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Effects of time and diffusion phase-lags in a thin 
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Abstract: The present investigation is concerned with an axisymmetric problem 
of thin circular disc in a thermoelastic diffusive body within the context of dual-
phase-lag heat transfer and dual-phase-lag diffusion models. The upper and lower 
surfaces of the thin disc are traction free and subjected to an axisymmetric heat 
supply. The solution is found using Laplace and Hankel transform technique and 
a direct approach without the use of potential functions. The analytical expres-
sions of displacement components, stresses and chemical potential are computed 
in transformed domain. Numerical inversion technique has been applied to obtain 
the results in the physical domain. Numerically simulated results are depicted 
graphically. The effect of diffusion and thermal phase-lags are shown on the vari-
ous components. Some particular cases of result are also deduced from the present 
investigation.
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1. Introduction
Classical Fourier heat conduction law implies an infinitely fast propagation of a thermal signal which 
is violated in ultra-fast heat conduction system due to its very small dimensions and short time-
scales. Catteno (1958) and Vernotte (1958) proposed a thermal wave with a single phase lag in 
which the temperature gradient after a certain elapsed time was given by q + �q

�q

�t
= −k∇T, where 

�q denotes the relaxation time required for thermal physics to take account of hyperbolic effect 
within the medium. Here, when 𝜏q > 0, the thermal wave propagates through the medium with a 
finite speed of 

√
�

�q
, where � is thermal diffusivity. when �q aproaches zero, the thermal wave has an 

infinite speed and thus the single phase lag model reduces to traditional Fourier model .

The dual-phase-lag model of heat conduction was proposed by Tzou (1995a,  1995b,  1996), 
q + �q

�q

�t
= −k(∇T + �t

�

�t
∇T), where the temperature gradient ∇T at a point P of the material at 

time t + �t corresponds to the heat flux vector q at the same time at the time t + �q Here K is thermal 
conductivity of the material. The delay time �t is interpreted as that caused by the microstructural 
interactions and is called the phase lag of temperature gradient. The other delay time �q interpreted 
as the relaxation time due to the fast transient effects of thermal inertia and is called the phase lag 
of heat flux. This universal model is claimed to be able to bridge the gap between microscopic and 
macroscopic approaches, covering a wide range of heat transfer models. If �t = 0, Tzou (1996) refers 
to the model as single-phase-model.

Numerous efforts have been invested in the development of an explicit mathematical solution to 
the heat conduction equation under dual-phase-lag model. Quintanilla and Racke (2006) compared 
two different mathematical hyperbolic models proposed by Tzou. Kumar and Mukhopadhaya (2010a,  
2010b) investigated the propagation of harmonic waves of assigned frequency by employing the 
thermoelasticity theory with three phase lags. Chou and Yang (2009) discussed two-dimensional 
dual-phase-lag thermal behaviour in single/multilayer structures using CESE method. Zhou, Zhang, 
and Chen (2009) proposed an axisymmetric dual-phase-lag bio heat model for laser heating of living 
tissues. Kumar, Chawla, and Abbas (2012) discussed effect of viscosity on wave propagation in ani-
sotropic thermoelastic medium with three-phase-lag model. Ying and Yun (2015) built a fractional 
dual-phase-lag model and the corresponding bio-heat transfer equation.

Abdallah (2009) used uncoupled thermoelastic model based on dual phase lag to investigate the 
thermoelastic properties of a semi-infinite medium. Rukolaine (2014) investigated unphysical ef-
fects of the dual-phase-lag model of heat conduction. Tripathi, Kedar, and Deshmukh (2015) ana-
lysed generalized thermoelastic diffusion problem in a thick circular plate with axisymmetric heat 
supply. Chen and Gurtin (1968), Chen, Gurtin, and Williams (1968,  1969) have formulated a theory 
of heat conduction in deformable bodies which depends upon two distinct temperatures, the con-
ductive temperature and the thermodynamically temperature. Diffusion is defined as the spontane-
ous movement of the particles from high concentration region to the low concentration region, and 
it occurs in response to a concentration gradient expressed as the change in concentration due to 
change in position. Thermal diffusion utilizes the transfer of heat across a thin liquid or gas to ac-
complish isotope separation. The thermodiffusion in elastic solids is due to coupling of fields of tem-
perature, mass diffusion and that of strain in addition to heat and mass exchange with the 
environment. Nowadays, it has extensive industrial applications, for example, oil companies are in-
terested in the process of thermodiffusion, as it is efficient in extraction of oil from oil deposits.

Nowacki (1974a,  1974b,  1974c,  1974d) developed the theory of thermoelastic diffusion. The next 
generalization to the thermoelasticity theory is known as the dual phase lag model developed by 
Tzou (1995a) and Chandrasekharaiah (1998). Many researchers studied various problems involving 
dual-phase-lags (e.g. Abbas, 2015a,  2015b,  2015c; Abbas, Kumar, & Reen, 2014; Abbas & Zenkour, 
2013,  2014,  2015; Abdallah, 2009; Atwa & Jahangir, 2014; Ezzat & Awad, 2010; Kaushal, Kumar, & 
Miglani, 2011; Kumar & Gupta, 2014; Kumar & Mukhopadhaya, 2010a,  2010b; Kumar, Sharma, & 
Garg, 2014; Kaushal, Sharma, & Kumar, 2010; Sharma & Marin, 2013; Youssef, 2006,  2011).
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Here in this investigation, a generalized form of mass diffusion equation is introduced instead of 
classical Fick’s diffusion theory using two diffusion phase-lags in axisymmetric form. One-phase-lag 
of diffusing mass flux vector, represents the delayed time required for the diffusion of the mass flux 
and the other phase-lag of chemical potential, represents the delayed time required for the estab-
lishment of the potential gradient. The basic equations for the isotropic thermoelastic diffusion me-
dium in the context of dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) 
models in axisymmetric form are presented. The components of displacements, stresses and chemi-
cal potential, temperature and mass concentration are computed numerically. Numerically com-
puted results are depicted graphically. The effects of diffusion and thermal phase lags are shown on 
the various components.

2. Basic equations
The equations of motion, heat conduction and mass diffusion in a homogeneous isotropic thermoe-
lastic solid with DPLT and DPLD models in the absence of body forces, heat sources and mass diffu-
sion sources are given by

and the constitutive relations are

where �, � are Lame’s constant, �, is the density, D is the diffusivity, P is the chemical potential per 
unit mass, C is the mass concentration, ui are components of displacement vector u, k i the cofficent 
of thermalconductivity, CE is specific heat at a constant strain, T = � − T0 is a small temprature in-
crement, � is absolute temperature of the medium, T0 is the reference temperature of the body such 
that 

||||
𝜏

𝜏0

||||
≪ 1, a0 is the coefficients describing the measure of thermodiffusion effect, b0 is the coef-

ficients describing the measure of mass diffusion effect, ekk is dilatation, S is the entropy per unit 
mass, �1 = (3� + 2�)�t �2 = (3� + 2�)�c, �t is the coefficient of thermal linear expansion, �c is the 
coefficient of linear diffusion expansion, �t are phase lag of temperature gradient, �q are the phase 
lag of heat flux, �p are the phase lag of chemical potential and �

�
 are phase lag of diffusing mass flux 

vector. In above equations, a comma followed by suffix denotes spatial derivative and a superposed 
dot denotes derivative with respect to time.

3. Formulation and solution of the problem
Consider a disc of diameter 2b occupying the space D defined by 0 ≤ r ≤ ∞, −b ≤ z ≤ b . Let the 
disc be subjected to an axisymmetric heat supply depending on radial and axial direction of the cy-
lindrical coordinate system (r, �, z) with symmetry about z-axis. The initial temperature in the thin 
disc is given by a constant temperature T0, the heat flux g0 F(r, z) is prescribed along with vanishing 
of stress components on the upper and lower boundary surfaces along with traction free boundary 
z = ±b. Under these conditions, the thermoelastic quantities in a thin circular disc are required to be 
determined. As the problem considered is plane axisymmetric, the field component u

�
= 0 and ur,  

uz, T and C are independent of � and restrict our analysis to the two-dimensional problem with

(1)(𝜆 + 𝜇)∇(∇ ⋅ u⃗) + 𝜇∇2u − 𝛽1∇T − 𝛽2∇C = 𝜌ü,

(2)
(
1 + 𝜏t

𝜕

𝜕t

)
kT,ii = (1 + 𝜏q

𝜕

𝜕t
+ 𝜏2q

𝜕2

𝜕t2
)[𝜌CEṪ + 𝛽1T0ėkk + aT0Ċ],

(3)
(
1 + 𝜏p

𝜕

𝜕t

)
(D𝛽2∇

2(∇.u⃗)Da∇2T − Db∇2C +
𝜕

𝜕t
(1 + 𝜏

𝜂

𝜕

𝜕t
+ 𝜏2

𝜂

𝜕2

𝜕t2
)C = 0,

(4)�ij = 2�eij + �ij(�ekk − �1T + �2C),

(5)�T0S =

(

1 + �q
�

�t
+ �2q

�2

�t2

)

[�CET + �1T0ekk + a0T0C],

(6)P = −�2ekk − a0T − b0C,
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Equations (1)–(6) with the aid of (7) take the form

and constitutive relation

where

and err, e��, ezz and erz, The incremental strain components and the rotation are given as

To facilitate the solution, the following dimensionless quantities are introduced

where 

w∗

1 =
�cEc

2
1

k
 and c21 =

�+2�

�

Following Debnath (1995), the Laplace transform of a function f (x1, x3, t) with respect to time 
variable t, with s as a Laplace transform variable is defined as

(7)� = (ur , 0, uz)

(8)(� + �)
�e

�r
+ �

(

∇2 −
1

r2

)

ur − �1
�T

�r
− �2

�c

�r
= �

�2ur

�r2
,

(9)(� + �)
�e

�r
+ �∇2uz − �1

�T

�z
− �2

�c

�z
= �

�2uz

�t2
,

(10)
(
1 + 𝜏t

𝜕

𝜕t

)
k∇2T =

(

1 + 𝜏q
𝜕

𝜕t
+ 𝜏2q

2

𝜕2

𝜕t2

)[
𝜌CEṪ + 𝛽1T0

𝜕

𝜕t
divu + aT0

𝜕c

𝜕t

]
,

(11)
(
1 + �p

�

�t

)(
D�2∇2 divu + Da

0
∇2T − Db

0
∇2C

)
+

�

�t

(

1 + �
�

�

�t
+ �2

�

�2

�t2

)

C = 0,

(12)�rr = 2�rrr + �e − �1T − �2C,

(13)�
��

= 2�r
��
+ �e − �1T − �2,

(14)�zz = 2�rzz + �e�1T − �2C,

(15)�rz = 2�rrz, �r� = 0, �z� = 0,

(16)P = �2 − a0T − b0C

(17)e =
�ur
�r

+
ur
r
+

�uz
�r
,

(18)erz =
1

2

(
�ur
�z

+
�uz
�r

)

, err =
�ur
�r
, e

��
=
1

r

(
�u

�

��
+ ur

)

, ezz =
�uz
�z
, �

�
=
1

2

(
�ur
�z

−
�uz
�r

)

(19)

r
�

=
w∗

1

c1
r, z

�

=
w∗

1

c1
z, (u

�

r , u
�

z) =
w∗

1

c1
(uruz), t

�

= w∗

1t(�
�

rr , �
�

��
, �

�

zz, �
�

rz) =
1

�1T0
(�rr , ���

, �zz, �rz),

(�
�

q, �
�

t , �
�

p, �
�

�
) = w∗

1(�q, �t, �p, ��), P
� =

p

�2
, (T�, C�) =

1

�C21
(�1T, �2c)
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along with the following basic properties:

Using (19) in Equations (8)–(11) and after that suppressing the primes and then applying the Laplace 
transform define by Equations (20)–(22) on the resulting quantities and after simplification, we obtain

where �21, �22, �23, �31, �32, �33, �34, �
0
q, �0

�
, �0P  and �0t  are given in Appendix 1.

Elimination T̃, C̃, ẽ From Equations (23)–(25), we obtain

The solution of Equation (26) can be written in the form

where T̃, ẽ, and C̃ are the solution of the following equation

Applying Hankel transform defined by (29),

on (28), we obtain

The solution of Equation (30) yields

(20)f̃ (x1, x3, s) = L{f (x1, x3, t)} =

∞

∫
0

e−stf (x1, x3, t)dt,

(21)L

(
𝜕f

𝜕t

)

= sf̃ (x1, x3, s) − f (x1, x3, 0),

(22)L

(
𝜕2f

𝜕t2

)

= s2 f̃ (x1, x3, s) − sf (x1, x3, 0) −

(
𝜕f

𝜕t

)

t=0

.

(23)∇2
T̃ + ∇2

C̃ −
(
∇2 − s2

)
ẽ = 0,

(24)
(
∇2 − 𝜍

21

)
T̃ − 𝜍

22
C̃ − 𝜍

23
ẽ = 0,

(25)𝜍31∇
2T̃ −

(
𝜍32∇

2 − 𝜍33

)
C̃ + 𝜍34∇

2ẽ = 0,

(26)(∇2 − k21)(∇
2 − k22)(∇

2 − k23)(T̃, C̃, ẽ) = 0

(27)T̃ =

3∑

i=1

T̃i , ẽ =

3∑

i=1

ẽi , C̃ =

3∑

i=1

C̃i

(28)(∇2 − k2i )(T̃, C̃, ẽ) = 0, i = 1, 2, 3

(29)f̂ (𝜍, z) =

∞

∫
0

f (𝜍, z)rJn(r𝜍)dr,

(30)(D2 − 𝜍2 − k2i )(T̃
∗

i , C̃
∗

i , ẽ
∗

i ) = 0

(31)T̃∗ =

3∑

i=1

Ai coshqiz,

(32)C̃∗ =

3∑

i=1

diAi coshqiz,
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where qi and the coupling constants di and fi are given in Appendix 2.

Aplying inversion of Hankel transform on (31)–(33), we get

With the aid of Equations (8)–(11), (19) and (34)–(36), we obtain the displacement components in 
the transformed domain as

Substituting the values of T̃, C̃, ẽ from (34)–(36) in (12)–(16) and with the aid of (19) yield the stress 
components and chemical potential as

where �i , E(� s), q, R1, R2, R3, R4, F(�, s), R5, �i , R6, V1, �i are given in Appendix 3.

(33)ẽ∗ =

3∑

i=1

fiAi coshqiz,

(34)T̃ =

∞

∫
0

(
3∑

i=1

Ai cosh(qiz)

)

𝜍J
0
(𝜍r)d𝜍,

(35)C̃ =

∞

∫
0

(
3∑

i=1

diAi cosh(qiz)

)

𝜍J
0
(𝜍r)d𝜍,

(36)ẽ = ∫
∞

0

(
3∑

i=1

fiAi cosh(qiz)

)

𝜍J
0
(𝜍r)d𝜍.

(37)ũr(r, z, s) =

∞

∫
0

𝜍2J1(𝜍r)R2d𝜍,

(38)ũz(r, z, s) =

∞

∫
0

𝜍J0(𝜍r)R3d𝜍,

(39)𝜎̃
𝜃𝜃

= V1

∞

∫
0

𝜍2J1(𝜍r)R2d𝜍 +

∞

∫
0

R4J0(𝜍r)d𝜍,

(40)𝜎̃
rr
= V

1

∞

∫
0

𝜍3
(
1

𝜍r
J
1
(𝜍r) − J

0
(𝜍r)

)

R
2
d𝜍 +

∞

∫
0

R
4
J
0
(𝜍r)d𝜍,

(41)𝜎̃zz = V1

∞

∫
0

𝜍J0(𝜍r)R5d𝜍 +

∞

∫
0

R4J0(𝜍r)d𝜍,

(42)𝜎̃rz = V1

∞

∫
0

𝜍2J1(𝜍r)R6d𝜍,

(43)P̃(r, z, s) =

∞

∫
0

3∑

i=1

𝜎i cosh(qiz)𝜍J0(𝜍r)d𝜍,
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4. Boundary conditions
We consider a thermal source and chemical potential source (disc load). The disc load which ema-
nates from origin of the coordinates and expands radically at constant rate c and along with vanish-
ing of stress components at the stress free surface at z = ±b. Mathematically these can be written 
as

where H() is Heaviside unit step function and g0 is the constant temperature applied on the 
boundary.

Applying Laplace transform and Hankel transform given by the Equations (20) and (29) on the 
boundary conditions (44)–(47), we obtain at z = ±b

Substitute the value of T̃ from Equation (34) and 𝜎̃zz, 𝜎̃rz and P̃ from Equations (41)–(43), in the 
Equations (48)–(51), we obtain the value of unknown parameters as

where Δ, Δ1i, Δ14, Δ2i, Δ24, Δ3i, Δ34, Δ4i, i = 1, 2, 3 and Δi(i = 1, 2, 3, 4) are given in Appendix 4.

Substituting the values of Ai(i = 1, … , 4) from Equation (52) in the Equations (34)–(43), yield the 
components of displacement, stress components and chemical potential.

5. Particular cases

5.1. Thermoelastic isotropic half space
Taking �2 = a = b = 0, in the Equations (34)–(43) along with Equation (52), yield the  
expressions  for components of displacement, stress and temperature distribution in  
thermoelastic isotropic half space with the changed values of 
fi , di , �22, �23, �31, �32, �33, �34, �i , R1, R2, R3, R4, E(�, s), R5, �i , R6, �i

(44)
�T

�z
= ±g0F(r, z),

(45)�zz = 0,

(46)�rz = 0,

(47)P = f (r, t) =
H(t − r)

�(ct)2
,

(48)𝜕T̃

𝜕z
= ±g0F̃(r, z),

(49)𝜎̃zz = 0,

(50)𝜎̃rz = 0,

(51)
P̃ = f̃ (𝜍, s) =

1

𝜋c𝜍
√

𝜍2 +
s2

c2
−

s

c

.

(52)A1 =
Δ1

Δ
, A2 =

Δ2

Δ
, A3 =

Δ3

Δ
, E{�, s} =

Δ4

Δ
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as,

5.2. Coupled thermoelasticity with mass diffusion
Taking �q = �t = �p = �

�
= 0 in the Equations (34)–(43) with the aid of (52), yield the expressions of 

displacement components, stress components, temperature distribution and chemical potential ex-
pression with the changed values of, �0q , �

0
�
, �0P �

0
t , as, �0q = 1, �0

�
= 1, �0p = 1, �0t = 1, for coupled 

thermoelasticity with mass diffusion model.

5.3. Dual-phase-lag heat model (DPLT)
Taking �p = �

�
= �2

�
= 0, in the Equations (34)–(43), with the aid of (52), yield the expression for 

dual-phase-lag heat model with the changed values of �0p , �
0
�
, as �0p = 1, �0

�
= 1.

5.4. Single-phase-lag heat model (SPLT) and single-phase-lag diffusion model (SPLD)
Taking �q = �2q = �

�
= �2

�
= 0, in the Equations (34)–(43), with the aid of (52), expression which re-

duces DPLT and DPLD models to single-phase-lag heat model (SPLT) and single-phase lag diffusion 
model (SPLD) with the changed values of �0q , �

0
�
 as �0q = 1, �0

�
= 1.

fi0
= −

�21

�23
, di0

= 0, �22 = �23 = �31 = �32 = �33 = �34 = 0, E(�, s) = 0

�i0
=

(
� + �

�c21
fi0

)

Ai , R10
=

�i0(
�q2i

�c21
− s2

) , R20 =
2∑

i=1

R10
cosh(qiz), R30

=

2∑

i=1

R10
sinh(qiz),

R40
=

2∑

i=1

�i0
cosh(qiz)�, F(�, s) = 0, R50

=

(
2∑

i=1

R10
q2i cosh(qiz)

)

, �i0
=

(
fi0

− �c2

�iT0

)

Ai ,

R60
=

(

2

2∑

i=1

R10
qi sinh(qiz)

)

, �i0
=

(

−
�c21
�1

)

Ai(�, s)

(53)T̃ = ∫
∞

0

(
2∑

i=1

Ai cosh(qiz)

)

𝜍J
0
(𝜍r)d𝜍,

(54)ẽ = ∫
∞

0

(
2∑

i=1

fi
0

Ai cosh(qiz)

)

𝜍J
0
(𝜍r)d𝜍.

(55)ũr(r, z, s) = ∫
∞

0

𝜍2J1(𝜍r)R20
d𝜍,

(56)ũz(r, z, s) = ∫
∞

0

𝜍J0(𝜍r)R30
d𝜍,

(57)𝜎̃
𝜃𝜃

= V1 ∫
∞

0

𝜍2J1(𝜍r)R20
d𝜍 + ∫

∞

0

R40
J0(𝜍r)d𝜍,

(58)𝜎̃
rr
= V

1 ∫
∞

0

𝜍3
(
1

𝜍r
J
1
(𝜍r) − J

0
(𝜍r)

)

R
2
0

d𝜍 + ∫
∞

0

R
4
0

J
0
(𝜍r)d𝜍,

(59)𝜎̃zz = V1 ∫
∞

0

𝜍J0(𝜍r)R50
d𝜍 + ∫

∞

0

R40
J0(𝜍r)d𝜍,

(60)𝜎̃rz = V1 ∫
∞

0

𝜍2J1(𝜍r)R60
d𝜍,
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6. Inversion of transforms
We have obtained the expressions for displacement components, stress components and chemical 
potential in Equations (37)–(43). These expressions are functions of z, parameters of Laplace and 
Hankel transforms s and � and hence are of the form f̂ (𝜍, z, s) . To get the function f (r, z, t) in physi-
cal domain, first we invert the Hankel transform using

The method for evaluating this integral is described by Press, Teukolshy, Vellerling, and Flannery 
(1986), which involves the use of Romberg’s integration with adaptive step size. This also uses the 
results from successive refinements of the extended trapezoidal rule followed by extrapolation of 
the results to the limit when the step size tends to zero.

Due to the complexity of the solution in the Laplace transform domain, the inverse of the  
Laplace transform is obtained using the Gaver–Stehfast algorithm. Graver (1966) and  
Stehfast (1970a,  1970b) derived the formula given below. By this method, the inverse f(t) of  

Laplace transform ̃f (s) is approximated by f (t) = log 2

t

∑k

j=1 D(j, k)F
�
j log 2

t

�
 with 

D(j, k) = (−1)j+M
∑min(j,M)

n=m

�
nm(2n)!

(M−n)!n!(n−1)!(j−n)!(2n−j)!

�
, where K is an even integer, whose value depends 

on the word length of computer used. M = K∕2, and m is an integer part of (j + 1)∕2. The optimal 
value of k was chosen as described in Gaver-Stehfast algorithm, for the fast convergence of results 
with desired accuracy. The Romberg numerical integration technique [1986] with variable step size 
used to evaluate the results involved.

7. Numerical results and discussion
The mathematical model is prepared with copper material for purposes of numerical computation. 
The material constants for the problem are taken from Dhaliwal and Singh (1980) 
� = 7.76 × 1010 Nm−2,  � = 3.86 × 1010 Nm−2,  K = 386 JK−1 m−1s−1, T0 = 293 K,  
�1 = 5.518 × 10

6 Nm−2 deg
−1, �2 = 61.38 × 10

6 Nm−2 deg
−1, � = 8, 954 Kgm−3 , 

a = 1.2 × 104 m2∕ s2 K, b = 0.9 × 106 m5∕ kg s2, D = 0.88 × 10−8 Kgsm3,  
CE = 383.1 Jkg

−1
K−1.

An investigation has been conducted to compare the effect of time on dual phase lag model in 
heat conduction and diffusion and the graphs have been plotted for the range 0 ≤ r ≤ 10, phase 
lags are taken as �p = 0.01, �

�
= 0.03 , �t = 0.05 and �q = 0.07.

In all figures solid line corresponds to the dual-phase-lag of heat transfer and diffusion with non-
zero values t = 0.01, small dashed line corresponds to the dual-phase-lag of heat transfer and dif-
fusion with non-zero values t = 0.02, long dashed line corresponds to the dual-phase-lag of heat 
transfer and diffusion with non-zero values t = 0.03, long dashed line with dots line corresponds to 
the dual-phase-lag of heat transfer and diffusion with non-zero values t = 0.04.

Figure 1 exhibits variation of displacement component uz with respect to distance r. Near the load-
ing surface, there is a sharp decrease in range 0 ≤ r ≤ 2 and behaviour is oscillatory away from the 
loading surface for all the cases. Also it is noticed that amplitude of variations decreases as t in-
creases and attains maximum value for t = 0.01.

Figure 2 shows variation of temperature change T with respect to distance r. We find that in the 
range 0 ≤ r ≤ 3 there is a sharp increase for t = 0.01 and small increase for rest of the cases and it 
is noticed that, there are small variations away from the loading surface.

(61)f̃ (r, z) = ∫
∞

0

𝜍 f̂ (𝜍, z)Jn(r, 𝜍)d𝜍,
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Figure 3 shows variation of displacement component ur with respect to distance r. Here, we ob-
served that near the loading surface, there is a sharp decrease in range 0 ≤ r ≤ 2. Also it is evident 
that trends are oscillatory with decreasing amplitudes values.

Figure 4 shows variation of mass concentration C with respect to distance r. It is noticed that, it 
decreases in the range 0 ≤ r ≤ 3 for t = 0.01 and trend is descending oscillatory and small varia-
tions near zero are noticed in the range 3 ≤ r ≤ 7 for the rest of the cases.

Figure 5 gives variation of stress component �rz with respect to distance r. Here, it is observed that 
at the loading surface, there is a sharp decrease in range 0 ≤ r ≤ 2.5. It is also noticed that in the 
range 5 ≤ r ≤ 10 , trends are similar for all the cases.

Figure 6 shows variation in stress component �
��

 with respect to distance r. Here it is noticed that, 
it decreases in the range 0 ≤ r ≤ 3 for t = 0.01 sharply and it is observed that, it decreases not 

Figure 1. Variation of 
displacement component U

z
 

w.r.t. distance r.

Figure 2. Variation of 
temperature change T w.r.t. 
distance r.
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Figure 3. Variation of 
displacement component U

r
 

w.r.t. distance r.

Figure 4. Variation of mass 
concentration C w.r.t. distance 
r.

Figure 5. Variation of stress 
component �

rz
 w.r.t. distance r.
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sharply in the rest of the cases. Also it is observed that trends are oscillatory with decreasing ampli-
tudes values.

Figure 7 shows variation of stress component �zz with respect to distance r. It is observed that, it 
decreases in the range 0 ≤ r ≤ 3 for t = .01 sharply. Here for t = 0.01, values of �zz are almost same 
than the values for other cases and follows oscillatory pattern, whereas for the rest of the cases, 
trends are similar with small variations.

Figure 8 exhibits variation of chemical potential function P with respect to distance r. Near the 
loading surface, there is a sharp decrease in the range 0 ≤ r ≤ 2. Here for t = 0.01, values of P are 
same as compared to other cases and follows oscillatory pattern, whereas for the rest of the cases, 
trends are similar with same variations.

Figure 6. Variation of stress 
component �

��
 w.r.t. distance r.

Figure 7. Variation of stress 
component �

zz
 w.r.t. distance r.
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8. Conclusion
In this chapter, effects of thermal and diffusion phase lags are investigated due to axi-symmetric 
heat supply for a disc. The problem is discussed within the context of DPLT and DPLD models. The 
upper and lower surfaces of the disc are traction free and subjected to an axi-symmetric heat sup-
ply. The solution of the problem is found using Laplace and Hankel transforms and a direct approach 
without the use of potential functions. The analytical expressions of displacements, stresses, the 
chemical potential, temperature change and mass concentration are computed in transformed do-
main. Numerical inversion technique has been applied to obtain the results in the physical domain.

Effects of diffusion and thermal phase lags are computed and comparison of variations is made. It 
is observed that change in phase lags changes the behaviour of deformations of the various compo-
nents of stresses, displacements, chemical potential function, temperature change and mass con-
centration. Small difference in phase lags results in big difference of thermal waves. A sound impact 
of diffusion and thermal phase-lags on the various quantities is observed. The use of diffusion phase-
lags in the equation of mass diffusion gives more realistic model of thermoelastic diffusion media as 
it allows a delayed response between the relative mass flux vector and the potential gradient.

Also the behaviour of deformations of the various components of stresses, displacement, chemi-
cal potential function, temperature change and mass concentration are dependent on the variation 
of t. Also, it is observed that near the loading surface, variations are highest. Away from the loading 
surface, small variations are observed minimum. Also oscillatory trend is observed for t = 0.01 and 
amplitude of oscillation is decreasing as t increases. The result of the problem is useful in the two-
dimensional problem of dynamic response due to various sources of thermodiffusion which has vari-
ous geophysical and industrial applications.
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