a
measurement ranges from a complete absence of polarimetric
sensitivity in the case of single-polarization SAR systems to
a complete sensitivity in the case of fully polarimetric SAR
systems. Polarimetric sensitivity comes to a price of a more
complex system that implies, on the one hand, a heavier
system and, on the other hand, the need to transmit a larger
power. In addition, and due to the need to double the pulse
repetition frequency to accommodate two polarizations in
transmission, the radar swath is also reduced. Nevertheless,
between both architectures, there exist other polarimetric
radar configurations with may soften the previous limitations
but at the cost of reducing the amount of acquired
information.
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A single-polarization or mono-polarization SAR system
is composed of one transmission and one reception chain that
operate at a fixed polarization. In most of the cases, both
chains operate at the same polarization providing a co-pol or
co-polarized channel. In the particular case of the linear
polarization basis, these channels would correspond to oy,
or 62h and o,, or agv for the horizontal and the vertical
polarization states, respectively. As indicated, these simple
imaging radars deliver real SAR images, proportional to ¢ or
6°, as products. One possibility to increase the amount of
information is to consider a dual-polarized radar by including
a second reception chain in the system, in such a way that it
transmits in one polarization, for instance, /, and it receives
simultaneously on the same polarization & and also on the
orthogonal one v, leading to one co-pol and the so-called
co-polarized and the cross-polarized channels, respectively.
A different alternative for a dual-polarized system is to
consider a transmission chain that alternates between
polarizations and a single reception chain. In all these cases,
the polarimetric system provides images proportional to the
radar brightness.

All the previous SAR systems present the limitation that
the information that may be retrieved is restricted to the

information that can be extracted from the real SAR images,
proportional to & or ¢°, or their different combinations. Nev-
ertheless, this limitation is overcome by allowing two simul-
taneous and coherent reception channels operating at
orthogonal polarizations, making it possible to measure the
relative phase between them. The coherent nature of the
receiving channels allows measuring the different elements
of the covariance or coherency matrix. The first option that
may be considered is to assume a fixed polarization in trans-
mission and orthogonal polarizations in reception. In the case
of the transmission channel, the circular polarization and the
45° linear polarizations have been proposed, whereas for
reception the horizontal and vertical linear polarizations are
assumed. This type of systems are collectively known as
compact polarized systems as, although they allow to mea-
sure some of the elements of the covariance and coherency
matrix, they do not allow to measure the complete matrices.
Finally, by allowing the system to transmit alternatively
between orthogonal polarizations and to receive coherently
at the same two orthogonal polarizations, a system like this is
able to measure coherently the scattering matrix and to pro-
duce the covariance and coherency matrices. In the case of a
bistatic configuration, without any type of assumption, these
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Fig. 1.5 The family of polarization diversity and polarimetric imaging radars. (Courtesy of Dr. R. K. Raney)
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will be 4 x 4 complex matrices, whereas in the case of a
monostatic configuration, these will be 3 x 3 complex matri-
ces. Figure 1.5 details the complete hierarchy of polarimetric
SAR systems.

1.2 SAR Data Statistical Description

and Speckle Noise Filtering

Most of geophysical media, for instance, rough surfaces,
vegetation, ice, snow, etc., have a very complex structure
and composition. Consequently, the knowledge of the exact
scattered electromagnetic wave, when illuminated by an inci-
dent wave, is only possible if a complete description of the
scene was available. This type of description of the scatterers
is unattainable for practical applications. The alternative,
hence, is to describe them in a statistical form. Such scatters
are named, consequently, as distributed or partial scatterers
(Ulaby et al. 19864, b).

SAR systems are mainly employed for natural scenes
observation. Owing to the complexity of these scatterers,
the scattered wave has also a complex behaviour. Hence,
the scattering process itself needs to be analysed stochasti-
cally. Most of the techniques focused on solving the scattered
wave problem trying to find, hence, the statistical moments of
the scattered wave as a function of the incident wave
properties, as well as the scatterer features.

In order to derive a stochastic model for the observed SAR
images in the case of distributed scatterers, it is necessary to
consider a model for the SAR imaging process, a model for
the scattering process and a model for the distributed scatter
being imaged.

The SAR imaging process is divided into two main pro-
cesses. The former consists of the acquisition of the scattered
data, as a result of the illuminating wave, whereas the latter
comprises the focusing process. The second, which is in
charge of collecting all the contributions of a particular
scatterer focusing it as good as possible, tries to remove the
effects of the acquisition process. The SAR impulse
response, or SAR system model, embracing the acquisition,
as well as the focusing processes, can be assumed to be a
rectangular low-pass filter (Curlander and McDonough

1991):
h(x,r) o sinc (g) sinc (%:) .

In the previous equation, x and r indicate the azimuth and
slant-range (simply called range in the following)
dimensions of the SAR image, respectively, whereas &, and
0, indicate the spatial resolutions in the same spatial
dimensions. Finally, a SAR image, i.e. S(x, ), may be

(1.81)
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modelled as a two-dimensional low-pass filter, given by
(1.81), applied to the scene’s complex reflectivity oy(x, r)
(Curlander and McDonough 1991):

S r) = / /GS(X’,r’)h(X—x’,r—r’)dx’dr’. (1.82)

Since the spatial resolutions of the SAR impulse response,
o, and &,, are not zero, it is possible to introduce the concept
of resolution cell as the area given by §, x §, . Qualitatively,
in the absence of signal re-sampling, the information
contained by an image pixel is basically determined by the
average complex reflectivity oy(x, r) within this
resolution cell.

The resolution cell dimensions, d, and §,, are larger than
the wavelength of the illuminating electromagnetic wave A.
As a consequence, the resulting scattered wave is due to an
elaborated scattering process. In order to arrive to a tractable
mathematical model of the SAR image S(x, r), it is conve-
nient to find an approximation for the scattering process
within the resolution cell. The most common simplification
is the Born approximation or simple scattering approximation
(Ulaby et al. 1986a). Under it, first, the distributed scatterer is
considered to be composed of a set of discrete scatterers
characterized by a deterministic response. This scatterer
model might be reasonable for those cases in which the
discrete scatterer description is valid, for instance, scattering
from raindrops or vegetation-covered surfaces having leaves
small compared with the wavelength. On the contrary, this
assumption is not valid for continuous scatterers. In these
cases, it is helpful to apply the concept of effective scattering
centre (Ulaby et al. 1986a), in which the continuous scatterer
is analysed in a discrete way, e.g. the facet model for surface
scattering (Ulaby et al. 1986a; Beckmann and Spizzichino
1987). In a second step, the scattered wave from the resolu-
tion cell is supposed to be the linear coherent combination of
the individual scattered waves of each one of the discrete
scatters within the cell. The main limitation of the Born
approximation is that it excludes attenuation or multiple
scattering in the process.

Assuming the scattered wave from any distributed
scatterer to be originated by a set of discrete sources, (1.82)
can be considered in its discrete form:

S, r) =) oyl r)h(x — xe, r — ry) (1.83)

-

where the sub-index k refers to each particular discrete
scatterer in the resolution cell and N is the total number of
these scatterers embraced by the response of the SAR system
h(x, r). Equation (1.83) can be rewritten by using
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03 (X 1) = /O EXP ( jegk), (1.84)
h(x = xp, v — 1) = hyexp ( joy), (1.85)
0y, =0, + ¢, (1.86)
as follows:
N
S r) = Acexp( joy,) (1.87)

k=1

where Ay = hy+/or. As observed in (1.87), the process to
form a SAR image pixel consists of the complex coherent
addition of the responses of each one of the discrete
scatterers, which are not accessible individually. The sole
available measure is the complex coherent addition itself.
This coherent addition process receives the name of
bi-dimensional random walk (McCrea and Whipple 1940;
Doob et al. 1954).

At this point, it is necessary to consider certain
assumptions about the elementary scattered waves
Agexp ( jby,) in order to derive a stochastic model for the
observed SAR image (Beckmann and Spizzichino 1987,
Goodman 1985):

» The amplitude A, and the phase 6, of the k-th scattered
wave are statistically independent of each other and from
the amplitudes and phases of all other elementary waves.
This fact states that the discrete scatterers are uncorrelated
and that the strength of a given scattered wave bears no
relation to its phase.

* The phases of the elementary contributions s, are equally
likely to lie anywhere in the primary interval [—z, 7).

Under these conditions, (1.87) may be seen as an interfer-
ence process, in which the interference itself is determined by
the phases 6;,. This interference can be constructive, as well
as destructive. This effect can be clearly noticed in SAR
images, as the amplitude or the intensity of (1.87) presents
a salt and pepper or grainy aspect, as it may be observed in
Fig. 1.6, which corresponds to IS, acquired with the
RADARSAT-2 system over the city of San Francisco. Such
a phenomenon is known as speckle (Goodman 1985; Lee
1981, Lopes et al. 1990; Raney 1983).

Speckle is a true electromagnetic measurement and has a
complete deterministic nature, as shown in (1.87). Neverthe-
less, the information contained within speckle needs from
two different analyses. In those cases in which there is a
reduced number of discrete scatterers within the resolution
cell, or its response is basically originated by a reduced set of

Fig. 1.6 RADARSAT-2 amplitude image of the scattering matrix element S, over San Francisco (USA)
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dominant ones, speckle is said to be partially developed.
Hence, the interference itself, i.e. the speckle, contains infor-
mation about the scattering process. On the contrary, when
there is a large number of discrete scatterers in the cell,
without a dominant one, the interference process becomes
so complex that it does contain almost no information about
the scattering process itself (Oliver and Quegan 1998). This
case is called fully developed speckle (Ulaby et al. 1986a),
and the complexity of the interference process is overcome
by analysing it by statistical means. Hence, speckle turns to
be considered as a noise-like signal (Ulaby et al. 1986b;
Lopes et al. 1990).

Summarizing, due to the lack of knowledge about the
detailed structure of the distributed scatterer being imaged
by the SAR system, it is necessary to discuss the properties of
the scattered wave statistically. The statistics of concern are
defined over an ensemble of objects, all with the same mac-
roscopic properties, but differing in the internal structure. For
a given SAR system imaging a particular scatterer, e.g. a
rough surface, the exact value of each pixel cannot be
predicted, but only the parameters of the distribution describ-
ing the pixel values. Therefore, for a SAR image, the actual
information per pixel is very low as individual pixels are
random samples from distributions characterized by a
reduced set of parameters.

1.2.1 One-Dimensional Gaussian Distribution
Considering a SAR system to be described by a rectangular
low-pass filter (see (1.81)) and the distributed scatterer to be
modelled by a set of discrete deterministic scatterers, by
means of the single or Born scattering approximation, a
SAR image, S(x, r), can be described by the model presented
in (1.87).

The main parameter in the SAR image model is the
number of discrete scatterers within the resolution cell,
i.e. N. Depending on the nature of this parameter, different
SAR image statistical models can be derived. On the one
hand, if N is considered as a constant value, provided that it is
large enough, (1.87) leads to the complex, zero-mean, com-
plex Gaussian pdf model, valid for homogeneous,
non-textured SAR images (Beckmann and Spizzichino
1987; Goodman 1985; Papoulis 1984). On the other hand,
to consider N as a random variable makes (1.87) to lead to pdf
models valid for textured areas description. In the following,
the zero-mean, complex Gaussian distribution model shall be
considered, although possible extensions to textured image
models shall be indicated.

When the number of discrete scatterers inside the resolu-
tion cell NV is large, provided that A, cos (j6;) and A, sin (j6,)
satisfy the central limit theorem (Oliver and Quegan 1998),
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the quantities 21{S} and J{S} are Gaussian distributed, that
is, they follow a zero-mean, Gaussian probability density
function (pdf). The parameters of this pdf can be obtained
on the basis of the discrete scatterers model. The mean values
of J{S} and J{S} are equal to zero, and the variances are
E{?*{S}} = E{7%{S}} = YE{A}*}. Besides, the symme-
try of the phase distribution of the discrete scatterers produces
(Beckmann and Spizzichino 1987):

=z

E{R{S}I{s}} =3

k=1

X E{AA}E{ cos (6¢) sin (6))}

N
=1
=0.

(1.88)

Under these conditions, ${S} and J{S}, denoted in the
following by x and y, respectively, are described by means of
zero-mean Gaussian pdfs:

pi = Ao ((2)). veCon) (89)

= (<)) veCsm) (90

where the variance is o° = (N/2)E{A;*}. The pdfs p(x) and
py(y) are denoted in the following as A(0, 62). Consequently,
a SAR image, S = x + jy = A exp (j#), is described by a zero-
mean, complex, Gaussian distribution, with uncorrelated real
and imaginary parts, denoted next as A(0, 6*). From (1.89)
and (1.90), it is straightforward to derive ps(A) and pe(6),

where A = \/x2 + y? and = arctan (y/x), as:

Pao(A.0) = % exp ( (%‘)2) (1.91)
palA) = % exp (—(%)2), A €[0,00) (1.92)
Pol0) =5, 0€[-mn) (1.93)

The amplitude pdf, i.e. po(A), is known as Rayleigh distri-
bution. In addition, if intensity, i.e. [ = AZ, is considered, the
Rayleigh pdf is transformed to an exponential pdf:

pi(I) =%e><p (—%) I €0,00). (1.94)
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On the other hand, (1.93) shows that the SAR image phase
has a uniform pdf. Consequently, this phase bears no infor-
mation concerning the natural scene being imaged.

Given the SAR image amplitude pdf (1.92), the amplitude
mean value is equal to 6+/7/2, whereas the variance equals
a - (7[/4))62. If the coefficient of variation, defined as the
standard deviation divided by the mean, is calculated, it
equals /(4/x) — 1. For the intensity 7, it has a value equal
to 1 as the mean and the variance are equal to o> As a
consequence, the intensity of a SAR image can be modelled
as the product of two uncorrelated terms (Goodman 1985;
Lee 1981; Lopes et al. 1990; Raney 1983), i.e.

1=c"n. (1.95)

The deterministic-like value is given by its mean, i.e. 6°,
which corresponds to the mean incoherent power of the area
under study (1.78). The random process n, with mean and
variance equal to 1, is characterized by an exponential pdf
and is defined as the speckle noise component. As it may be
observed from the model (1.94) and (1.95), if the mean value
of the intensity increases, the variance increases as well.
Therefore, this model is known as the multiplicative speckle
noise model. In other words, the signal to noise ratio of the
image cannot be improved by increasing the transmitted
power, as the variance of the data will increase
proportionally.

The Gaussian model for SAR data, leading to (1.91) and
(1.95), is able to characterize SAR data for homogeneous
areas. In this case, useful information is described by a single
degree of freedom, corresponding to the mean intensity.
Nevertheless, for certain types of distributed scatterers, such
a simple model cannot describe all the data variability. The
reason behind this limitation is that this type of scatterers
need from a more sophisticated model, with more than one
degree of freedom, in order to be completely described.
Collectively, these models are able to describe average inten-
sity variations, which correspond to data texture (Oliver and
Quegan 1998). A variety of two-degree of freedom pdf
models have been proposed in the literature, for instance:
K-distribution (Kong 1990), Weibull distribution or
log-normal distribution (Oliver and Quegan 1998; Papoulis
1984; Kong 1990). All these models consist of assuming the
number of scatterers N, within a resolution cell, no longer as a
constant, but being described also by a certain distribution.
Even so, there are situations in which these two-parameter
models are not able to describe the scene. Hence, the solution
goes into the direction of introducing more degrees of free-
dom, thus resulting in more elaborate image models (Oliver
and Quegan 1998; Trunk and George 1970; Trunk 1972;
Schleher 1975).

23
1.2.2 Multidimensional Gaussian Distribution

The previous section was concerned with the statistical
description of one-dimensional complex data acquired by a
complex SAR system, i.e. a single SAR image. As shown,
despite the data’s complex nature, only the amplitude, or the
intensity, contains useful information concerning the
distributed target under analysis. The amount of information
can be increased by acquiring more than one SAR image, if
one or more imaging parameters, e.g. system position, acqui-
sition time, frequency or polarization, are varied. What it is
pursued, hence, is the study of the variation of the scatterer’s
response to changes of the SAR system parameters. The
volume of information is increased as more data channels
are available but also because, if available, the multidimen-
sional data correlation structure can be also exploited to
extract information about the observed scatterer (Oliver and
Quegan 1998; Cloude and Pottier 1996). The following list
shows the most common multidimensional SAR
configurations, as well as their main applications:

e SAR Interferometry (InSAR) (Bamler and Hartl 1998): In
this configuration, two SAR systems image the same
scene from slightly different positions in space, leading
to two-dimensional SAR data. In this way, the phase
difference between the two acquisitions is proportional
to the terrain’s topography. This configuration is exten-
sively employed nowadays to obtain Digital Elevation
Models (DEMs) of the terrain.

* Differential SAR Interferometry (DInSAR) (Gabriel et al.
1989): This SAR configuration admits several variants.
On the one hand, a differential interferogram can be
obtained through the difference of two interferograms
acquired with a zero spatial baseline, but at different
times. Consequently, the “residual” differential interfero-
gram can contain small topographic deformations or even
atmospheric effects. On the other hand, the same effect
can be observed if the topography of a given interferogram
is compensated for by means of an external DEM.

e SAR Polarimetry (PolISAR) (Ulaby and Elachi 1990): In
this case, the parameters which vary between the different
information channels are the polarization of the transmit-
ted wave and the polarization with which the scattered
wave by the terrain is collected. A set of two orthogonal
polarization states are employed, being the most common
the pair of horizontal and vertical polarizations. The most
important property of polarimetry is that the polarimetric
response to any polarization state of the incident wave of a
given scatterer can be derived from the response to a pair
of orthogonal polarization states. This SAR configuration
exploits the fact that scatterers present different responses
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to different polarizations of the incident wave. For back-
scattering in which waves are transmitted and collected in
the same position and by considering the reciprocity theo-
rem, PoISAR leads to three-dimensional data. On the
contrary, when scattered waves are collected in a different
position with respect to the transmitted one, i.e. forward
scattering, PolSAR data are four-dimensional data.

e Polarimetric SAR Interferometry (PolInSAR) (Cloude and
Papathanassiou 1998): This technique tries to combine both
the advantages of InSAR and PolSAR. On the one hand,
the introduction of interferometric diversity makes possible
the data to be sensible to the structure of the target in the
vertical dimension. On the other hand, the data are related
to different scattering mechanisms in the same resolution
cell, thanks to the polarimetric capabilities of the acquisi-
tion system. Hence, PolInSAR data are sensible to different
scattering mechanisms in the same image pixel, located at
different heights. The introduction of simple scattering
models allows to extract relevant information about the
scatterer under study. Among the possible applications of
this technique, the most important is the extraction of
parameters related to the vegetation cover which allow
biomass estimation. In terms of data dimensionality,
PolInSAR data consist of six-dimensional data if backscat-
tering is considered, whereas they are eight-dimensional
data for forward scattering.

e SAR Tomography (TomoSAR) (Reigber and Moreira
2000): As shown in the previous point, PollnSAR
represents a first step to resolve the vertical structure of
the imaged scatterer. In this direction, SAR tomography is
a technique directed to achieve a real three-dimensional
reconstruction of the scene under observation. Both the
SAR data acquisition and processing are based on the
generation and processing of a synthetic aperture in the
azimuth direction to reconstruct the object in this direc-
tion. In the same way, SAR tomography is based on the
synthesis of an aperture in the dimension perpendicular to
the plane formed by the azimuth and range dimensions, by
acquiring several SAR images in the vertical dimension.
Consequently, the phase information of these images can
be employed to reconstruct, with enough spatial resolu-
tion, the vertical structure of the scatterer.

* Multifrequency SAR (Sarabandi 1997; Lee et al. 1991): As
shown in the literature, the response of a given scatterer
depends on frequency. Consequently, in order to extract
the maximum amount of information concerning the
scatterer, several SAR images can be acquired at different
frequencies. Therefore, the dimensionality of the data
depends on the number of acquired images.

From a general point of view, a multidimensional SAR
system acquires a set of SAR images, represented by the
complex vector
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kK=1[S.5,....5.]" (1.96)
where m represents the number of SAR images, i.e. the data
dimensionality, according to the previous description. Each
element of the vector k, i.e. S;fori =1, 2, ..., m, represents a
single complex SAR image. In PolSAR, the k vector receives
the name of scattering or target vector (in the straightforward
lexicographic basis), and it represents a vectorization of the
scattering matrix S as detailed in Sect. 1.1.2.2. The correla-
tion structure of the vector k, provided that its m components
S; ~ (0, 6%), is completely characterized by the Hermitian
covariance matrix C, defined as follows:

C = E{kk"}
E{sisT} E{sis{} - E{sisi)

B E{S?Sf'} E{SgSQ'} E{S?SZ} (1.97)
E{sr;,sff} E{S,;,Sg'} E{S';zsg}

In the particular case of PolSAR data, the data correlation
structure can be also expressed by the Hermitian coherency
matrix T (Cloude and Pottier 1996). Considering (1.97), one
can see that the complex vector k is characterized by the
following pdf (Lee et al. 1994; Tough et al. 1995):

1 _
(k) = 7[C| exp (—k”C'k).

(1.98)

Hence, (1.98) represents the data pdf model for a set of
m correlated SAR images, which is denoted in the following
as A\(0,C). Since k((0,C), it is completely characterized
by the first and the second central moments, i.e. the mean
target vector and the covariance matrix, respectively.

At this point, it is important to consider, as presented
before, the issue that the mean value of the real and imaginary
parts of k equals zero. The main consequence is that it
prevents the possibility to extract useful information via an
estimation of this mean value. For instance, this circumstance
determines the way PolSAR data has to be considered when
distributed scatterers are of concern. A PolSAR system
measures the 2 x 2 complex scattering matrix S, which can
be vectorized into the form presented by (1.96) (Cloude and
Pottier 1996; Bebbington 1992); see also Sect. 1.1.2.2. On
the one hand, when this scattering vector refers to a
distributed scatterer, a given sample of it has almost no
information concerning the scatterer itself, as k consists of a
sample of the pdf given by (1.98) (Oliver and Quegan 1998).
On the other hand, if the mean value of k is estimated, it turns
out to be zero. Thus, as reported in the literature, when
distributed scatterers are studied, the vector K, or the scatter-
ing matrix S in the particular case of PolSAR, cannot
completely describe the properties of the distributed scatterer.
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Therefore, it is necessary to characterize these properties by
means of higher-order moments, i.e. through an estimation of
the covariance matrix C, or, additionally, the coherency
matrix T. These two matrices are derived through the outer
product of the target vectors k; and k,, respectively, as
indicated in Sect. 1.1.2.2, so they are independent of the
absolute phase of the scattering matrix S or the target vectors
k; and k,,. Hence, the expected value in (1.97) needs to be
estimated. The process to estimate the covariance matrix C is
also referred to as the polarimetric speckle noise removal
process, as the objective is to remove the variability of the
data making it possible to retrieve the C matrix.

In the rest, the complex, multidimensional Gaussian
model, presented by (1.98), is taken as the multidimensional
SAR imagery model. As for the one-dimensional model for a
single SAR image, the complex, multidimensional Gaussian
model can be considered valid for homogeneous areas, that
is, areas in which the statistical properties of the data remain
constant. The main reason of this choice has to be found in
the fact that the simplicity of the complex, multidimensional
Gaussian pdf, makes it possible the analytical analysis of the
information which can be extracted from the data. In addi-
tion, many studies reported in the literature support this
model.

The multidimensional, zero-mean, complex Gaussian pdf
model is based on the following assumptions:

* The distributed scatterer may be modelled as a collection
of discrete or point scatterers, whereas the scattering pro-
cess occurring at the surface, or within it, is considered
under the Born or simple scattering approximation.

* The properties of the distributed scatterer remain constant
in space, hence leading to homogeneous SAR data.

Thus, whenever any of the previous two suppositions are
not fulfilled, SAR data can no longer be assumed to be
described by the complex, multidimensional Gaussian pdf
model. These departures have been noticed in the literature
at high resolutions or high frequencies, giving rise to data
texture. As for one-dimensional SAR imagery, some of these
departures can be explained by considering N, the total num-
ber of scatterers in the resolution cell, to be described by a
certain pdf. If the mean number of scatterers contributing to
the measurement at each pixel is large, then whatever the pdf
of the number of discrete scatterers, the vector k can be
represented by the product of two independent processes:

k =TK, (1.99)
where T is a positive scalar texture and k' is a complex,
multidimensional Gaussian distributed vector, with the
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same covariance as k. When T is considered to be described
by a square-root gamma pdf, the data k in (1.99) is described
by the so-called K-distribution (Kong 1990). Although (1.99)
gives rise to textured data, an important result is that any
model based on the fluctuation of the number of discrete
scatterers within the resolution cell gives rise to data that is
multivariate Gaussian at each pixel. That is, despite the
texture, the data’s correlation structure is still determined by
the multidimensional Gaussian structure.

The main drawback of the model given by (1.99) is that,
since the texture parameter 7 is a scalar, the texture informa-
tion is the same of all the channels of the vector k. Neverthe-
less, recent results presented in the literature point out that,
especially in the case of POISAR data, the texture information
could be different for every SAR data channel (Oliver and
Quegan 1998; De Grandi et al. 2003). The physical reason
that would explain this issue is that a scatterer presents
different responses to different polarizations. Hence, these
differences, of course considered in the covariance matrix
C, could be also be present within the texture information.

As noticed, in order to extract the useful information
concerning the distributed scatterer under analysis from mul-
tidimensional SAR data, it is necessary to estimate the covari-
ance matrix C, or expressed in a different way, polarimetric
speckle noise must be filtered out. The estimated value of the
covariance matrix C, which generally receives the name of
sample covariance matrix and is denoted by Z, is studied in
detail in the following.

1.2.3 The Wishart Distribution

The nature of multidimensional SAR data, provided the zero-
mean, multidimensional, complex Gaussian pdf to be the
right data model, makes it necessary to study the distributed
scatterer properties through the estimation of the covariance
matrix C. The maximum likelihood estimation (MLE) of
C (Oliver and Quegan 1998) corresponds to

r 1 n 1 n i 1 n i 7
S ISul® D o SuSy v oSS
k=1 k=1 k=1
l zn:s S* l i: |S |2 l Y K
7 — n 2k 1k n 2k n 2k° mk
k=1 k=1 k=1
1 < I IR . 1 2
n ZSMkSIk n Zsmkszk n ISk |
L™ k=1 k=1 k=1 i
(1.100)

If one considers the expectation of the MLE
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E{Z} :%E{AAH} =C, (1.101)
it can be demonstrated that the MLE of the Hermitian covari-
ance matrix is an unbiased estimator. In addition, it can be
shown that the variance of the different matrix components of
Z decreases with the number of samples n.

In SAR applications, the MLE of the covariance matrix
receives often the name of covariance matrix multilook esti-
mator (Sarabandi 1997), whereas Z is known as the sample
covariance matrix (Kay 1993). Here, look refers to each one
of the independent averaged samples. Hence, it can be
concluded from (1.101) that the performance of the covari-
ance matrix estimation Z, for homogeneous data, depends on
the number of averaged samples or looks, in such a way that
the larger the number of looks, the lower the variance and the
better the estimation. As the Z matrix is estimated from
random samples, this matrix is also a random matrix. Finally,

the distribution of the sample covariance matrix
Z corresponds to the Wishart distribution:
z"™" o
C["Tn(n)

where etr(-) is the exponential of the matrix trace and the
complex multivariate gamma function is defined as

L(n) = 2=V D(n — i+ 1). (1.103)

The distribution presented in (1.102) is denoted by
YA (nC, m). It can be observed from (1.102) that the Wishart
distribution depends on three parameters: the number of data
channels m, the number of averaged multidimensional data
samples n and the true covariance matrix C. The expression
of the Wishart distribution is only defined for n > m in order
to assure Z to be a full-rank matrix with a non-zero
determinant.

As it has been highlighted, the Hermitian covariance
matrix C represents the cornerstone in multidimensional
SAR data processing, and especially in PolSAR, together
with its counterpart, the coherency matrix T. The final objec-
tive of estimating these matrices is the possibility to extract
physical information to characterize the distributed scatterers
being imaged by the SAR system. This task is performed by a
collection of algorithms and techniques, collectively known
as inversion algorithms. The aim of these techniques is the
establishment of relations between the physical properties of
the distributed scatterer and the observed SAR data, hence
making it possible the inversion of this process in order to

C. Lépez-Martinez and E. Pottier

extract physical information from observed multidimensional
SAR data. Most of these techniques have the covariance
matrix C, or certain information derived from it, as the
main input of the inversion process. Since due to the intrinsic
nature of SAR systems, direct access to the covariance matrix
C is not possible, it must be estimated from the observed
multidimensional SAR data.

As shown in Sect. 1.2.1, the estimation of incoherent
power may be also understood as a filtering process. One
alternative to define this filtering process is to assume a given
noise model able to identify the information of interest and
the noise sources that corrupt this information. In the case of
single SAR images, this noise model corresponds to the
multiplicative speckle noise model in (1.95). In the case of
multidimensional SAR data, this model cannot be extended
to the whole covariance matrix Z as it would imply uncorre-
lated SAR images. Nevertheless, the multiplicative speckle
noise model can be extended to model the diagonal as well as
the off-diagonal elements of Z (Lopez Martinez and Fabregas
2003). In this case, the nature of the speckle noise for a
particular element of the covariance matrix depends on the
correlation that characterizes this element. For low correla-
tion, speckle noise presents an additive nature, whereas for
high correlation, speckle noise is characterized by a multipli-
cative behaviour. Consequently, this model is referred to as
the multiplicative-additive speckle noise model for multidi-
mensional SAR data.

1.2.4 The Polarimetric Covariance
and Coherency Matrix

As indicated in the previous section, the characterization of
distributed scatterers must be performed through the covari-
ance C or the coherency T matrices. In a bistatic configura-
tion, and according to what has been presented in Sect.
1.1.2.2, these two matrices are defined as

C =E{kk/"}
CE{isul} E{SuSi} E{SuSu} E{swS.}]
E{snSi} E{ISul’} E{SwSu} E{SwS.)
I Efsusi) E{sus) E{S) E{Sus)
E{SuSi} E{SwSh} E{SwSi} E{ISW\Z}_
(1.104)

and
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T—E{kK!"}
E{ (Shh +va) (Shh - va)*}
E{ |Shh - va|2}

E{(Shv +Svh) (Shh +va)*} E{ (Shv +Svh) (Shh - va)*}

E{‘Shh +va|2}

E{(Shh - va)(Shh +SW)*}

_E{ j(Shv_Svl1)(Shh+va)*} E{ j(Shv_Svh)(Shh_va)*} E{ j(ShV_Svh)(Shv+Svh)*}
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E{(Shh+va)(S/1v+Svh)*} E{(Shh +Sw)( j(Shv _Svh))*}
E{(Stn—Sw) (S +Sun)"}  E{(Snn—Sw)( j(Sm—Su))"}
E{lSn+Sal}  E{(Sw+Su)(J(Sm—Sw))'}

E{|Shv _Svh|2}

(1.105)
respectively. In the case of a monostatic system configura- and
tion, the covariance and the coherency matrices are defined as
C =E{kk/"}
E{ \Shh|2} E{V2SuS;,}  E{SwS;}
= | E{V2SuSjs} E{IShv\z} E{V25uS,,
E{SuSi}  E{V2S.5.}  E{Is.P}
(1.106)
E{ISm+Sul}  E{(Sm+Sw) (S — Sw)} E{2(Sun + S0)Sp,}
T = E{k,,k,{*} = | E{(Sun = Su) (St + Su) "} E{|Shh - SW|2} E{2(Su — Sw)Si, } (1.107)

E{2S1(Spn + Sw)"}

As demonstrated in the previous section, the maximum
likelihood estimator of the expectation operator E{-} and
therefore the maximum likelihood estimator of the covari-
ance and coherency matrices correspond to the spatial aver-
aging, referred to as multilook or boxcar filter. In this case,
the estimated covariance and coherency matrices receive the
names of sample covariance and sample coherency matrices,
respectively.

Egs. (1.106) and (1.107) represent the most general form
of the covariance and coherency matrices, respectively, for a
monostatic configuration. As these matrices are Hermitian,
they contain up to nine independent parameters. Neverthe-
less, depending on the type of scatterer, the number of inde-
pendent parameters can be lower leading to a particular form

E{2S3(Sm — Sw)"}

E{4[sul |

of the covariance C or the coherency T matrices. If the
scatterer under study has reflection symmetry in a plane
normal to the line of sight, then the covariance and the
coherency matrices will have the following general forms:

[cn 0 3
C=[0 ¢»n 0],
L1 0 c33
[t ti2 O
T= |t tn 0], (1.108)
10 0 133
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that is, the cross-polar scattering coefficient will be uncorre-
lated with the co-polar terms. Under this hypothesis, the
covariance C or the coherency T matrices present up to five
independent parameters. In addition to reflection symmetry, a
medium may also exhibit rotation symmetry. This type of
symmetry is referred to as azimuthal symmetry, leading to a
coherency matrix presenting the following form:
0

0 (1.109)

=

which has only two independent parameters o and f.

1.2.5 The Polarimetric Coherence

From the expressions of the covariance and coherency matri-
ces that were introduced in Sect. 1.2.4, one may see that the
elements of these matrices may be divided into two types: on
the one hand, the diagonal elements containing the power
information and, on the other hand, the off-diagonal elements
that contain the correlation information between the different
channels of information. This correlation information may be
considered in an absolute way by considering just the
off-diagonal elements of these matrices. Nevertheless, this
correlation information may be also considered in a relative
way through the so-called complex correlation parameter,
defined as

= E{Sisi} . (1.110)

Je( )2}

This parameter contains the information of statistical
resemblance between any two SAR images S; and ;. Indeed,
these SAR images correspond to the different elements of the
target vector k defined in Sect. 1.1.2.2. The amplitude of the
complex correlation coefficient, normally referred to as cor-
relation Ipl, presents a value in the range [0,1]. If Ipl = 0 it
means that both SAR images are statistically independent,
and the phase ¢, contains no information. For Ipl = 1, both
SAR images are statistically equal, and the phase informa-
tion, free of noise, is a delta function containing information
about the scattering process. For any other value, Ipl
establishes the correlation between both SAR images, and
the phase information ¢, is contaminated by the effect of
speckle noise.

In multidimensional SAR imagery, the complex correla-
tion coefficient has been revealed as an important source of
information. In particular, the correlation coefficient ampli-
tude, named coherence, apart from depending on the SAR

p=|pe
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system characteristics, is also influenced by the physical
properties of the area under study. The complex correlation
coefficient is the most important observable for InSAR
(Bamler and Hartl 1998). On the one hand, and considering
the acquisition geometry, it has been demonstrated that its
phase contains information about the Earth’s surface topog-
raphy. Therefore, INSAR phase data are employed to derive
Digital Elevation Models (DEMs) of the terrain. On the other
hand, although there is not a complete understanding about
the parameters and the physical processes affecting the inter-
ferometric coherence, it has been shown that this parameter
may be successfully employed to characterize the properties
and the dynamics of the Earth’s surface.

The coherence represents also an important source of
information when PolSAR data are addressed. In particular,
the complex correlation coefficient parameter derived from
circularly polarized data has been employed to characterize
rough surfaces (Mattia et al. 2003), to study the sea surface
(Kasilingam et al. 2002) or to discriminate sea ice types
(Wakabayashi et al. 2004). When obtained from linearly
polarized data, the coherence has been also employed to
characterize the forest cover in the Colombian Amazon
(Hoekman and Quinones 2002). In conjunction with polari-
metric techniques, i.e. polarimetric SAR interferometry
(PolInSAR), the interferometric coherence is employed to
retrieve the forest vegetation (Cloude and Papathanassiou
1998) or the crop plants heights (Ballester Berman et al.
2005).

All the techniques listed in the previous paragraph rely on
a correct estimation of the coherence parameter. The
estimated coherence values are overestimated, especially for
low coherence values (Touzi et al. 1999). Under the homoge-
neity hypothesis, the coherence accuracy and bias depend on
the extent of the averaging or estimation process, in such a
way that the larger the number of averaged pixels, the higher
the coherence accuracy and the lower the bias. Therefore,
since coherence accuracy is achieved at the expense of spatial
resolution and spatial details, this point represents a clear
trade-off for coherence estimation. Coherence estimation
techniques rely also on the hypothesis that all the signals
involved in the estimation process are stationary and in
particular locally stationary processes. When this is not the
case, biased coherence values result (Touzi et al. 1999).
Hence, a lack of signal stationarity can be considered as a
second source of bias for coherence estimation. The depar-
ture of the stationarity condition may be induced by system-
atic phase variations mainly due to the terrain topography but
also to atmospheric effects or to deformation gradients. The
most reliable technique to eliminate this bias is to compensate
for the topography by means of external DEMs. Neverthe-
less, the DEM may not be available for the scene under study,
or its quality may be rather low for coherence estimation
purposes. There exist alternative coherence estimation
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techniques aiming to solve these problems with different
level of success.

1.2.6 Polarimetric Speckle Noise Filtering

As it has been explained previously, a PolSAR system
measures the scattering matrix S for every pixel. In the case
of deterministic or point scatterers, this matrix determines
completely the scattering process, and it can be directly
employed to retrieve physical information of the scatterer.
Nevertheless, in the case of distributed scatterers, the scatter-
ing matrix S is no longer deterministic but random due to the
complexity of the scattering process. As indicated, this ran-
dom behaviour is referred to as speckle. Speckle is a true
scattering measurement, but the complexity of the scattering
process makes it necessary to consider it as a noise source.
Consequently, the information of interest is no longer the
scattering matrix, but the different stochastic moments neces-
sary to specify completely the probability density function of
the SAR data. These moments must be estimated from the
measured data, or said in a different way, speckle noise must
be filtered out or even eliminated to grant access to these
statistical moments. In the case of PoISAR data, under the
assumption of the vector Kk to be distributed according to the
zero-mean, complex Gaussian distribution (1.98), these
moments correspond to the covariance C or the coherency
T matrices.

Section 1.2.3 already introduced the simplest approach to
estimate the covariance or the coherency matrices, i.e. the
multilook (1.100), which corresponds to an incoherent aver-
age or a spatial average. Although the multilook approach
corresponds to the maximum likelihood estimator of the
covariance or coherency matrices, it presents the drawback
that the estimation of the data is obtained at the expense of
degrading the spatial resolution and the spatial details of the
data. Figure 1.7 shows an example of these effects.

Considering the limitations of the multilook filtering
approach, it is necessary to define different filtering
alternatives that improve the multilook approach in such a
way that they are able to retain the spatial resolution and the
spatial details of the image but also lead to a correct and
unbiased estimation of the covariance and coherency
matrices.

1.2.6.1 PolSAR Speckle Noise Filtering Principles

The objective of any PolSAR speckle noise filter to be
defined is to estimate the covariance or the coherency matrix
while retaining the spatial resolution and the spatial details of
the data. From a general point of view, it would be necessary
to determine the general principles a PolSAR filter should
follow in order to perform a correct estimation of the infor-
mation of interest. Different authors have addressed the
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necessity to specify the general principles of a PolSAR
speckle filter and which are the potential limitations: Touzi
et al. (Touzi and Lopes 1994), Lee et al. (Lee et al. 1999) and
Lopez-Martinez et al. (Lopez Martinez and Fabregas 2008).

In the previous three references, as the data is assumed to
be characterized by the zero-mean, complex Gaussian pdf,
the information to retrieve is on the second-order moments of
the PolSAR data. In (Touzi and Lopes 1994), the authors
propose the use of the Mueller matrix, although they also
consider the covariance matrix. In (Lee et al. 1999; Lopez
Martinez and Fabregas 2008), the filtering is performed on
the covariance or on the coherency matrices. In any case, the
use of the covariance, the coherency or the Mueller matrices
to filter the data is equivalent as all these matrices contain the
same information. For instance, as indicated previously in
Sect. 1.1.2.2, the covariance and the coherency matrices are
related by similarity transformations. Implicitly, the authors
are considering that these matrices contain all the necessary
information to characterize the PolSAR data. This assump-
tion is only valid under the hypothesis of (1.98), which only
applies in the case of stationary data. The presumption of
more evolved stochastic data models that may take into
account additional signal variability, for instance, texture,
are always associated with the necessity to estimate addi-
tional stochastic moments associated with the texture
information.

Another point in which all the previous three references
are in agreement is the need to consider the estimation of the
previous matrices locally, adapting to the stationarity or
homogeneity of the PolSAR data. This requirement is
justified from two different points of view. The first one
refers, due to the stationarity of PoISAR data, to the need to
maintaining the spatial resolution and the radiometric infor-
mation in the case of point or deterministic scatterers, which
may be extended to the idea of preserving the spatial resolu-
tion and the spatial details of the PolSAR data. The second
refers to the fact that in the case of distributed scatterers, the
covariance matrix must be estimated on stationary data,
avoiding the mixture of different stationary areas. This idea
implies that the PoISAR filter must adapt the filtering process
to the morphology of the PolSAR data. The differences
between the filtering principles for PoISAR data proposed
by Touzi and Lopes (1994), Lee et al. (1999) and Lopez
Martinez and Fabregas (2008) are on how to consider the
information that may be provided by the off-diagonal
elements of the covariance or coherency matrices and
whether this information may be employed to optimize
speckle noise reduction or not. The approaches proposed by
Touzi and Lopes (1994) and Lee et al. (1999)) suggest an
extension of the multiplicative speckle noise model that
applies for the diagonal entries of the covariance matrix to
the off-diagonal ones, although it is also admitted that this
extension may not lead to an optimum filtering of the speckle
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Fig. 1.7 RADARSAT-2 polarimetric RGB image over San Francisco (USA) where the colour code is Sy, blue, S,, red and Sy, green. (a) Original

image and (b) filtered image with a 7 x 7 multilook filter

noise component. In (Lee et al. 1999), the authors even
propose that the use of the degree of statistical independence
between elements must be avoided in order to avoid crosstalk
and that all the elements of the covariance matrix must be
filtered by the same amount. These principles were extended
in (Lopez Martinez and Fabregas 2008), based on a more
accurate PoISAR speckle noise model for the off-diagonal
elements of the covariance matrix (Lopez Martinez and
Fabregas 2003). This model predicts that for a given
off-diagonal element of the covariance matrix, speckle

presents a complex additive nature for low coherence values,
whereas speckle tends to be multiplicative in the case of high
coherences. Consequently, an optimum speckle noise reduc-
tion should adapt to the type of noise for the off-diagonal
elements of the covariance matrix, that is, filtering must adapt
to the level of coherence (Lopez Martinez and Fabregas
2008). As it may be concluded, a PoISAR filter needs also
to be adapted to the polarimetric information content of the
data. Consequently, in connection with what has been
explained previously, the way a PolSAR filter adapts to the
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local information must consider all the information provided
by the covariance or coherency matrices.

1.2.6.2 PolSAR Speckle Noise Filtering Alternatives
As indicated in Sect. 1.2.3, the first alternative to estimate the
covariance or the coherency matrices is to consider their
maximum likelihood estimator that corresponds to an inco-
herent spatial average as expressed in (1.101). In this case,
the estimation of the information is obtained at the expense of
the loss of spatial resolution and spatial details. Conse-
quently, in order to avoid the previous drawbacks, the
PolSAR data filters should adapt to the morphology of the
SAR image to retain the spatial details while leading to a
correct and unbiased estimation of the covariance or coher-
ency matrices.

PoISAR images are inherently heterogeneous as they
reflect the heterogeneity of the Earth surface. Consequently,
a first alternative to adapt to this heterogeneity, in order to
avoid the loss of spatial resolution and spatial details, is to
adapt locally to the signal morphology. One option to achieve
this local adaptation is to consider edge aligned windows, as
proposed in (Lee et al. 1999). Previously to the PoISAR data
filtering process, the algorithm in (Lee et al. 1999), known as
refined Lee filter, proposed the use of directional masks,
within the analysis window, to determine the most homoge-
neous part of the sliding window where the local statistics
have to be estimated. This spatial adaptation permits to pre-
serve relatively sharp edges and local details. Once the direc-
tional mask defines the homogeneous pixels that have to be
employed to estimate the covariance or the coherency matri-
ces, these are estimated by means of the Local Linear Mini-
mum Mean Square Error (LLMMSE) approach, i.e.

Z=7+b(Z-17) (1.111)
where Z is the estimated value of the covariance matrix, Z is
the local mean covariance matrix computed with the homo-
geneous pixels selected by the edge aligned window and
Z corresponds to the covariance matrix of the central pixel.
Finally, b is a weighting function having a value between
0 and 1 derived from the statistics of the Span image. Over
homogeneous areas, b == 0 so the estimated covariance matrix
corresponds to the values of the local means as it would be
expected in absence of spatial details. Nevertheless, in the
case the central pixel of the analysis window corresponds to a
deterministic scatterer, b ~ 1 producing Z to be the covari-
ance matrix of the central pixel. Consequently, the pixel is
not filtered and the spatial resolution is preserved, as
observed in Fig. 1.8. In relation with the filtering procedure
proposed in (Lee et al. 1999), the authors proposed also a
filtering alternative where the pixels to be averaged within the
analysis window are those with the same scattering
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mechanism as the central pixel, obtained through the
Freeman-Durden decomposition (Lee et al. 2006).

As it may be observed, the previous filtering approach
adapts to the signal morphology through a family of edge
aligned windows. Hence, the adaptation to the signal morphol-
ogy is restricted to a finite family of aligned windows. In
(Vasile et al. 2006), the authors extended the ideas presented
in (Lee et al. 1999), but instead of considering edge aligned
windows, the authors introduced the concept of region grow-
ing to define an adaptive set of homogeneous pixels
surrounding the pixel under analysis in order to adapt to the
local morphology of the data. As in the case of Lee et al.
(1999)), the adaptation to the signal morphology is achieved
through the Span image. The region growing process is based
on comparing a given pixel against its neighbours to determine
their similarity by considering their corresponding covariance
and coherency matrices. Since a PoISAR system provides for
every pixel only the scattering matrix, an initial process of
regularization that assures full-rank covariance or coherency
matrices is necessary. This regularization process could be
performed with the multilook filter, but it would introduce a
loss of spatial resolution and spatial details. In (Lee et al.
1999), the authors propose the use of the median filter. Never-
theless, this alternative introduces a bias in the estimated data,
as in the case of non-symmetric distributions, such as the one
of the amplitude or the intensity of a SAR image or the one of
the Span, the median does not correspond to the mean.

All the previous filtering approaches adapt to the signal
morphology locally under the assumption that the pixels
surrounding the pixel of analysis present a high probability
to be statistically similar. Hence, these filters assume that the
data are locally stationary. Nevertheless, it has been recently
demonstrated that this idea of local stationary could be
relaxed under the assumption that similar pixels to the one
of analysis are available not only on the neighbourhood of the
pixel of analysis but on the complete image (Deledalle et al.
2010).

In order to increase the filtering effect, one option, as
shown in (Vasile et al. 2006), is to increase the number of
homogeneous pixels to be averaged that are similar to the
pixel under consideration. In (Vasile et al. 2006), as well as in
(Lee et al. 1999), the similarity is measured considering only
the information contained in the diagonal elements of the
covariance or coherency matrices. Therefore, these
approaches neglect the information provided by the
off-diagonal elements of these matrices. The way to take
into account all the information provided by the covariance
or the coherency matrices is to consider the concept of the
distance in the space defined by the matrices themselves.
This approach has been considered in (Deledalle et al.
2010) as well as in (Alonso Gonzalez et al. 2012). In (Alonso
Gonzalez et al. 2012), the authors propose to introduce the
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Fig. 1.8 RADARSAT-2 polarimetric RGB image over San Francisco (USA) where the colour code is Sy, blue, S,, red and Sj,, green. Filtered image
with the LLMMSE speckle filter

concept of binary partition tree (BPT) as a hierarchical
structure to exploit the relations that may be established
between similar pixels. In essence, the filtering alternative
proposed in (Alonso Gonzalez et al. 2012) produces first a
binary partition tree that establishes the relations between
similar pixels on the basis of a distance that takes into account
all the polarimetric information. In a second step, the binary
partition tree is pruned to find the largest homogeneous
regions of the image. This filtering alternative allows to filter
large homogeneous areas while maintaining the spatial
details of the data as observed in Fig. 1.9.

The objective of all the previous filtering techniques is to
obtain the best estimate of the covariance or coherency matri-
ces by means of increasing the number of averaged samples.
Nevertheless, if the number of available homogeneous pixels
is not large enough, the way to improve the estimation of the
covariance and coherency matrices must be addressed by
considering a better exploitation of the Wishart distribution.
As shown in (Lopez Martinez and Fabregas 2003), the
Wishart distribution allows defining the multiplicative-
additive speckle noise model for all the elements of the
covariance or the coherency matrices. This model has been
exploited for PoISAR data filtering in (Lopez Martinez and
Fabregas 2008), where it is demonstrated that if the filtering
process is adapted to the multiplicative or additive nature of
speckle, depending on the correlation of a pair of SAR
images, it may lead to an improved estimation of the different
parametric parameters that characterize the covariance or
coherency matrices.

Beyond all the PoISAR data filtering techniques presented
in this section, there exist a wide variety of similar
approaches in the related literature, where a comparison
among some of them has been presented in (Foucher et al.
2012). Nevertheless, it may be concluded that reaching an
optimal compromise of a joint preservation of the polarimet-
ric and the spatial information, in the case of PolSAR data
filtering, is still today a problem without an adequate solu-
tion. Consequently, the selection of a particular filtering
alternative for POISAR data must take into consideration the
final application of the PolSAR data in order to determine the
optimum filtering according to that application.

1.3 Polarimetric Scattering Decomposition

Theorems

As shown in Sect. 1.1.2, the scattering matrix or the covari-
ance and coherency matrices allow the characterization of a
scatterer for a given frequency and a given imaging geome-
try. The information provided by these matrices, at a particu-
lar combination of transmitting and receiving polarization
states, can be extended to any polarization state, thanks to
the concept of polarization synthesis. Nevertheless, when
facing real polarimetric SAR data, the interpretation of
these matrices is not straightforward due to the complexity
of the scattering process and the high variability of the
scatterers. Polarimetric decomposition techniques appear as
a solution to interpret the information provided by the
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Fig. 1.9 RADARSAT-2 polarimetric RGB image over San Francisco (USA) where the colour code is Sy, blue, S,, red and Sj,, green. Filtered image
with the BPT speckle filter

scattering and the covariance and coherency matrices. These
decomposition techniques must be divided into two main
classes. The first one, referred to as coherent polarimetric
decompositions, makes reference to those decomposition
techniques applied to the scattering matrix. The validity of
these decomposition techniques is restricted to point
scatterers, that is, scatterers not affected by the speckle
noise component. If applied to distributed scatterers, these
decompositions would be random as they are not able to cope
with the stochastic nature of the measurements. Distributed
scatterers, on the contrary, can be analysed by the so-called
incoherent polarimetric decompositions that base the analysis
on the covariance or coherency matrices.

1.3.1 Coherent Scattering Decomposition

Techniques

Section 1.1.2.1 introduced the 2 x 2 complex scattering
matrix as a mathematical operator able to describe the scat-
tering process that occurs when a wave reaches a given
scatterer. As indicated, this matrix contains the necessary
information to determine the far-field scattered wave by the
scatterer as a function of the incident wave. Consequently,
the scattering matrix characterizes the scatterer, for the
employed imaging geometry and the working frequency. As
indicated in Table 1.6, simple canonical scattering
mechanisms may be recognized from the scattering matrix.
Nevertheless, in real measurements, the scattering matrix

usually presents a more complex structure that hinders the
interpretation in physical terms. The objective behind coher-
ent scattering decomposition techniques is to decompose the
measured scattering matrix by the SAR system, i.e. S, as a
combination of the scattering matrices corresponding to sim-
pler scatterers:

(1.112)

k
S= Z CiS,’.
i=1

In (1.157), the symbol S; corresponds to the response of
every one of the simple or canonical scatterers, whereas the
complex coefficients c; indicate the weight of S; in the com-
bination leading to the measured S. As observed in (1.112),
the term combination refers to the weighted addition of the
k scattering matrices. In order to simplify the understanding
of (1.112), but also with the objective to make possible the
decomposition itself, it is desirable that the matrices S; pres-
ent the property of independence among them to avoid a
particular scattering behaviour to appear in more than one
matrix S;. Often, the independence condition is substituted by
the most restrictive property of orthogonality of the
components S;. Orthogonality helps to eliminate possible
ambiguities in the decomposition of the scattering matrix in
those cases in which the elements S; are not orthogonal.

The scattering matrix S characterizes the scattering pro-
cess produced by a given scatterer and therefore the scatterer
itself. This is possible only in those cases in which both the
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incident and the scattered waves are completely polarized
waves. Consequently, coherent scattering decompositions
can be only employed to study the so-called coherent
scatterers. These scatterers are also known as point or pure
targets.

In a real situation, the measured scattering matrix by the
radar S corresponds to a complex coherent scatterer. Only in
some occasions, this matrix will correspond to a simpler or
canonical object, in which a good example is, for instance,
the trihedrals employed to calibrate SAR imagery. Other
simple scattering mechanisms may be observed in
Table 1.6. Nevertheless, in a general situation, a direct analy-
sis of the matrix S, with the objective to infer the physical
properties of the scatterer under study, is shown to be com-
plex. Consequently, the physical properties of the target
under study are extracted and interpreted through the analysis
of the simpler responses S; and the corresponding complex
coefficients ¢; in (1.112).

The decomposition exposed in (1.112) is not unique in the
sense that it is possible to find a number of infinite sets
{S;; i=1, ..., k} in which the matrix S can be decomposed.
Nevertheless, only some of the sets {S;; i = 1, ..., k} are
convenient in order to interpret the information contained in
S. Two examples of these decomposition bases have been
already shown in Sect. 1.1.2.2. Other examples of coherent
scattering decompositions are the Krogager (Krogager 1990)
or the Cameron decompositions (Cameron and Leung 1990).

1.3.1.1 The Pauli Decomposition

The most relevant coherent scattering decomposition is the
Pauli decomposition that was already introduced in Sect.
1.1.2.2. The Pauli decomposition expresses the measured
scattering matrix S in the so-called Pauli basis. If we consid-

ered the conventional orthogonal linear basis {ﬁ v, } ina

general case, the Pauli basis {S,, S;, S., S;} is given by the
following four 2 x 2 matrices:

A I
AT
Sl e
Bl o

As mentioned, it has been always considered that Sy, = S, ,,
since reciprocity applies in a monostatic system configuration
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under the BSA convention. In this situation, the Pauli basis
can be reduced to a basis composed by the matrices (1.113),
(1.114) and (1.115), that is, {S., S;, S.}. Consequently,
given a measured scattering matrix S, this matrix can be
expressed as follows:

S, Shy
S{hh W

(1.117)
Shv va

} =aS, + bS; + ¢S

where the complex coefficients that determine the contribu-
tion of every component of the basis can be obtained as

a:Shh +va,b:Shh_va’C:\/§Shv
V2

(1.118)

From the previous equations, it can be shown that

SPAN(S) = |a* + |b]* + |c|*. (1.119)

The interpretation of the Pauli decomposition must be
done according to the matrices {S,, S, S.} and their
corresponding decomposition coefficients, i.e. {a, b, c}. In
Sect. 1.1.2.1 it was seen that the matrices {S,, S,, S.} corre-
spond to the scattering behaviour of some canonical bodies.

The matrix S, corresponds to the scattering matrix of a
sphere, a plate or a trihedral; see Table 1.6. Generally, S, is
referred to as single- or odd-bounce scattering. Hence, the
complex coefficient a represents the contribution of S, to the
final measured scattering matrix. In particular, the intensity of
this coefficient, i.e. Ialz, determines the power scattered by
scatterers characterized by single- or odd-bounce.

The second matrix S, represents the scattering mechanism
of a dihedral oriented at O degrees; see Table 1.6. In general,
this component indicates a scattering mechanism
characterized by double- or even-bounce, since the polariza-
tion of the returned wave is mirrored with respect to the one
of the incident wave. Consequently, b stands for the complex
coefficient of this scattering mechanism, and IbI* represents
the scattered power by this type of targets.

Finally, the third matrix S, corresponds to the scattering
mechanism of a diplane oriented at 45 degrees. As it can be
observed in (1.115), and considering that this matrix is

expressed in the linear orthogonal basis {H ?,} , the

scatterer returns a wave with a polarization orthogonal to
the one of the incident wave. From a qualitative point of
view, the scattering mechanism represented by S, is referred
to those scatterers which are able to return the orthogonal
polarization, from which one of the best examples is the
volume scattering produced by the forest canopy. The com-
plex scattering that occurs in the forest canopy, characterized
by multiple reflections, makes possible to return energy on
the orthogonal polarization, with respect to the polarization
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Fig. 1.10 RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA) where the colour code is IS, + S, blue, 1Sy, — S,,1% red and
2ISth2 green

of the incident wave. Consequently, this third scattering
mechanism is usually referred to as volume scattering. The
coefficient ¢ represents the contribution of S, to S, whereas |
cl* stands for the scattered power by this type of scatters.

The Pauli decomposition of the scattering matrix is often
employed to represent the polarimetric information in a sin-
gle SAR image. The polarimetric information of S could be
represented with the combination of the intensities 1Syl |
S,./> and 2IS,,/> in a single RGB image, i.e. each of the
previous intensities coded as a colour channel. The main
drawback of this approach is the physical interpretation of
the resulting image in terms of IS, IS,./* and 2IS,,.
Consequently, a RGB image can be created with the
intensities Ial2, IbI* and Iclz, which, as indicated previously,
correspond to clear physical scattering mechanisms. Thus,
the resulting colour image can be employed to interpret the
physical information from a qualitative point of view. The
most employed codification corresponds to

la]* — Blue, |b|* — Red, |c|* — Green.  (1.120)

Then, the resulting colour of the RGB image is interpreted
in terms of scattering mechanism as given in (1.113)—(1.115);
see Fig. 1.10.

1.3.2 Incoherent Scattering Decompositions

Techniques

As explained in the previous sections, the scattering matrix
S is only able to characterize the point or deterministic

scatterers. In this case, the scattering process is completely
determined by the five independent parameters the matrix
S may present. On the contrary, this matrix cannot be
employed to characterize, from a polarimetric point of view,
the distributed scatterers, as the five independent parameters
of the S matrix are insufficient to characterize the scattering
process. As detailed in Sect. 1.2, distributed scatterers can be
only characterized statistically due to the presence of speckle
noise by means of higher-order descriptors. Since speckle
noise must be reduced, only second-order polarimetric
representations can be employed to analyse distributed
scatterers. In the case of monostatic scattering under the
BSA convention, these second-order descriptors are the
3 x 3 Hermitian covariance C or coherency T matrices.
The complexity of the scattering process makes extremely
difficult the physical study of a given scatterer through the
direct analysis of C or T. Hence, the objective of the incoher-
ent decompositions is to separate the C or T matrices as the
combination of second-order descriptors corresponding to
simpler or canonical objects, presenting an easier physical

interpretation. These decomposition theorems can be
expressed as
k k
C=) pC.T=) ¢T (1.121)
i—1 i—1

where the canonical responses are represented by C; and T;
and p; and ¢; denote the coefficients of these components in
C or T, respectively. As in the case of the coherent
decompositions, it is desirable that these components present
some properties. First of all, it is desirable that the
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components C; and T; correspond to pure scatterers in order
to simplify the physical study. Nevertheless, this condition is
not absolutely necessary, and C; and T; may also represent
distributed scatterers. In addition, the components C; and T;
should be independent or, in a more restrictive way,
orthogonal.

1.3.2.1 Three-Component Freeman
Decomposition

The Freeman decomposition, also known as Freeman-
Durden decomposition (Freeman and Durden 1998), is the
best exponent of the so-called model-based decompositions.
In this type of decompositions, the canonical scattering
mechanisms C; and T; in which the original matrices are
decomposed into are fixed by the decomposition itself,
i.e. the scattering mechanisms are imposed. In particular,
the Freeman decomposition decomposes the original covari-
ance or coherency matrices into the three following scattering
mechanisms:

* Volume scattering, where a canopy scatterer is modelled
as a set of randomly oriented dipoles

* Double-bounce scattering, modelled as a dihedral corner
reflector

* Surface or single-bounce scattering, modelled as a first-
order Bragg surface scatterer

In the following, and without lack of generality, a formu-
lation in terms of the covariance matrix C is considered.

The volume scattering component, mainly considered in
forested areas, is modelled as the contribution from an
ensemble of randomly oriented thin dipoles. If the set of
randomly oriented dipoles are oriented according to a
uniform phase distribution, the covariance matrix of the
ensemble of thin dipoles corresponds to the following covari-
ance matrix:

e

g (1.122)

3 01
020
3 03
where f,, corresponds to the contribution of the volume scat-
tering. The covariance matrix C, presents a rank equal to
3. Thus, the volume scattering cannot be characterized by a
single scattering matrix of a pure scatterer. Finally, it is worth
to indicate, as observed in (1.122), that the model assumed
for forest scattering in the Freeman decomposition is fixed. In
contrast, the other two scattering components of the decom-
position, as it will be shown, admit a higher degree of
flexibility.

The second component of the Freeman-Durden decompo-
sition corresponds to double-bounce scattering. In this case, a
generalized corner reflector is employed to model this
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scattering process. The diplane itself is not considered metal-
lic. Hence, it is assumed that the vertical surface presents
reflection coefficients R, and R;, for the horizontal and the
vertical polarizations, respectively, whereas the horizontal
surface presents the coefficients R, and R,, for the same
polarizations. Additionally, two phase components for the
horizontal and the vertical polarizations are considered,
i.e. e /7nand e /", respectively. The complex phase constants
vr and y;, account for any attenuation or phase change effect.
Hence, the covariance matrix of the double-bounce scattering
component, after normalization with respect to the S,, com-
ponent, can be written as follows:

la? 0 a
Ca=fal 0O 0 O (1.123)
a* 0 1
where
; RonR
— , 2n—r,) Dghltih
a=e/ RoRn (1.124)

and f; corresponds to the contribution of the double-bounce
scattering to the IS,,/*component:
fu=|RaR|’. (1.125)

As it can be observed, in this case the covariance matrix
C, presents a rank equal to 1, and therefore it may be
represented by a scattering matrix.

The third component of the Freeman-Durden decomposi-
tion consists of a first-order Bragg surface scattering
modelling a surface rough scattering. Considering R, and
R, the reflection coefficients for horizontally and vertically

polarized waves, the covariance matrix corresponding to this
scattering component is

B 0 p
C=f|0 00 (1.126)
g0 1

where f; corresponds to the contribution of the double-bounce
scattering to the IS,,/* component:

fi=|R,J? (1.127)
and
ﬁ:%. (1.128)
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As in the case for the double-bounce scattering mecha-
nism, C, presents a rank equal to 1.

Finally, it can be seen that the Freeman decomposition
expresses the measured covariance matrix C as

C=C,+Cs+C (1.129)
that takes the expression
3 v v
Log ol 4 £082 0 Lot gt g
_ 2fy
C= 0 g 0
y * * 3 v
N T B (R
(1.130)

As one may deduce from (1.130), the Freeman decompo-
sition presents five independent parameters {f,, f, f;, @, f}
but only four equations. Consequently, some hypothesis must
be considered in order to find the values of {f,, fs, fi, @, f}.
Considering that the Span of the covariance matrix may be
expressed as a function of the power scattered by each com-
ponent of the decomposition {C,, C,, C,}, i.e.

SPAN(C) = |Si|* + |Sw > + 2|8 |

=P, +Ps+ P (1.131)

the term P, corresponds to the contribution of the volume

scattering of the final covariance matrix C. Hence, the
scattered power by this component may be written as

P,=f, (1.132)

The power scattered by the double-bounce component is

expressed as

P, :fd(l + |a|2>, (1.133)

whereas the power scattered by the surface component is

Po=£,(1+181). (1.134)

Consequently, the scattered power at each component
{P,, P,, P;} may be employed to generate a RGB image,
similarly as in the case of the Pauli decomposition, to present
all the colour-coded polarimetric information in a unique
image; see Fig. 1.11.
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1.3.2.2 Four-Component Yamaguchi
Decomposition

As it may be observed in (1.130), the three-component Free-
man decomposition is based on the assumption that the
analysed scatterer presents reflection symmetry, that is, the
correlation of the co-polar channels, either Sy, or S,,, with the
cross-polar one S, is zero, that is, E{ShhS;;V} =0 and
E{ShvS:‘,v} = 0. This type of symmetry in the scattering
process appears normally in the case of natural distributed
scatterers such as forests or grassland areas. Nevertheless, in
the case of more complex scattering scenarios, for instance,
man-made scatterers, this assumption is no longer true. In
addition to the previous limitation, the Freeman decomposi-
tion, as detailed in the previous section, considers only one
type of volume scattering, as reflected in (1.122), where the
scattering at the co-polar channels are supposed equal, i.e. E{|
Shh|2} = E{IS,,I*}. The four-component Yamaguchi decom-
position is proposed to overcome the previous two limitations
of the Freeman decomposition (Yamaguchi et al. 2005).

If one considers the canonical scattering mechanisms
presented in Table 1.6, it may be observed that only the
rotated thin cylinder or the right- and left-handed helices are
able to produce a covariance matrix such that £ {ShhS;V} #0
and E {S,,VS’V‘V} # 0 and therefore produce a covariance
matrix without reflection symmetry. In the four-component
Yamaguchi decomposition, the authors propose to take into
account the absence of this type of symmetry by considering
first the three scattering mechanisms considered by the Free-
man decomposition, that is, volume, double-bounce and sur-
face scattering, together with a fourth component composed
by either the left- or the right-handed helix scattering
(Krogager 1990). In particular, the helix scattering is
characterized by generating a left-handed or a right-handed
circular polarization for all incident linear polarizations,
according to the scatterer helicity. The left-handed helix,
whose scattering matrix is presented in Table 1.6, leads to
the following covariance matrix:

P 1 V2 -1
Con =4 V22 —iV2
-1 V2 1

(1.135)

whereas the right-handed helix results in the following
covariance matrix:

P 1 V2 -1
Con=-3|-vV2 2 jv2
-1 —v2 1

(1.136)
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Fig. 1.11
P,, P,, P,. Bottom panel: RGB composition with P, red, P, green and P, blue

where f,. accounts for the contribution of the helix compo-
nent. As it may be observed in the previous two matrices, the
inclusion of the helix component allows to consider a scatter-
ing mechanism without reflection symmetry. The selection of
the left- or the right-handed helix will be determined by the
sign of the imaginary part of E{ShhS;‘w} or E{Shijv}.

In order to model the volume scattering, the Freeman
decomposition considered a set of randomly oriented dipoles,
oriented according to a uniform phase distribution. Neverthe-
less, when confronted to a real forest, the effect of the trunk
and the branches, especially at high frequencies, may lead to
a scattering from a cloud of oriented dipoles but with a
non-uniform distribution. In this case, depending on the
main orientation of these thin dipoles, the power associated
with E{1S,,/*} and E{IS,,/*} may be different if the dipoles
are preferably oriented horizontally or vertically, respec-
tively. As it may be seen, the volume model considered by
the Freeman decomposition (1.122) cannot take into account
this effect. In order to account for this preference in the
orientation, instead of considering a uniform distribution for
the orientation of the thin dipoles, it is proposed to consider
the following distribution:

Freeman decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). Top panel, from left to right:

cosf for |0 <x/2

0] > =/2

p(0) = (1.137)

S =

for

where 6 is taken from the horizontal axis seen from the radar.
When considering a cloud of randomly oriented, very thin
horizontal dipoles, the volume scattering is represented by
the following scattering matrix:

¢4

=42 (1.138)

8 0 2
0 4 0
2 0 3
Otherwise, if the cloud of thin dipoles is considered to be

composed of vertical dipoles, the covariance matrix
representing the volume component is

3.0 2
cvzlisv 040 (1.139)
2 0 8
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In all the cases, f, corresponds to the contribution of the
volume scattering.

Allowing the volume scattering to depend on the main
orientation of the particles makes it necessary to introduce an
additional step in the decomposition able to select the volume
scattering most adapted to the data under observation. The
four-component Yamaguchi decomposition proposes to
select among (1.122), (1.138) and (1.139) according to the
ratio y = 10 log (E{IS,,/*}E{IS,;|*}). Table 1.7 details the
procedure to select the type of volume scattering proposed in
(Yamaguchi et al. 2005).

Finally, the double-bounce and the surface scattering
components of the four-component Yamaguchi decomposi-
tion are the same as the Freeman decomposition. Conse-

quently, the Yamaguchi decomposition models the
covariance matrix as
c \/i c c
Loy paal v p o £ et patpp
%= 2 3
2
O PR - R CH A
4 4 4
a 0 d
+/£10 b O
d 0 ¢
(1.140)

where the last matrix accounts for the volume scattering that
has been selected according to Table 1.7. As one may deduce
from (1.140), the four-component Yamaguchi decomposition
presents six independent parameters {f,, fu, f, for @, f}
Considering that the Span of the covariance matrix may be
expressed as a function of the power scattered by each com-
ponent of the decomposition {C,, C;, Cy, Cy/}, i.€.

SPAN(C) = [Si|* + [Sw|* + 2[Sw|?
=P, +P;+ P, + P, (1.141)
the term P, corresponds to the contribution of the volume
scattering of the final covariance matrix C. Hence, the
scattered power by this component may be written as

Table 1.7 Selection of the volume scattering covariance matrix

y< —2dB —2dB<y<2dB |y>2dB
8 0 2 301 3.0 2
C,=L0 4 0|l [C,=L]0 2 0] [C,=%]0 4 0
2 0 3 303 2 0 8
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the power scattered by the double-bounce component is
expressed as

P, = fd(l + |a|2), (1.143)
the power scattered by the surface component is
Po=£,(1+181), (1.144)

whereas the power scattered by the helix component is

P.=f.. (1.145)

Consequently, the scattered power at each component
{P,, P;, P, P.} may be combined to generate a RGB
image similarly as in the case of the Pauli decomposition, to
present all the colour-coded polarimetric information in a
unique image; see Fig. 1.12.

1.3.2.3 Non-negative Eigenvalue Decomposition

As indicated in the previous two sections, both the Freeman-
Durden and the Yamaguchi decomposition work under the
hypothesis that the measured covariance matrix may be
decomposed as the sum of a set of scattering mechanisms.
Whereas the first decomposition assumes reflection symme-
try for the scattering medium, this limitation is addressed by
the second one by considering a fourth scattering component
represented by either the left- or the right-handed helix scat-
tering. All the scattering mechanisms in which the measured
covariance matrix is decomposed into are represented by
their corresponding covariance matrices. As shown in (Van
Zyl et al. 2011), these matrices should correspond to physical
scattering mechanisms, so all their eigenvalues must be larger
than or equal to zero; in other words, the power received by
any combination of transmitting and receiving polarizations
should never be negative.

A close analysis of the Freeman-Durden decomposition
shows that the contribution of the volume scattering compo-
nent is directly estimated from the cross-polarized term, that
is, the decomposition assumes that neither the double-bounce
nor the surface scattering components contribute to it. This
assumption is very strict as, for instance, the rotation of the
polarization basis of the scattering matrix due to terrain
slopes in the along-track dimension (Lee et al. 2002) or
even rough surfaces may lead to significant cross-polarized
power (Hajnsek et al. 2003). Consequently, if these effects
are not taken into account, they may produce an overestima-
tion of the volume component. Once this volume component
is estimated from the data, it is extracted from the measured
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Fig. 1.12 Yamaguchi decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). From left to right, top panel:
P,, P,; middle panel: Py, P bottom panel: RGB composition with P, red, P, green and P, blue

covariance matrix to estimate the double-bounce and the Consequently, if the volume component is not properly
surface components as estimated, the previous subtraction may lead to a result in
which the covariance matrix representing the double-bounce

Cis =C—-C,. (1.146) and the surface components C,; , ; may present negative

eigenvalues so it does not represent a physically possible
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scattering mechanism. The Yamaguchi decomposition also
presents this drawback as the double-bounce and the surface
like scattering components are estimated after the subtraction
of the volume scattering component.

In order to correct the presence of negative eigenvalues
when considering a decomposition based on (1.146), van Zyl
et al. (Van Zyl et al. 2011) proposed the non-negative eigen-
value decomposition (NNED). The Freeman-Durden and the
Yamaguchi decompositions assume that the measured
covariance matrix results from the addition of a set of scatter-
ing mechanisms. Nevertheless, the NNED approach pro-
posed to decompose the measured covariance matrix as

C = aCrodgel + Cremainder- (1147)

The matrix C,,q. represents the covariance matrix
predicted by a theoretical model, for instance, the volume
scattering component. The parameter a is introduced in
(1.147) to assure that all the matrices in (1.147) represent

s = i n/an{Z—\/ZZ—4<§aCa—|ﬂaz)§C—|ﬂ|2} ,

where Z = (&, + C&,) — ppl — p*p,. For the case of scatter-
ing media not presenting reflection symmetry, the process to
derive the maximum value of a is similar, but results in more
complex expressions.

The volume scattering model employed for the canopy
scattering is based on a cosine-squared distribution raised to
the nth power for the vegetation orientation (Arii et al. 2011).
Considering that the basic scatterer in the canopy is a dipole,
it was shown that the covariance matrix can be written as

C,(00,06) = Co+ p(0)Cs + q(0)C, (1.151)
where
3 0 1
Ca:é 0o 2 0], (1.152)
3 0 3
1
Cﬁ—g
—2¢0s20y V/2cos26, 0
X \/5005290 0 \/5005290 )
0 V2cos20y 2cos26,

(1.153)
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physically realizable scattering mechanism. Finally, the sec-
ond matrix C,emainder Will contain whatever is in the measured
matrix C that is not consistent with the model matrix C, o4l
To find the value of a, (1.147) may be written as
Cremainder =C- aCmodel- (1148)

Consequently, the value of a must assure that the
eigenvalues of Cemainger Must be positive. In the case of a

scattering media with reflection symmetry, (1.147) may be
written as

& 0 p e 0 p,
Cremainder = 0 n 0 —-a| O N, 0 (1149)
p0 ¢ o0 ¢,

Therefore, the maximum value of a that assures that the
eigenvalues of Ccpainder are positive corresponds to

(1.150)
1
C}, == g
cos 40, —+v2cos46y, —cosdby
X | —=v/2cos46, —2cosd6, /2cosdby |,
—cos 40, V2 cos 460, cos 46,
(1.154)
and
p(o) = 2.08066°-6.33506°
+ 6.38646%-0.44316°-3.96385%-0.0008¢
+2.000, (1.155)
q(0) = 9.01666°-18.77906° + 4.95904"
+ 14.56295°-10.80346%-0.19020
+ 1.000. (1.156)

In the previous equations, the parameter 6, represents the
mean orientation angle of the thin dipoles, whereas o
accounts for the randomness of the cloud of dipoles.

On the basis of the previous procedure to avoid the extrac-
tion of non-physical covariance matrices, Arii et al. (Arii
et al. 2011) proposed an adaptive NNED decomposition
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Fig. 1.13 Van Zyl decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). Top panel, from left to right: f;,
f» fi- Bottom panel: RGB composition with f; red, f, green and f; blue

theorem, where also the previous extended model for volume
scattering is considered. According to the NNED decompo-
sition, a covariance matrix for the volume scattering is first
subtracted from the measured covariance matrix as follows:
Cremainder = C — f,C,(00,0). (1.157)
As indicated previously, f, can be obtained analytically
only under the assumption of reflection symmetry. In those
cases in which the previous hypothesis does not apply, the
maximum value of f, is obtained numerically by calculating
the eigenvalues C,emainder at specific randomness o and mean
orientation angle 8, by varying f,, and then, the maximum f,
in which all three eigenvalues of C,¢painder ar€ Nonnegative is
selected. Once the volume component is extracted from the
measured covariance matrix as specified in (1.157), the
remainder matrix can be written as
C- vav(QO, G) = ded + fsCS + C:'emainder (1158)

where in this case C; and C; correspond to the double-
bounce and surface scattering mechanisms already employed

in the three-component Freeman-Durden decomposition. The
parameters f,, f; and C., . . are obtained through an eigen-
value decomposition. This procedure shows how to find the
parameters in the decomposition for a specific pair of
randomness ¢ and mean orientation angle 6. To find the
best fit decomposition, the power in the remainder matrix
for all pairs of randomness and mean orientation angles is
evaluated and then the set of parameters that minimize the
power associated with C[, . .. should be found.

Finally, the scattered power at each component {f,, f, f;}
may be combined to generate a RGB image similarly as in the
case of the Pauli decomposition, to present all the colour-
coded polarimetric information in a unique image; see

Fig. 1.13.

1.3.2.4 Eigenvector-Eigenvalue-Based
Decomposition

The previous incoherent decompositions were constructed on

the assumption that the scattering of a given pixel was due to

the combination of some predefined scattering mechanisms,

hence assuming different properties of the scattering pro-

cesses. These assumptions make these decompositions to be
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easy to interpret as the different scattering components pres-
ent a clear physical interpretation. Nevertheless, as these
decompositions consider only the predefined mechanisms,
they are not able to identify additional scattering mechanisms
when present. A way to circumvent this drawback is to
decompose the covariance or coherency matrices based on
their mathematical properties. Hence, contrary to the previ-
ous decompositions, the scattering mechanisms in which the
original matrices are decomposed are not established a priori
but given by the decomposition itself. The drawback of this
approach is that the scattering mechanism found by the
decomposition needs from a physical interpretation process.
The eigenvector-eigenvalue scattering decomposition,
also known as Cloude-Pottier decomposition, is based on
the eigendecomposition of the covariance C or coherency
T matrices (Cloude and Pottier 1996). According to the
eigendecomposition theorem, the 3 x 3 Hermitian matrix
C may be decomposed as follows:
T=UZU". (1.159)
The 3 x 3, real, diagonal matrix X contains the
eigenvalues of C:

A 0 0
=10 4 0], (1.160)
0 0

such that co > 4; > 4, > 43 > 0. The 3 x 3 unitary matrix
U contains the eigenvectors u; for i = 1, 2, 3 of C:

U:[lll up ll3]. (1161)

The eigenvectors u; for i = 1, 2, 3 of C can be
reformulated, or parameterized, as

sin a; cos fe ”i]r.
(1.162)

u; = [cosa; sina;cospBie

Considering (1.159), (1.160) and (1.161), the coherency
matrix C may be written as

3
C=)> luu". (1.163)
i=1

As (1.163) shows, the rank-3 matrix C can be decomposed
as the combination of three rank 1 coherency matrices which
can be related to the pure scattering mechanisms given in
(1.162). Consequently, the eigendecomposition is not able to
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produce scattering mechanisms in which the original matrix
is decomposed into with a rank larger than 1.

The eigenvalues (1.160) and the eigenvectors (1.161) of
the decomposition are considered as the primary parameters
of the eigendecomposition of C. In order to simplify the
analysis of the physical information provided by this
eigendecomposition, three secondary parameters are defined
as a function of the eigenvalues and the eigenvectors of C:

e Entropy:

Ai
=

j=1

3
H=— Zpi10g3(1’i) pi = (1.164)
i—1

where p; are known as the probabilities of the eigenvalue 4;,
respectively. These probabilities represent the relative impor-
tance of this eigenvalue with respect to the total scattered
power, as

SPAN(S) = 4 (1.165)
i=1
* Anisotropy:
Ay — 23
= 1.166
Ay + A3 ( )

representing the relative importance of the second eigenvalue
with respect to the third one:

* Mean alpha angle:

(1.167)

3
a= E pia.
i=1

As it shall be shown, this parameter allows the physical
interpretation of the scattering mechanism found by the
eigendecomposition.

The eigendecomposition of the coherency matrix is usu-
ally referred to as the H/A/a decomposition. An example of
H/A/a  decomposition is shown in Fig. 1.14. The
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interpretation of the information provided by the
eigendecomposition of the coherency matrix must be
performed in terms of the eigenvalues and eigenvectors of
the decomposition or in terms of H/A/a. Nevertheless, both
interpretations have to be considered as complementary.

The interpretation of the scattering mechanisms given by
the eigenvectors of the decomposition, u; for i = 1, 2, 3, is
performed by means of a mean dominant mechanism which
can be defined as follows:

_ _qT
W = | cos@ sinacosfe s sinacos/)’e”} ., (1.168)

where the remaining average angles f, 8, 7 are defined in the
same way as a.

The study of the mechanism given in (1.168) is mainly
performed through the interpretation of the mean alpha angle
@, since its value can be easily related to the physics behind
the scattering process. The next list details the interpretation
of a:

e o — 0: the scattering corresponds to single-bounce scat-
tering produced by a rough surface.

e @@ — r/4: the scattering mechanism corresponds to vol-
ume scattering.

e a@— x/2: the scattering mechanism is due to double-
bounce scattering.

The second part in the interpretation of the eigendecom-
position is performed by studying the value of the
eigenvalues of the decomposition. A given eigenvalue
corresponds to the associated scattered power to the
corresponding eigenvector. Consequently, the value of the
eigenvalue gives the importance of the corresponding eigen-
vector or scattering mechanism. The ensemble of scattering
mechanisms is studied by means of the entropy H and the
anisotropy A. The Entropy H determines the degree of
randomness of the scattering process, which can be also
interpreted as the degree of statistical disorder. In this way

e H—O0:
A =SPAN,A» =0,13 =0 (1.169)

As observed, in this case, the covariance matrix C presents
rank 1, and the scattering process corresponds to a pure
scatterer.

e H—1:

_ SPAN

h=ly=1s (1.170)
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In this situation, the covariance matrix C presents rank
3, that is, the scattering process is due to the combination of
three pure targets. Consequently, C corresponds to the
response of a distributed target. For instance, volume
scattering for a forest canopy presents an entropy value
very close to 1.

* 0 < H < 1: In this case, the final scattering mechanism
given by C results from the combination of the three pure
targets given by u; for i = 1, 2, 3, but weighted by the
corresponding eigenvalue.

The anisotropy A, (1.166), is a parameter complementary
to the entropy. The anisotropy measures the relative impor-
tance of the second and the third eigenvalues of the
eigendecomposition. From a practical point of view, the
anisotropy can be employed as a source of discrimination
only when H > 0.7. The reason is that for lower entropies, the
second and third eigenvalues are highly affected by the SAR
system noise.

In relation with the previous parameters, the Shannon
entropy (SE) was introduced in (Morio et al. 2007):

SE = log (r’€’|T|) = SE; + SEp (1.171)
as the sum of two terms. The term SE; is the intensity
contribution that depends on the total power

SE; = 3log (”'3‘;’") = 3log (%) (1.172)

whereas SEp is the polarimetric contribution

T
SEp = log | 27— |.
g < [trace(T)]3>

As indicated in Sect. 1.1.2.5, for some particular
configurations, a polarimetric SAR system may not measure
the complete polarimetric information. In this simpler config-
uration of dual polarization, the radar transmits only a single
polarization and receives, either coherently or incoherently,
two orthogonal components of the scattered signal. In this
configuration, the covariance C and coherency T matrices are
2 x 2 Hermitian matrices. As it has been demonstrated
(Cloude 2007a), these reduced matrices can be decomposed
also considering their eigendecompositions. The sole partic-
ularity is that in this situation the matrices present only two
eigenvalues.

(1.173)

1.3.2.5 The Touzi Target Scattering
Decompositions

The Touzi decomposition (Touzi 2007) was introduced as an

extension of the Kennaugh-Huynen coherent target scattering
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1

Fig. 1.14 H/A/a decomposition of the RADARSAT-2 polarimetric RGB-Pauli image over San Francisco (USA). From top to bottom: entropy,

mean alpha angle

anisotropy,
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decomposition (Huynen 1970; Kennaugh 1951), for the char-
acterization of both coherent and partially coherent target
scattering. To characterize partially coherent scattering,
Huynen introduced a target decomposition theorem in
which he decomposed an average Mueller matrix into the
sum of a Mueller matrix for a single scatter presented in terms
of the Kennaugh-Huynen decomposition parameters and a
noise or the N-target Mueller matrix (Huynen 1970). In 1988,
Cloude (Cloude 1988) showed that the Huynen N-target
decomposition was not polarization independent and
introduced the eigenvector decomposition for a unique and
roll-invariant incoherent decomposition. Following that, both
Huynen’s (N-target) incoherent decomposition and Huynen’s
fork decomposition were abandoned. Recently, the
Kennaugh-Huynen decomposition has been reconsidered
and integrated in Cloude’s coherency eigenvector decompo-
sition (Cloude 1988) for characterization of coherent and
partially coherent scattering in terms of unique and polariza-
tion basis independent parameters (Touzi 2007).

The Kennaugh-Huynen decomposition, also named the
Huynen fork, used to be the most popular method for decom-
position of coherent target scattering (Touzi et al. 2004;
Boerner et al. 1998). Huynen’s fork was abandoned because
of the nonuniqueness of certain fork parameters, and in
particular the skip angle (scattering type phase), due to non-
uniqueness of the con-eigenvalue phases (Luneburg 2002).
To solve these ambiguities, the Kennaugh-Huynen scattering
matrix con-diagonalization was projected into the Pauli basis
(Touzi 2007), and a new target scattering vector model, the
TSVM, was introduced in terms of target parameters that are
not affected by the con-eigenvalue phase ambiguities (Touzi
2007). A complex entity, named the symmetric scattering
type, was introduced for an unambiguous description of
target scattering type. The polar coordinates of the symmetric
scattering type, ay and ¢, are expressed as a function of
target scattering matrix polarization basis independent
elements by (Touzi 2007)

tan ag - ej¢(lf — u

, 1.174
Hy — iy ( )
where p; and u, are the con-eigenvalues of the target scatter-
ing matrix S. The scattering vector of a symmetric scatterer
can be expressed on the Pauli trihedral-dihedral basis
{S.. S, } as follows (Touzi 2007):

\7Sym = lvévym’ - [cosay - S, + sinay - e?=8,], (1.175)

where the scattering type magnitude a; corresponds to the
orientation angle of the symmetric scattering vector on the
trihedral-dihedral {S,, S;} basis. ¢, is the phase difference
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between the vector components in the trihedral-dihedral
basis. The new scattering type phase entity introduced in
(Touzi 2007) provides a measure of the phase offset between
the trihedral and dihedral scattering components. The infor-
mation provided by ¢, as complementary to o, was shown to
be essential for a better understanding of marsh wetland
scattering variations between the spring run-off season and
the fall using Convair 580 SAR data collected over the Mer
Bleue wetland site (Touzi et al. 2007). The symmetric and
asymmetric nature of target scattering was characterized
using Huynen helicity = (Touzi 2007). Notice that while the
complex scattering parameters o, and ¢, are independent of
the basis of polarization (Touzi 2007; Paladini et al. 2012),
Huynen’s helicity characterizes the symmetric nature of tar-
get scattering in the {h, v} polarization basis (Huynen 1970).
Recently, a different expression of the helicity was derived at
the circular polarization basis (Huynen 1970), and the com-
plementary information it provides to the Huynen’s helicity
was demonstrated (Paladini et al. 2012).

The projection of the Kennaugh-Huynen coherent target
decomposition on the Pauli polarization basis can be
represented as a function of the complex scattering @, and
¢os and the Huynen maximum polarization parameters y and
m as

1 0 0
k=m|0 cos2y —sin2y
0 sin2y  cos2y

COS s COS 2T

X | sinag.e /e (1.176)

—jcos a sin 27

where y, T and m are the Huynen orientation, the helicity and
the maximum return of the maximum polarization,
respectively.

It is worth noting that for a symmetric scattering (z = 0),
a, and ¢, are identical to the Touzi SSCM parameters 7 and
@sp — Psa- g and ¢, are also identical to the Cloude-Pottier
parameters (Cloude and Pottier 1996) a and 6 = @, — @y,
respectively (Touzi 2007). For scatterers of locally asymmet-
ric scattering, such as urban areas, treed wetlands and forests,
large divergence between ¢, and 6 and @, and a have been
noted (Cloude and Pottier 1996). Unlike Cloude-Pottier
parameters (Trunk and George 1970), the TSVM
characterizes target scattering type with the complex entity
(ag and ¢b,,), which only depends on the scattering matrix
eigenvalues. This leads to a unique and unambiguous
description of target scattering in terms of parameters,
which are polarization basis independent, for both symmetric
and asymmetric targets as discussed in (Touzi 2007).
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For a unique characterization of coherent and partially
coherent scattering, the TSVM (Touzi 2007) was integrated
in Cloude’s coherency eigenvector decomposition (Touzi
2007). Like Wiener’s wave coherence characteristic decom-
position (Wiener 1930), Cloude’s characteristic decomposi-
tion of the coherency matrix, T, permits the representation of
T as the incoherent sum of coherency matrices that represent
independent single scattering (Cloude 1988). Under the tar-
get reciprocity assumption, T is represented as the sum of up
to three coherency matrices T, each of them being weighted
by its appropriate positive real eigenvalue #;:

T= Y 5T

i=1,2,3

(1.177)

In contrast to the Cloude-Pottier decomposition, the
TSVM is used for the parameterization of each coherency
eigenvector T; (coherent single scattering) in terms of unique
target parameters. In order to avoid any loss of information
related to single scatterer parameters averaging, the target
scattering decomposition is conducted through an in-depth
analysis of each of the three single scattering eigenvectors u;,
i =1, 2, 3 represented by the coherency eigenvector matrix T;
of rank 1 and the normalized positive real eigenvalues 1; = n;/
(n1 + n2 + n13). This leads to the representation of each single
scattering u; in terms of five roll-invariant and independent
target scattering parameters (g, Qgsi> Ti» M 4;) and the
Huynen orientation angle ;.

1.4  Polarimetric SAR Interferometry

This section is devoted to the radar remote sensing technique
called  polarimetric  interferometry  (Cloude  and
Papathanassiou 1998). When used with synthetic aperture
radar (SAR) systems, it is usually termed polarimetric inter-
ferometric SAR or PolInSAR for short (Papathanassiou and
Cloude 2001). PolInSAR has important applications in the
remote measurement of vegetation properties such as forest
height (Papathanassiou et al. 2005a) and biomass (Mette et al.
2004), future applications (Williams and Cloude 2005),
snow/ice thickness monitoring (Dall et al. 2003;
Papathanassiou et al. 2005b) and urban height and structure
applications (Schneider Zandona et al. 2005). As its name
suggests, this technique combines two separate radar
technologies, polarimetry and interferometry. The former,
as detailed in the previous sections, involves switching the
polarization state of transmit and receive channels to measure
differences in backscatter due to orientation, shape and mate-
rial composition (Cloude and Pottier 1996). This leads ulti-
mately to measurement of the 2 x 2 complex scattering
matrix S, from which we can synthesize the response of the
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image pixel to arbitrary polarization combinations. On the
other hand, radar interferometry (Bamler and Hartl 1998)
involves coherently combining signals from two separated
spatial positions (defining the so-called baseline of the inter-
ferometer) to extract a phase difference or interferogram. In
radar this can be achieved in two main configurations,
so-called along-track interferometry, which involves time
displacements between separated antennas along the flight
direction of the platform leading to velocity estimation. Alter-
natively, we can perform across-track interferometry, involv-
ing lateral separation of antennas and leading to spatial
information relating to the elevation of the scatterer above a
reference ground position. In PolInSAR, interest centres
mainly on across-track geometries, but in principle it can be
applied to along-track configurations as well.

PolInSAR differs from conventional interferometry in that
it allows generation of interferograms for arbitrary transmit
and receive polarization pairs. It turns out that the phase of an
interferogram changes with the choice of polarization and
consequently we can extract important biophysical and geo-
physical parameters by interpreting this change in the right
way. It shall be seen that consequently the combination of
interferometry with polarimetry is greater than the sum of its
parts and that PolInSAR allows us to overcome severe
limitations of both techniques when taken alone. This is espe-
cially true in the important area of remote sensing of vegetated
land surface, where polarimetry suffers from the inherent high
entropy problem (Cloude and Pottier 1996), while standard
interferometry remains underdetermined, i.e. the interferogram
depends on many possible physical effects, no one of which
can be identified from the data itself (Treuhaft et al. 1996).

1.4.1 SAR Interferometry

PolInSAR algorithms make use of interferometric coherence,
or equivalently phase and local phase variance, rather than
backscattered power (Bamler and Hartl 1998; Zebker and
Villasenor 1992). For this reason, it is necessary to introduce
and to study the problems associated with the estimation of
coherence from radar data, especially in the case of interfero-
metric data. A similar introduction for polarimetric data was
already seen in Sect. 1.2.5. Starting with any two
co-registered single-look complex (SLC) data channels S
and S, the interferometric coherence is formally defined as

E{S,S;}

VE{SISTH/E{525;}

where 0 < lyl < 1. In practice, the sample coherence is
frequently used as a coherence estimate of Eq. (1.178):

ip _

y = lrle (1.178)
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> SuSy
k=1

\/Z SlkSTk\/Z SouSy;
k=1 k=1

where k is the sample number and we have only a finite
number n independent signal measurements available.
Eq. (1.179) represents the maximum likelihood estimate of
coherence and under some general statistical assumptions
provides an estimate that is asymptotically unbiased (see
Sect. 1.2.3). For jointly complex Gaussian processes S; and
S,, the pdf of [7] can then be derived as a function of the true
coherence value lyl and the number of samples n (Touzi et al.
1999). The estimated coherence value [y] is consistently
biased towards higher values (Touzi et al. 1999); in the
extreme of single-look estimation, the coherence estimate is
equal to unity and so always overestimated and without
information. However, the bias decreases with increasing
number of independent samples n and with increasing under-
lying coherence lyl. A second important parameter to estimate
is the variance of the sample coherence magnitude. While the
true estimated value would be desirable, often we assume
zero bias, by using sufficient averaging, and estimate the
variance by making use of simpler equations for speedier
computations. In particular, the Cramér-Rao bounds provide
lower limits on the variance for coherence and phase and
have been derived in (Tabb and Carande 2001) to provide the
simpler formulae:

(1-1P)

v} >
var{[r[} = =,

7=l7le” = (1.179)

1— |y
2nly|?

,var{y} > (1.180)

As it can be deduced for phase-based processing, it is
always better to operate at high coherence and avoid low
coherences; the latter involves not only increased variance
but also severe bias issues that can distort the phase informa-
tion. It is a key limitation of polarimetry that scattering by
vegetation leads to low coherences for all polarization
channels because of so-called depolarization. This severely
limits the ability to use polarimetric phase information over
vegetated land surfaces. Interferometry on the other hand
allows to partially control coherence via baseline selection.
PolInSAR exploits this advantage to obtain high coherence in
multiple polarization channels.

The above considerations for coherence estimation are
important in PolInSAR, the major distinguishing feature of
which is that we add an extra stage in the construction of the
two SLC channels S; and S,. In general, for a fully polari-
metric data set, we take as input the three calibrated SLC
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images Sy, Spy and S, and generate projections of these onto
user-defined complex weight vectors w; and w, before cal-
culating the coherence defined as

1 1 1l
1 (Shh + va) 2 (Shh va) + W? \/ESIIW — w’ll’ . kl

s1=w] 7 wi 7
2 @ 2 _ @
s2=wl (Shh\;';w) o (Shh\/;w) FwiV2S2 = wl -k,
E{S1S5
= (Wi, w2) = {5153}
VESISiHE{S:83}
(1.181)

The weight vectors w; and w, define user-selected scat-
tering mechanisms at ends 1 and 2 of the across-track base-
line. In general, w; and w, can be different and both
parameterized as complex unitary vectors of the form
shown in (1.162) (Cloude and Pottier 1996). The weight
vectors or scattering mechanisms in which the targets vectors
could be projected could be the canonical mechanisms detailed
in Table 1.6. However, it is a feature of PolInSAR algorithm
development that use is often made of more general w vectors
than those shown, derived, for example, as eigenvectors for
coherence optimisation (Tabb and Carande 2001; Colin et al.
2003), or through prior model studies of scattering from
vegetated terrain (Williams 1999). For this reason, we need
to keep the more general notation of Eq. (1.162) so as to be
able to consider arbitrary vectors in the formation of an inter-
ferogram. We now turn to consider such optimisation
algorithms in more detail and to briefly assess their
implications for coherence estimation and validation.

1.4.2 Algorithms for Optimum Interferogram
Generation

Polarimetric interferometry is a special case of multichannel
coherent radar processing (Reigber et al. 2000). Such
problems are characterized by multidimensional covariance
matrices (Lee et al. 1994, 2003). In PolSAR, for example,
interest centres on the 3 x 3 Hermitian covariance matrix C,
unitarily equivalent to the coherency matrix T as shown in
Sect. 1.1.2.2. This is the basic building block in polarimetric
interferometry, and so it can be designated as A; to indicate
how it relates to fully polarimetric measurements but made at
only one spatial position. In single baseline PolInSAR, a
second measurement at a displaced position 2 is added.
This is now characterized by a 6 X 6 coherency matrix
A, as shown in (1.182). The 6 x 6 matrix can be naturally
partitioned into three sub-matrices each of size 3 x 3. This
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formulation then scales in a natural way for multibaseline
PolInSAR by expansion of the governing coherency matrix
Ay to a 3N x 3N complex system or 4N x 4N for bistatic
multibaseline PolInSAR, where N is the number of baselines:

T Qp
A1 =T — A2 = H — AN
Q, Ty
T Qp Qin
QF T Q
= 2 (1.182)
QTN Q;N Ty

Returning now to the important case of A,, two of the
sub-matrices T;; and T,, are Hermitian and relate to the
polarimetry from positions 1 and 2, while the third Q,, is a
complex 3 x 3 matrix that contains information about the
variation of interferometric coherence and phase for all pos-
sible weight vectors w; and w,:

W?QQWZ
y(wi,wy) =

- . (1.183)
\/W{IT] 1W1 .\/WSITZZWZ

The previous relation leads to an important choice of
approach to algorithm development in PollnSAR. In the
first case, if the vectors w; and w, are known in advance,
then the coherence can be directly estimated using (1.181)
with the same InSAR fluctuation statistics and bias outlined
in the previous section. However, often we wish to determine
optimum weight vectors from the data themselves, and it
follows from (1.183) that to do this we require estimates of
the three 3 x 3 matrices, T;; and T, and Q. This opens up
a much wider discussion about the fluctuation statistics and
bias arising from the fact that only estimates and not true
matrix values can be used in (1.183). For example, to esti-
mate the sub-matrices, we must first estimate the full 6 x 6
coherency matrix A,. This estimate Z is obtained by means of
the multilook estimator.

One important application of (1.183) is the calculation of
the optimum coherences in PolInSAR. The most general
formulation of this was first presented in (Cloude and
Papathanassiou 1998) and is summarized in (1.184). Here,
we first state the problem mathematically, which is to choose
w; and w, so as to maximize the coherence magnitude,
defined from the complex coherence as a function of the
three sub-matrices T;; and T,, and ;, as shown. This can
be mathematically solved by using a Lagrange multiplier
technique as shown and leads to the calculation of the
required w vectors as eigenvectors of a pair of matrices,
themselves defined as products of the composite matrices:
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max W1|1912W2
Wi, W2 \/W?T] 1W1 .\/WIZI{TQQWQ

L= W{{Q]QWQ + A4 (W?T]]Wl — 1) + 1 (WgITzsz — 1)

oL
o Qpwy + 4T w; =0
i
oL .
W = ngwl + 1Tnrwy =0
2

{ T, QLT Qiows = 445 w)
T, QiT5 Qhwi = LW,

(1.184)

As it was noted in Sect. 1.4.1, the estimated value of the
coherence magnitude is biased with respect to the true value
in such a way that the larger the number of averaged samples
and the higher the coherence magnitude, the lower the bias.
The previous hypothesis was based on considering (1.181)
where the vectors w; and w, are known in advance. Never-
theless, if (1.184) is considered to obtain the coherence
magnitude, the vectors w; and w, must also be estimated
from the data, leading to a larger coherence magnitude bias.

In order to obtain an optimization approach that has less
bias for a given number of samples, it is necessary to reduce
the effective dimensionality of the problem. Several authors
have proposed adopting the a priori assumption w; = Wy,
i.e. that the optimum coherence vector remains unknown but
we assume that it doesn’t change with baseline (Colin et al.
2003; Sagues et al. 2000; Flynn et al. 2002). This idea is
supported on physical grounds for short baselines in the
absence of temporal decorrelation, i.e. for single-pass or
low-frequency sensors where the scattering does not change
significantly over the effective angular width of the baseline.
This approach calls for a new mathematical formulation of
the optimization process. One approach is based on a
straightforward extension of the Lagrange multiplier tech-
nique to constrain w; = W,. This leads by manipulation of
(1.184) to a set of w vectors given as eigenvectors of the
composite matrix:

(Ti +To) ' (Qi2 + Q)W = —aw. (1.185)

One problem with the previous equation is that the eigen-
value is not the coherence, but its real part, and so the
optimization is phase sensitive. For this reason, a second
related approach based on maximization of the phase differ-
ence as a function of polarization vector w has been devel-
oped. In this case, the optimum vector is found by solving a
phase-parameterized eigenvalue problem (Colin et al. 2003;
Flynn et al. 2002):
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1 . ,
Qy = 3 (R + Q™)
1
2

Qpw = ATw

T=5(Ty +Txn)

(1.186)

This has been shown to be equivalent to calculating the
numerical radius of the complex matrix A = TV ZQIZT*” 2,
A proposed algorithm for finding this optimum state has been
presented in (Colin et al. 2003; Colin et al. 2005). One
drawback in this approach is that ¢, is a free parameter, and
so either search or iterative methods must be used to secure
the global optimum. This adds to the computational complex-
ity for each pixel.

A third related approach has been proposed based on a
sub-space Monte Carlo searching algorithm (Sagues et al.
2000). This limits the search for the optimum (again assum-
ing w; = w,) to the diagonal elements of Q;,, i.e. to
co-polarized or cross-polarized combinations across the
whole Poincaré sphere. This again acts to effectively limit
the dimensionality of the problem and demonstrates less bias
than the full Lagrange multiplier method. Finally, phase
centre super-resolution techniques based on the ESPRIT
algorithm have also been proposed to find the optimum
w vectors (Yamada et al. 2001).

In all these cases, a sub-optimum solution is obtained
compared to the unconstrained Lagrange multiplier method
but often with better numerical stability. Given the general
increased processing overhead of employing optimization, it
is always of interest to investigate the potential benefits of
employing an optimization approach over simple linear, Pauli
and circular options.

1.4.3 Model-Based Polarimetric SAR
Interferometry

The previous section considered an important optimisation
problem in PolInSAR, namely, to investigate the maximum
variation of coherence with polarization by solving an eigen-
value problem. This section will be focused on some canoni-
cal problems of interest in the remote sensing of land surfaces
and try and use the mathematical solutions obtained to con-
clude as to the potential of optimisation versus standard
coherence estimation in PolInSAR. We consider three impor-
tant problems, scattering from non-vegetated surfaces, ran-
dom volume scattering and finally a 2-layer surface+volume
mixture which more closely matches the behaviour of natural
vegetated land surfaces.
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1.4.3.1 PolInSAR for Bare Surface Scattering

The starting point will be to consider the simplest case of
non-vegetated terrain. Under the assumption of surface scat-
tering only, the polarimetry can then be characterized as a
reflection symmetric random media with a coherency matrix
T of the form shown in (1.187) (Cloude and Pottier 1996;
Cloude et al. 2004). The interferometry, following range spec-
tral filtering and assuming no temporal or SNR decorrelation,
is characterized by a single parameter, i.e. the ground phase ¢:

100
K=T,'QuT '@ =T,/e’T| T;'e "T;;= [0 1 0
00 1

(1.187)

From the previous equation, it follows that the optimum
coherences are obtained as eigenvectors of the matrix K as
shown. By multiplying terms we see that the matrix K is just
the 3 x 3 identity matrix. This implies that all polarizations
have the same interferometric coherence and PolInSAR plays
no role in surface scattering problems. This is not quite true in
practice for two important reasons: in practice there will be
polarization-dependent SNR decorrelation. In fact, recently it
has been suggested that such SNR coherence variations with
polarimetry be used for quantitative InSAR surface parameter
estimation. This formulation assumes that the scattering from
the surface occurs within a thin layer. If there is significant
penetration into the surface, then volume scattering effects can
occur and this will lead to volume decorrelation effects. These
effects have been observed for land ice (Treuhaft et al. 1996)
and snow studies (Zebker and Villasenor 1992) where the
surface is non-vegetated but covered by a low-loss scattering
layer. Nonetheless, (1.187) demonstrates how for bare surface
scattering PolInSAR plays only a secondary role. More inter-
esting for application of natural land surfaces is to consider the
presence of volume scattering due to vegetation cover.

1.4.3.2 PolIinSAR for Random Volume Scattering
When considering scattering from a volume, interest centres on
the special case of a random volume, i.e. one with macroscopic
azimuthal symmetry (Cloude and Pottier 1996). In this case the
polarimetric coherency matrix T is diagonal. However, more
care is required over consideration of the interferometric phase
in Q,. In this case one must include the effects of volume
decorrelation due to the random vertical distribution of scatterers
(Treuhaft et al. 1996). In this case, the interferometry must
include a complex integral /; normalized by a real integral ;:
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100
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where the vegetation is characterized by a height /, and mean
extinction rate ¢ and 6, represents the mean incidence angle.
In (1.188), it is also observed that K is proportional to the
identity matrix, but this time the eigenvalues, all equal, are
given by a ratio of integrals over the vertical distribution.
This ratio is just the volume decorrelation displaying an
increase in phase variance and a vegetation bias to the ground
phase determined by 4, and o:
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(1.191)

Here the vertical interferometric wavenumber k, (Bamler
and Hartl 1998) appears as a function of the normal baseline
B, the wavelength 1 as well as the sensor height H. A# is the
angular separation of the baseline end points from the surface
pixel.

As it can be observed in (1.190), this coherence is inde-
pendent of polarization, K has three degenerate eigenvalues
and PolInSAR plays no role in the analysis of random vol-
ume scattering. This statement has to be modified in the
presence of oriented volumes (Treuhaft and Cloude 1999),
i.e. ones with a preferred orientation of scattering elements
such as that occurring in some agricultural crops and even in
forestry applications at low frequencies. In such cases
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PolInSAR does indeed play a role for volume scattering,
with K developing three distinct eigenvalues. However, for
the treatment of forestry applications at L-band and above,
such orientation effects are small and the random volume
assumption is justified (Papathanassiou et al. 2000).

In conclusion, both bare surfaces and random volumes
lead to a degenerate eigenvalue spectrum for the matrix K.
It is only when we combine these two effects together that we
see the potential benefits of employing PolInSAR processing.

1.4.3.3 PolInSAR Two-Layer Combined Surface
and Random Volume Scattering

In the general case when combined surface and volume
scattering occurs, then PolInSAR coherence optimisation
becomes useful as it is now demonstrated. In this two-layer
case or Random-Volume-over-Ground (RVoG) model
approach (Cloude and Papathanassiou 2003), the observed
coherence is given by a mixture formula:

t¢7/v+:u( )
14 u(w)

:ei¢ yv+%(l _yv) .

r(w) =

(1.192)

Here, the ground phase ¢ and complex volume coherence
7, are combined with a new real parameter y, the ratio of
effective surface, i.e. all scattering contributions with a phase
centre located at ¢, to volume scattering. In effect, when y = 0
the scattering reduces to the case of random volume scattering,
while when u tends to infinity, it reduces to the surface scat-
tering case. Interest centres on the intermediate case because
one has an unknown, but constant, complex contribution from
the volume scattering combined with a polarization-dependent
surface term. By isolating the polarization-dependent terms,
the resulting coherence then lies along a straight line in the
complex coherence plane as shown in (1.192).

This straight line model has been successfully tested on
varied forest data sets and seems to be a good fit for L- and
P-band PolInSAR forestry applications. It is interesting to note
how the coherence varies as we adjust the single parameter u
along this line. Figure 1.15 illustrates three important cases. In
all three we first note how the coherence starts for small y at
some value depending on the volume scattering contribution,
0.8 in the example. It then initially decreases with increasing
surface contribution until reaching a turning point after which it
increases with y, always approaching unity as ¢ tends to infinity.

In Fig. 1.15 three important special cases of the eigenvalue
spectrum of K for this scenario are also superimposed. The
top left shows the case when u is always small, i.e. when
there is strong volume scattering with high extinction
masking the surface contributions. As polarization w is
adjusted, then p will also change, and the optimizer has an
incentive to select the minimum p channel to maximize coher-
ence. At the other extreme, when p is large and surface
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Fig. 1.15 Variation of coherence with small (top left), large (top right) and intermediate (lower) u values

scattering dominates, we see that the optimizer has an incen-
tive instead to maximize p in order to maximize coherence. A
more interesting case, and one that occurs often in practice
for L-band forestry applications, is the intermediate zone
when the variation of y (the y spectrum) includes the turning
point. In this case the coherence can be maximized by either
increasing or decreasing y depending on circumstances.

Two important conclusions can be made from this. Firstly,
in the mixed two-layer scattering case, the coherence varies
with polarization and so optimisation plays a role in PollnSAR
analysis. Secondly, we see that we cannot simply associate the
maximum coherence with, for example, the maximum value
of ;. Both maxima and minima of u can lead to the optimum
coherence, depending on the circumstances. However, it
follows that if we can estimate the y spectrum for any problem,
then we can compare the max/min with the values for the
standard channel (linear, Pauli, etc.) to quantify the potential
benefits of employing optimisation techniques.

The determination of the extreme points of the x4 spectrum
is related to a classical problem in radar polarimetry, namely,
contrast optimisation (Novak and Burl 1990). The solution to

this is obtained as the eigenvalues of the product of the inverse
volume times the surface polarimetric coherency matrices:

1
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1
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(1.193)
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Under the assumption of a random volume and reflection
symmetric surface scattering component, the eigenvalues of
this matrix can be determined analytically as

_ 1 2 _’2_2)2 4o
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Equally importantly, the eigenvectors of this matrix indi-
cate the w vectors that should be employed in PolInSAR to
secure these extreme coherence values. We note from
Eq. (1.194) that the optimum contrast solutions are not gen-
erally the simple HH, HV and VV channels. This supports the
investigation of optimisation techniques based on fully polar-
imetric data acquisition for PolInSAR processing.

1.5 Polarimetric SAR Tomography

3-D SAR Tomography (TomoSAR) is an experimental
multibaseline (MB) interferometric mode achieving full 3-D
imaging in the range-azimuth-height space through elevation
beam forming, i.e. spatial (baseline) spectral estimation
(Reigber and Moreira 2000). Thanks to TomoSAR, the reso-
lution of multiple scatterers is made possible in height in the
same range-azimuth cell, overcoming a limitation of the
conventional InSAR processing and complementing
PolInSAR. TomoSAR can add more features for the analysis
of complex scenarios, e.g. for the estimation of forest struc-
ture and biomass, sub-canopy topography, soil humidity and
ice thickness monitoring and extraction of heights and
reflectivities in layover urban areas. In order to retrieve infor-
mation on the nature of the imaged scatterers, TomoSAR has
also been extended to include the polarimetric information
(briefly, PolTomoSAR) (Guillaso and Reigber 2005). It
jointly exploits multibaseline SAR data acquired with differ-
ent polarization channels to improve the accuracy of the
estimation of the vertical position of the imaged scatterers
and to estimate a set of normalized complex coefficients
characterizing the corresponding polarimetric scattering
mechanism.
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The very first demonstration of the tomographic concept
was carried out in 1995 by processing single-polarization
data acquired in an anechoic chamber of a two-layer synthetic
target (Pasquali et al. 1995). TomoSAR was then
experimented from an airborne platform a few years later
by acquiring L-band data by means of the DLR E-SAR
platform over the Oberpfaffenhofen site (Reigber and
Moreira 2000). Although this experiment was successful in
demonstrating the 3-D imaging capabilities of forest volumes
and man-made targets at L-band, two main limitations of
TomoSAR were apparent, namely, (i) the usually low num-
ber of images available for processing to avoid large acquisi-
tion times and the consequent temporal decorrelation and (if)
the difficulty of obtaining ideal uniformly spaced parallel
flight tracks due to navigation/orbital considerations.

In order to mitigate the effects of acquisition
non-idealities, most of the subsequent research on (single-
polarization) TomoSAR investigated different imaging
solutions, model-based and not. Many experiments have
shown that the use of polarimetric information not only
increments the number of observables, but it also allows to
enhance the accuracy of height estimation of scatterers, to
increase height resolution and to estimate a vector of complex
coefficients describing the scattering mechanism at each
height (Guillaso and Reigber 2005). In forest scenarios, the
combination of multibaseline polarimetric data can be used to
separate ground and canopy scattering and to estimate their
vertical structures by following a relatively simple algebraic
approach (Tebaldini 2009).

1.5.1 TomoSAR and PolTomoSAR as Spectral
Estimation Problems: Non-model-Based

Adaptive Solutions

As usual in SAR imaging and interferometry, after focusing
on the range-azimuth plane, the K SAR images available for
processing are assumed to be co-registered and properly
compensated for the flat-Earth phase. Moreover,
N independent looks (here multiple adjacent pixels) are
used for processing. For each n-th look, the complex
amplitudes of the pixels observed in the K SAR images at
the same range-azimuth coordinate are collected in the K x 1
complex-valued vector y(n) (Lombardini and Reigber 2003).
y(n) is characterized by its covariance matrix. It can be
demonstrated that the generic (/, m)-th element of R can be
written as

R],, = /F(z) exp { jlko — kom)z}dz (1.195)

where F(z) is the unknown vertical distribution of the
backscattered power as a function of the height z and &, ,,
is the vertical wavenumber at the m-th track. From (1.195), it
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is apparent the Fourier relationship existing between the MB
covariances and the profile of the backscattered power, and it
justifies the use of spectral estimation as a processing tool to
estimate F(z).

The inversion of (1.195) for the estimation of F(z) cannot
be carried out through a plain Fourier-based 3-D focusing as
it suffers from inflated sidelobes and poor height resolution.
Among the investigated alternatives, a state-of-the-art solu-
tion is the adaptive beam forming (shortly, ABF), which is
based on the Capon spectral estimator, and it has been
demonstrated to have remarkable sidelobe rejection and res-
olution capabilities.

The single-polarization ABF spectral estimation problem
can be equivalently stated as the problem of designing a
complex-valued finite impulse response filter h of order
K that leaves undistorted the multibaseline signal component
at the height under test, say z, while rejecting possible other
components from noise and other heights (Lombardini and
Reigber 2003). In formulas

min h"*Rh subjectto h™*a(z) = 1 (1.196)

where a(z) is the so-called steering vector, with generic
element [a(z)]y = exp { jk, iz }fork=1,..., K, and R is
the sample covariance estimate. Notice that the resulting
ABF filter h depends on ﬁ, and it varies with z; In particular,
the dependency on R results in a null-placing at proper
heights in the filtering operation, thus increasing resolution
and sidelobe suppression in the final estimate of F(z). The
solution to the optimization problem (1.196) can be found in
closed-form (Lombardini and Reigber 2003).

If fully polarimetric data are available, without losing
generality, they can be combined in the Pauli basis. The
resulting MB data vectors y;(n), y»(n) and ys(n) can then be
stacked one on top of the other in order to form the 3K-
dimensional multibaseline-polarimetric data vector yp(n).
As a consequence, a MB-polarimetric sample covariance
matrix ﬁp can be calculated from yp(n). Different from the
single polarimetric case, the profile has now to be estimated
also by considering the polarization state at the targeted
height. In this sense, the definition of the steering vector
can be extended to the polarimetric case by means of a
three-dimensional target vector w whose elements are
complex-valued coefficients describing the scattering mech-
anism in the Pauli basis, with || w ||> = 1. In formulas, the
polarimetric steering vector b(z, w) is given by

b(z,w) = B(z)w, (1.197)

where
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a(z) 0 0
Bz)=| 0 a(z) 0 (1.198)
0 0 a2

The ABF optimization problem (1.196) can be extended
to the MB-polarimetric case as follows (Sauer et al. 2011):

min hZ*Rphp subjectto hl*b(z, w) = 1 (1.199)

where hp is the multibaseline-polarimetric ABF filter
response. Now, hp is optimized in order to place proper
nulls in height and in the polarimetric space generated by
w. Notice that the dependence of w on z has been formally
dropped for easiness of notation. From (1.199), the power of
the filtered signal is

IATABF(Z, w) = ! (1.200)

b (z, w)Rpb(z, W)

which is still a function of w. To estimate the vertical power
distribution as a function of the only z, and the corresponding
w, one can maximize (1.200) over w to finally obtain

1

Fapr(z) = Amm{BT*(Z) ﬁ;lB(Z)}

(1.201)

where A,in{-} denotes the minimum eigenvalue operator. The
resulting Wapr(z) is the eigenvector associated with A, It is
worth noting that the multibaseline-polarimetric ABF estima-
tor (1.201) enhances the discrimination of particular
scatterers or features. In other words, it is able to extract a
rank 1 polarimetric information. This is generally the case of
man-made targets like buildings in urban scenarios.
However, it can happen that the scatterers present at a
given z are characterized by a random polarimetric
behaviour, and they are more properly described by a 3 x 3
polarimetric covariance matrix T(z) rather than by a deter-
ministic target vector (Ferro-Famil et al. 2012). This is gen-
erally the case in natural scenarios like forests. In this way, a
scattering mechanism at the generic z will contribute to Rp
with T(z) & [a(z)a”"(z)]. In light of this, the polarimetric
ABF estimator from the rank 1 formulation (1.201) can be
extended in a full-rank sense (Ferro-Famil et al. 2012). The
derivation of such estimate is based on the definition of a full-
rank objective function which uses the polarimetric span
instead of the intensity associated with a given scattering
mechanism. The full-rank ABF estimator then is
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Fasr_rr(z) = trace( [ B™(2) ﬁ;lB(z) }1> . (1.202)

Tasr(z) = [BT* (z)ﬁ;‘B(z)} | (1.203)

The availability of the polarimetric coherence matrix
makes possible the full exploitation of the polarimetric infor-
mation for the characterization of the scattering, allowing the
3-D calculation of parameters like, e.g. entropy and degree of
polarization, as well as the application of polarimetric
decompositions.

1.5.2 Model-Based PolTomoSAR

As mentioned in Sect. 1.6.1, the non-model-based ABF pos-
sess some intrinsic degree of super-resolution, i.e. it is able to
separate scatterers with a height difference lower than the
Rayleigh resolution limit, which in turn depends on the
maximum available track separation. However, a higher
super-resolution could be needed in some applications. For
this reason, a solution is to resort to model-based tomo-
graphic processors, which generally exploit the statistical
description of the received signal or equivalently of the
scattering behaviours present in the observed scene.

Several methods have been proposed for single-
polarization and then extended to full-polarization MB data
sets. For instance, the MUSIC (multiple signal classification)
is matched to point-like targets (Frey and Meier 2011), and it
exploits the fact that the multibaseline response of each point-
like scatterer (i.e. the steering vector) in the backscattered
radiation is orthogonal to the noise subspace. As a conse-
quence, closed-form solution of the MUSIC PolTomoSAR
functional can be found that outputs the scattering mecha-
nism of each scatterer (Sauer et al. 2011). Still in the category
of the eigen-based processors, the weighted signal subspace
fitting can cope with more complex statistical descriptions of
distributed and coherent scatterers, although a multidimen-
sional optimization is required (Huang et al. 2011).

Alternatively to the eigen-based PolTomoSAR, a solution
adaptive to both coherent and distributed scatterers, but pos-
sibly leading to a lower computational time, is the so-called
covariance matching estimator (COMET). If the
multibaseline data are jointly Gaussian distributed, the
knowledge of the MB-multipolarimetric covariance matrix
Ry is enough to perform a maximum likelihood
(ML) estimation of the parameters describing the vertical
distribution of the backscattered power. It can be
demonstrated that the global ML problem can be
decomposed by means of the extended invariance principle
into a cascade of two ML problems (i.e. the estimation of Rp
and the estimation of the parameters of interest from ﬁp ),
leading to an asymptotically equivalent solution and with a
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non-negligible reduction of the computational complexity.
Under the Gaussian hypothesis, the resulting COMET
estimates can be obtained from the following minimization
problem (Tebaldini and Rocca 2010):

~1 ~—1

p =arg min frace (RP [Rp(p) — ﬁp:| R, [Rp(p) — ﬁpD
(1.204)

where p is the vector containing the parameters that describe
the multibaseline covariances. Equation (1.204) can be seen
as the weighted Frobenius norm of the approximation error

N ~—1
Rp(p) — Rp with weight R, . Worth of notice, the COMET
estimator can be used also when data are not Gaussian,
although it is not asymptotically optimal anymore.

1.5.3 Coherence Tomography

Besides the development of spectral estimation- and model-
based PolTomoSAR, also the so-called (polarimetric) coher-
ence tomography methods have been proposed which recon-
struct the vertical distribution of scatterers from complex
coherence measurements of volumetric scatterers. In a few
words, the structure function is approximated through a
weighted sum of a series of basis functions (Cloude 2007b).
The individual parameterization has then to be inverted using
a (limited) number of interferometric measurements at the
same or different polarizations. In this class of “hybrid”
algorithms, the different polarization channels can be used,
e.g. to find a polarization state with lowest ground
contribution.
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