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1. Introduction

In the literature there are a kind of integral transforms used in physics and engineering, the
integral transforms were extensively used to solve the differential equations, several works on
the theory and application of integral transforms such as Laplace, Fourier, Mellin and Hankel.

Watugala [1] introduce a new integral transform named the Sumudu transform and applied
it to solution of ordinary differential equation in control engineering problems for properties of
Sumudu transform see [2], [3], [4] and [5]. In [18] Maria Ragusa proved a sufficient condition
for commutators of fractional integral operators. The Sumudu transform is defined over the set
of the functions:

𝐴 = {𝑓(𝑡) ∶ ∃𝑀, 𝜏1, 𝜏2 > 0, 𝑓(𝑡) < 𝑀𝑒
𝑡
𝜏𝑗 , if 𝑡 ∈ (−1)𝑗 × [0,∞)} .

By the following formula:

𝐹(𝑢) = 𝑆 [𝑓(𝑡)] = 1
𝑢 ∫

∞

0
𝑒
−𝑡
𝑢 𝑓(𝑡)𝑑𝑡, 𝑢 ∈ (−𝜏1, 𝜏2).

Delay differential equations arise when the rate of change of a time dependent process in its
mathematical modeling is not only determined by its present state but also at certain past estate
known as its history. Introduction of delays in models enriches the dynamics of such models and
allow a precise description of real life phenomena. DDEs arise frequently in single processing,
digital images, control system [8], lasers, traffic models [6], metal cutting, population dynamic
[9], chemical kinetics [7], and in many physical phenomena.
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Theorem 1. If 𝐹 𝑛(𝑢) is the Sumudu transform of n-th order derivative of 𝑓 𝑛(𝑡) then for 𝑛 ≥ 1,

𝐹 𝑛(𝑢) = 𝐹(𝑢)
𝑢𝑛 −

𝑛−1

∑
𝑘=0

𝑓 𝑘(0)
𝑢𝑛−𝑘 .

For more details see [4].

Analysis of theMethod

In this paper we will consider a class of nonlinear delay differential equation of the form:

𝑑𝑛𝑦
𝑑𝑡𝑛 + 𝑅(𝑦) + 𝑁(𝑡 − 𝜏) = 𝑓(𝑡), (1)

with the initial condition:

𝑢𝑘(0) = 𝑢𝑘0, (2)

where 𝑦 = 𝑦(𝑡), 𝑅 is a linear bounded operator and 𝑓(𝑡) is a given continuous function 𝑁 is a
nonlinear bounded operator and 𝑑𝑛𝑦

𝑑𝑡𝑛 is the term of the highest order derivative.
The Sumudu decomposition method consists of applying the Sumudu transform first on both

side of (1) to give:

𝑆 [
𝑑𝑛𝑦
𝑑𝑡𝑛 ] + 𝑆 [𝑅(𝑦)] + 𝑆 [𝑁(𝑡 − 𝜏)] = 𝑆 [𝑓(𝑡)] .

By Theorem 1, we have

𝑆 (𝑦(𝑡))
𝑢𝑛 − 𝐶

𝑢𝑛−𝑘 + 𝑆 [𝑅(𝑦)] + 𝑆 [𝑁(𝑡 − 𝜏)] = 𝑆 [𝑓(𝑡)] ,

where 𝐶 = ∑𝑛−1
𝑘=0 𝑓 𝑘(0),

𝑆 (𝑦(𝑡)) = 𝑢𝑘𝐶 − 𝑢𝑛𝑆 [𝑅(𝑦)] − 𝑢𝑛𝑆 [𝑁(𝑡 − 𝜏)] + 𝑢𝑛𝑆 [𝑓(𝑡)] . (3)

The standard Sumudu decomposition method defines the solution 𝑦(𝑡) by the series:

𝑦(𝑡) =
∞

∑
𝑛=0

𝑦𝑛(𝑡), (4)

the nonlinear operator is decomposed as:

𝑁(𝑡 − 𝜏) =
∞

∑
𝑛=0

𝐴𝑛, (5)

where 𝐴𝑛 is the a domain polynomial of 𝑦0, 𝑦1, 𝑦2,… , 𝑦𝑛 that are given by:

𝐴𝑛 =
1
𝑛!

𝑑𝑛
𝑑𝜆𝑛 [

𝑁(
∞

∑
𝑛=0

𝜆𝑛𝑦𝑛]
𝜆=0

, 𝑛 = 0, 1, 2,… (6)
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The first a domain polynomials are given by:

𝐴0 = 𝑓(𝑦0)

𝐴1 = 𝑦1𝑓 1(𝑦0)

𝐴2 = 𝑦2𝑓 1(𝑦0) + 1
2!𝑦

2
1𝑓 2(𝑦0)

𝐴3 = 𝑦3𝑓 1(𝑦0) + 𝑦1𝑦2𝑓 2(𝑦0) + 1
3!𝑦

3
1𝑓

3(𝑦0).

(7)

Apply (4) and (5) into (3) we have:

𝑆
[

∞

∑
𝑛=0

𝑦𝑛]
= 𝑢𝑘𝐶 − 𝑢𝑛𝑆

[
𝑅

∞

∑
𝑛=0

𝑦𝑛]
− 𝑢𝑛𝑆

[

∞

∑
𝑛=0

𝐴𝑛]
+ 𝑢𝑛𝑆 [𝑓(𝑡)] , (8)

comparing both side of (8):

𝑆 [𝑦0] = 𝑢𝑘𝐶 + 𝑢𝑛𝑆 [𝑓(𝑡)] (9)

𝑆 [𝑦1] = −𝑢𝑛𝑆 [𝑅𝑦0] − 𝑢𝑛𝑆 [𝐴0] (10)

𝑆 [𝑦2] = −𝑢𝑛𝑆 [𝑅𝑦1] − 𝑢𝑛𝑆 [𝐴1] . (11)

In general the recursive relation is given by:

𝑆 [𝑦𝑛] = −𝑢𝑛𝑆 [𝑅𝑦𝑛−1] − 𝑢𝑛𝑆 [𝐴𝑛−1] , 𝑛 ≥ 1 (12)

applying inverse Sumudu transform to (9)–(12) then:

𝑦0 = 𝐻(𝑡) (13)

𝑦𝑛 = −𝑆−1 [𝑢𝑛𝑆 [𝑅𝑦𝑛−1] + 𝑢𝑛𝑆 [𝐴𝑛−1]] , 𝑛 ≥ 1 (14)

Where𝐻(𝑡) is a function that a rises from the source term and prescribed initial conditions.

Numerical Examples

Example 1. Consider the nonlinear delay differential equation of first order:

𝑦′(𝑡) = 1 − 2𝑦2 (
𝑡
2) , 0 ≤ 𝑡 ≤ 1, 𝑦(0) = 0. (15)

Apply Sumudu transform to both side of equation (15):

𝑆 [𝑦′(𝑡)] = 𝑆 [1 − 2𝑦
2
(
𝑡
2)] .
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Using Theorem 1 and initial condition we have:

𝑌(𝑢) − 𝑦(0)
𝑢 = 1 − 𝑆 [2𝑦

2
(
𝑡
2)] ,

𝑌(𝑢)
𝑢 = 1 − 𝑆 [2𝑦

2
(
𝑡
2)] ,

𝑆 [𝑦(𝑡)] = 𝑢 − 𝑢𝑆 [2𝑦
2
(
𝑡
2)] . (16)

Applying the inverse Sumudu transform to (16) we have:

𝑦(𝑡) = 𝑆−1 [𝑢] − 𝑆−1
[𝑢𝑆 (2𝑦

2
(
𝑡
2))] ,

𝑦0(𝑡) = 𝑆−1 [𝑢] = 𝑡,

𝑦0 (
𝑡
2) =

𝑡
2, (17)

𝑦𝑛+1(𝑡) = −𝑆−1 [𝑢𝑆 (2𝐴𝑛)] . (18)

From equation (7)

𝐴0 = 𝑦20 (
𝑡
2)

𝐴1 = 2𝑦0 (
𝑡
2) 𝑦1 (

𝑡
2)

𝐴2 = 2𝑦2 (
𝑡
2) 𝑦0 (

𝑡
2) + 𝑦

2
1 (

𝑡
2) ,

(19)

At 𝑛 = 0 in equation (18):

𝑦1(𝑡) = −𝑆−1 [𝑢𝑆 (2𝐴0)] , (20)

substituting equation (19) in (20) we get:

𝑦1(𝑡) = −𝑆−1
[𝑢𝑆 (2𝑦

2
0 (

𝑡
2))] ,

𝑦1(𝑡) = −𝑆−1
[𝑢𝑆 (2(

𝑡
4 ))] = −𝑆−1

[𝑢𝑆 (
𝑡2
2 )] ,

𝑦1(𝑡) = −𝑆−1 [𝑢 (𝑢2)] = −𝑆−1 [𝑢3] = − 𝑡
3

3! ,

𝑦1 (
𝑡
2) = −

(
𝑡
2)

3

3! = − 𝑡3
48. (21)

At 𝑛 = 1 in equation (18) we have:

𝑦2(𝑡) = −𝑆−1 [𝑢𝑆 (2𝐴1)] , (22)
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substituting equations (19) into (22):

𝑦2(𝑡) = −𝑆−1
[𝑢𝑆 (2(2𝑦0 (

𝑡
2) 𝑦1 (

𝑡
2))] ,

𝑦2(𝑡) = −𝑆−1
[𝑢𝑆 (

4𝑡
2 (

−𝑡3
48 ))] = 𝑆−1

[𝑢𝑆 (
𝑡4
24)] ,

𝑦2(𝑡) = 𝑆−1
[𝑢𝑆 (

4! 𝑢4
24 )] = 𝑆−1 [𝑢5] =

𝑡5
5! =

𝑡5
120,

𝑦2 (
𝑡
2) =

𝑡5
3840, (23)

At 𝑛 = 2 in equation (18) we have:

𝑦3(𝑡) = −𝑆−1 [𝑢𝑆 (2𝐴2)] (24)

Substituting equations (19) and (24):

𝑦3(𝑡) = −𝑆−1
[𝑢𝑆 (2(2𝑦2 (

𝑡
2) 𝑦0 (

𝑡
2) + 𝑦

2
1 (

𝑡
2))] ,

𝑦3(𝑡) = −𝑆−1
[
2𝑢𝑆

(
2𝑡5
3840 (

𝑡
2) + (

−𝑡3
48 )

2

)]
,

𝑦3(𝑡) = −𝑆−1
[2𝑢𝑆 (

𝑡6
3840 +

𝑡6
2304)] ,

𝑦3(𝑡) = −𝑆−1
[2𝑢(

𝑢6.6!
3840 +

𝑢6.6!
2304)] ,

𝑦3(𝑡) = −𝑆−1 [𝑢7] = − 𝑡
7

7! = − 𝑡7
5040.

The series solution is given by:

𝑦(𝑡) = 𝑦0(𝑡) + 𝑦1(𝑡) + 𝑦2(𝑡) + ⋯ ,

𝑦(𝑡) = 𝑡 − 𝑡3
6 + 𝑡5

120 −
𝑡7

5040 +⋯ .

The exact solution is

𝑦(𝑡) = sin(𝑡)

Example 2. Consider the linear delay differential equation of first order

𝑦′(𝑡) − 𝑦 (
𝑡
2) = 0, 0 < 𝛼 ≤ 1, 0 < 𝑡 ≤ 1, (25)
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with initial condition 𝑦(0) = 1, apply Sumudu transform to both side of (25)

𝑆 [𝑦′(𝑡)] = 𝑆 [𝑦 (
𝑡
2)] ,

using Theorem 1 and initial condition:

𝑌(𝑢) − 𝑦(0)
𝑢 = 𝑆 [𝑦 (

𝑡
2)] ,

𝑌(𝑢) − 1
𝑢 = 𝑆 [𝑦 (

𝑡
2)] ,

𝑌(𝑢) = 1 + 𝑢𝑆 [𝑦 (
𝑡
2)] ,

𝑆 [𝑦(𝑡)] = 1 + 𝑢𝑆 [𝑦 (
𝑡
2)] . (26)

Applying the inverse Sumudu transform to (26):

𝑦(𝑡) = 𝑆−1 [1] + 𝑆−1
[𝑢𝑆 [𝑦 (

𝑡
2)]] ,

𝑦0(𝑡) = 𝑆−1 [1] = 1,

𝑦0 (
𝑡
2) = 1, (27)

𝑦𝑛+1(𝑡) = 𝑆−1
[𝑢𝑆 [𝑦𝑛 (

𝑡
2)]] , (28)

at 𝑛 = 0 in equation (28):

𝑦1(𝑡) = 𝑆−1
[𝑢𝑆 [𝑦0 (

𝑡
2)]] ,

𝑦1(𝑡) = 𝑆−1 [𝑢𝑆 [1]] ,

𝑦1(𝑡) = 𝑆−1 [𝑢] = 𝑡,

𝑦1 (
𝑡
2) =

𝑡
2, (29)

at 𝑛 = 1 in equation (28):

𝑦2(𝑡) = 𝑆−1
[𝑢𝑆 [𝑦1 (

𝑡
2)]] ,

𝑦2(𝑡) = 𝑆−1
[𝑢𝑆 [

𝑡
2]] ,

𝑦2(𝑡) = 𝑆−1
[
𝑢2
2 ] =

𝑡2
4 ,
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at 𝑛 = 1 in equation (28):

𝑦3(𝑡) = 𝑆−1
[𝑢𝑆 [𝑦2 (

𝑡
2)]] = 𝑆−1

[𝑢𝑆 [
𝑡2
16]] = 𝑆−1

[
𝑢3
8 ] =

𝑡3
48.

The series solution is given by:

𝑦(𝑡) = 𝑦0(𝑡) + 𝑦1(𝑡) + 𝑦2(𝑡) + ⋯ ,

𝑦(𝑡) = 1 + 𝑡 + 𝑡2
4 + 𝑡3

48 +⋯

The exact solution is 𝑦(𝑡) = ∑∞
𝑘=0

( 12 )
1
2 𝑘(𝑘−1)

𝑘! 𝑡𝑘.

Fractional Delay Differential Equation

In this section we apply the Sumudu decomposition method to solve linear and nonlinear frac-
tional delay differential equation.

Definition 1. The Sumudu transform of the Caputo fractional derivative is defined as follows:

𝑆 [𝐷𝛼𝑓(𝑡)] = 𝑢−𝛼𝑆 [𝑓(𝑡)] −
𝑛−1

∑
𝑘=0

𝑢−𝛼+𝑘𝑓 𝑘(0), 𝑛 − 1 < 𝛼 ≤ 𝑛,

for more details see [16].

2. Analysis of theMethod of Fractional Order

Here we will consider a class of nonlinear delay differential equation of the form:

𝐷𝛼𝑦(𝑡) + 𝑅(𝑦) + 𝑁(𝑡 − 𝜏) = 𝑓(𝑡), 𝜏 ∈ 𝑅, 𝑡 < 𝜏, 𝑛 − 1 < 𝛼 ≤ 𝑛, (30)

with the initial condition:

𝑢𝑘(0) = 𝑢𝑘0, (31)

where 𝑅 is a linear bounded operator and 𝑓(𝑡) is a given continuous function 𝑁 is a nonlinear
bounded operator and 𝐷𝛼𝑦(𝑡) is the term of the fractional order derivative.

The Sumudu decomposition method consists of applying the Sumudu transform first on both
side of (30) to give:

𝑆 [𝐷𝛼𝑦(𝑡)] + 𝑆 [𝑅(𝑦)] + 𝑆 [𝑁(𝑡 − 𝜏)] = 𝑆 [𝑓(𝑡)] ,

by Definition 1,

𝑆 (𝑦(𝑡))
𝑢𝛼 − 𝐶

𝑢𝛼−𝑘 + 𝑆 [𝑅(𝑦)] + 𝑆 [𝑁(𝑡 − 𝜏)] = 𝑆 [𝑓(𝑡)] .

Where 𝐶 = ∑𝑛−1
𝑘=0 𝑓 𝑘(0)

𝑆 (𝑦(𝑡)) = 𝑢𝑘𝐶 + 𝑢𝛼𝑆 [𝑓(𝑡)] − 𝑢𝛼𝑆 [𝑅(𝑦)] − 𝑢𝛼𝑆 [𝑁(𝑡 − 𝜏)] . (32)
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The standard Sumudu decomposition method define the solution 𝑦(𝑡) by the series:

𝑦(𝑡) =
∞

∑
𝑛=0

𝑦𝑛(𝑡), (33)

the nonlinear operator is decomposed as:

𝑁(𝑡 − 𝜏) =
∞

∑
𝑛=0

𝐴𝑛 (34)

Where 𝐴𝑛 as in (6). The first a domain polynomials are given as in (7). Apply (33) and (34) in
(32) we have:

𝑆
[

∞

∑
𝑛=0

𝑦𝑛]
= 𝑢𝑘𝐶 + 𝑢𝛼𝑆 [𝑓(𝑡)] − 𝑢𝛼𝑆

[
𝑅

∞

∑
𝑛=0

𝑦𝑛]
− 𝑢𝛼𝑆

[

∞

∑
𝑛=0

𝐴𝑛]
(35)

Comparing both side of (35):

𝑆 [𝑦0] = 𝑢𝑘𝐶 + 𝑢𝛼𝑆 [𝑓(𝑡)] , (36)

𝑆 [𝑦1] = −𝑢𝛼𝑆 [𝑅𝑦0] − 𝑢𝛼𝑆 [𝐴0] , (37)

𝑆 [𝑦2] = −𝑢𝛼𝑆 [𝑅𝑦1] − 𝑢𝛼𝑆 [𝐴1] . (38)

In general the recursive relation is given by:

𝑆 [𝑦𝑛] = −𝑢𝛼𝑆 [𝑅𝑦𝑛−1] − 𝑢𝛼𝑆 [𝐴𝑛−1] , 𝑛 ≥ 1, (39)

applying inverse Sumudu transform to (36)–(39) then:

𝑦0 = 𝐻(𝑡), (40)

𝑦𝑛 = −𝑆−1 [𝑢𝛼𝑆 [𝑅𝑦𝑛−1] + 𝑢𝛼𝑆 [𝐴𝑛−1]] , 𝑛 ≥ 1, (41)

where𝐻(𝑡) is a function that a rises from the source term and prescribed initial conditions.

Example 3. Consider the nonlinear delay differential equation of first order:

𝐷𝛼𝑦(𝑡) = 1 − 2𝑦2 (
𝑡
2) , 0 ≤ 𝑡 ≤ 1, 0 < 𝛼 ≤ 1, (42)

𝑦(0) = 0, (43)

apply Sumudu transform to both side of equation (42):

𝑆 [𝐷𝛼𝑦(𝑡)] = 𝑆 [1 − 2𝑦
2
(
𝑡
2)] ,

doi:10.11131/2017/101268 Page 8
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by using Definition 1 and initial condition (43) we have:

𝑌(𝑢) − 𝑦(0)
𝑢𝛼 = 1 − 𝑆 [2𝑦

2
(
𝑡
2)] ,

𝑌(𝑢)
𝑢𝛼 = 1 − 𝑆 [2𝑦

2
(
𝑡
2)] ,

𝑆 [𝑦(𝑡)] = 𝑢𝛼 − 𝑢𝛼𝑆 [2𝑦
2
(
𝑡
2)] . (44)

Applying the inverse Sumudu transform to (44) we have:

𝑦(𝑡) = 𝑆−1 [𝑢𝛼] − 𝑆−1
[𝑢

𝛼𝑆 (2𝑦
2
(
𝑡
2))] ,

𝑦0(𝑡) = 𝑆−1 [𝑢𝛼] =
𝑡𝛼

Γ(𝛼 + 1) ,

𝑦0 (
𝑡
2) =

(
𝑡
2)

𝛼

Γ(𝛼 + 1) =
𝑡𝛼

2𝛼Γ(𝛼 + 1) , (45)

𝑦𝑛+1(𝑡) = −𝑆−1 [𝑢𝛼𝑆 (2𝐴𝑛)] , (46)

From equation (7), we have

𝐴0 = 𝑦20 (
𝑡
2)

𝐴1 = 2𝑦0 (
𝑡
2) 𝑦1 (

𝑡
2)

𝐴2 = 2𝑦2 (
𝑡
2) 𝑦0 (

𝑡
2) + 𝑦

2
1 (

𝑡
2) ,

(47)

at 𝑛 = 0 in equation (46):

𝑦1(𝑡) = −𝑆−1 [𝑢𝛼𝑆 (2𝐴0)] , (48)

substituting equation (47) in (48) we get:

𝑦1(𝑡) = −𝑆−1
[𝑢

𝛼𝑆 (2𝑦
2
0 (

𝑡
2))] ,

𝑦1(𝑡) = −𝑆−1
[
𝑢𝛼𝑆

(
2(

𝑡𝛼
2𝛼Γ(𝛼 + 1))

2

)]
= −𝑆−1

[𝑢
𝛼𝑆 (

𝑡2𝛼
22𝛼−1(Γ(𝛼 + 1))2)]

,

𝑦1(𝑡) = −𝑆−1
[𝑢

𝛼
(

𝑢2𝛼Γ(2𝛼 + 1)
22𝛼−1(Γ(𝛼 + 1))2)]

,

𝑦1(𝑡) = −𝑆−1
[

𝑢3𝛼Γ(2𝛼 + 1)
22𝛼−1(Γ(𝛼 + 1))2 ]

,

doi:10.11131/2017/101268 Page 9



Research in Applied Mathematics

𝑦1(𝑡) = − 𝑡3𝛼Γ(2𝛼 + 1)
22𝛼−1(Γ(𝛼 + 1))2Γ(3𝛼 + 1)

,

𝑦1(𝑡) = −𝐴 𝑡3𝛼
Γ(3𝛼+1) , where 𝐴 = Γ(2𝛼+1)

22𝛼−1(Γ(𝛼+1))2 ,

𝑦1 (
𝑡
2) = −𝐴

(
𝑡
2)

3𝛼

Γ(3𝛼 + 1) = −𝐴 𝑡3𝛼
23𝛼Γ(3𝛼 + 1)

, (49)

at 𝑛 = 1 in equation (46) we have:

𝑦2(𝑡) = −𝑆−1 [𝑢𝛼𝑆 (2𝐴1)] , (50)

substituting equations (47) in (50):

𝑦2(𝑡) = −𝑆−1
[𝑢

𝛼𝑆 (2(2𝑦0 (
𝑡
2) 𝑦1 (

𝑡
2))] ,

𝑦2(𝑡) = −𝑆−1
[𝑢

𝛼𝑆 (4𝑦0 (
𝑡
2) 𝑦1 (

𝑡
2))] ,

𝑦2(𝑡) = −𝑆−1
[𝑢

𝛼𝑆 (4(
𝑡𝛼

2𝛼Γ(𝛼 + 1))(−𝐴
𝑡3𝛼

23𝛼Γ(3𝛼 + 1)))]
,

𝑦2(𝑡) = −𝑆−1
[𝑢

𝛼𝑆 (−𝐴
𝑡4𝛼

24𝛼−2Γ(3𝛼 + 1))]
,

𝑦2(𝑡) = −𝑆−1
[𝑢

𝛼
(−𝐴

𝑢4𝛼Γ(4𝛼 + 1)
24𝛼−2Γ(3𝛼 + 1))]

,

𝑦2(𝑡) = −𝑆−1
[−𝐴

𝑢5𝛼Γ(4𝛼 + 1)
24𝛼−2Γ(3𝛼 + 1)]

,

𝑦2(𝑡) = 𝐴 𝑡5𝛼Γ(4𝛼 + 1)
24𝛼−2Γ(3𝛼 + 1)Γ(5𝛼 + 1)

.

The series solution is given by:

𝑦(𝑡) = 𝑦0(𝑡) + 𝑦1(𝑡) + 𝑦2(𝑡) + ⋯

𝑦(𝑡) = 𝑡𝛼
Γ(𝛼 + 1) − 𝐴

𝑡3𝛼
Γ(3𝛼 + 1) + 𝐴

𝑡5𝛼Γ(4𝛼 + 1)
24𝛼−2Γ(3𝛼 + 1)Γ(5𝛼 + 1)

+⋯ .

In particular case𝛼 = 1then we have:

𝑦(𝑡) = 𝑡
Γ(2) −

𝑡3
Γ(4) +

𝑡5Γ(5)
22Γ(4)Γ(6)

+ ⋯ ,

𝑦(𝑡) = 𝑡 − 𝑡3
6 + 𝑡5

120 +⋯ .

The exact solution when 𝛼 = 1 is given by 𝑦(𝑡) = sin(𝑡)
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Example 4. Consider the nonlinear delay differential equation of first order

𝐷𝛼𝑦(𝑡) − 𝑦 (
𝑡
2) = 0, 0 < 𝛼 ≤ 1, 0 < 𝑡 ≤ 1, (51)

with initial condition 𝑦(0) = 1.

Apply Sumudu transform to both side of (51)

𝑆 [𝐷𝛼𝑦(𝑡)] = 𝑆 [𝑦 (
𝑡
2)] ,

Using Definition 1 and initial condition:

𝑌(𝑢) − 𝑦(0)
𝑢𝛼 = 𝑆 [𝑦(

𝑡
2)] ,

𝑌(𝑢) − 1
𝑢𝛼 = 𝑆 [𝑦(

𝑡
2)] ,

𝑌(𝑢) = 1 + 𝑢𝛼𝑆 [𝑦(
𝑡
2)] ,

𝑆 [𝑦(𝑡)] = 1 + 𝑢𝛼𝑆 [𝑦(
𝑡
2)] . (52)

Applying the inverse Sumudu transform to (52):

𝑦(𝑡) = 𝑆−1 [1] + 𝑆−1
[𝑢

𝛼𝑆 [𝑦(
𝑡
2)]] ,

𝑦0(𝑡) = 𝑆−1 [1] = 1,

𝑦0 (
𝑡
2) = 1, (53)

𝑦𝑛+1(𝑡) = 𝑆−1
[𝑢

𝛼𝑆 [𝑦𝑛 (
𝑡
2)]] , (54)

at 𝑛 = 0 in equation (54):

𝑦1(𝑡) = 𝑆−1
[𝑢

𝛼𝑆 [𝑦0 (
𝑡
2)]] ,

𝑦1(𝑡) = 𝑆−1 [𝑢𝛼𝑆 [1]] ,

𝑦1(𝑡) = 𝑆−1 [𝑢𝛼] =
𝑡𝛼

Γ(𝛼 + 1) ,

𝑦1 (
𝑡
2) =

𝑡𝛼
2𝛼Γ(𝛼 + 1) , (55)
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at 𝑛 = 1 in equation (54):

𝑦2(𝑡) = 𝑆−1
[𝑢

𝛼𝑆 [𝑦1 (
𝑡
2)]] ,

𝑦2(𝑡) = 𝑆−1
[𝑢

𝛼𝑆 [
𝑡𝛼

2𝛼Γ(𝛼 + 1)]] ,

𝑦2(𝑡) = 𝑆−1
[
𝑢2𝛼Γ(𝛼 + 1)

2𝛼 ] =
𝑡2𝛼Γ(𝛼 + 1)
2𝛼Γ(2𝛼 + 1) .

The series solution is given by:

𝑦(𝑡) = 𝑦0(𝑡) + 𝑦1(𝑡) + 𝑦2(𝑡) + ⋯ ,

𝑦(𝑡) = 1 + 𝑡𝛼
Γ(𝛼 + 1) +

𝑡2𝛼Γ(𝛼 + 1)
2𝛼Γ(2𝛼 + 1) +⋯ .

In particular case𝛼 = 1then we have:

𝑦(𝑡) = 1 + 𝑡 + 𝑡2
4 +⋯

The exact solution is given by 𝑦(𝑡) = ∑∞
𝑘=0

(
1
2)

1
2 𝑘(𝑘−1)

𝑘! 𝑡𝑘.

Conclusion

In this paper the Sumudu decomposition method has been successfully applied to solve delay
and fractional delay differential equations. The method is very powerful and efficient in finding
the exact solution.
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