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Highlights

Improved Tangential Interpolation-based Multi-input Multi-output Modal Analysis of a Full Aircraft⋆

Gabriele Dessena , Marco Civera

• A computationally improved version of the Loewner Framework (iLF) is proposed;

• Multi-input multi-output (MIMO) modal parameters extraction via the iLF is achieved;

• The iLF is more accurate and computationally efficient than previous implementations;

• The proposed method outperforms well-established methods, such as N4SID and LSCE;

• The iLF is used for the modal identification of a BAE Systems Hawk T1A aircraft from MIMO data.
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Abstract

In the field of Structural Dynamics, modal analysis is the foundation of System Identification and vibration-based

inspection. However, despite their widespread use, current state-of-the-art methods for extracting modal parameters

from multi-input multi-output (MIMO) frequency domain data are still affected by many technical limitations. Mainly,

they can be computationally cumbersome and/or negatively affected by close-in-frequency modes. The Loewner

Framework (LF) was recently proposed to alleviate these problems with the limitation of working with single-input

data only. This work proposes a computationally improved version of the LF, or iLF, to extract modal parameters more

efficiently. Also, the proposed implementation is extended in order to handle MIMO data in the frequency domain.

This new implementation is compared to state-of-the-art methods such as the frequency domain implementations

of the Least Square Complex Exponential method and the Numerical Algorithm for Subspace State Space System

Identification on numerical and experimental datasets. More specifically, a finite element model of a 3D Euler-

Bernoulli beam is used for the baseline comparison and the noise robustness verification of the proposed MIMO iLF

algorithm. Then, an experimental dataset from MIMO ground vibration tests of a trainer jet aircraft with over 91

accelerometer channels is chosen for the algorithm validation on a real-life application. Its validation is carried out

with known results from a single-input multi-output dataset of the starboard wing of the same aircraft. Excellent results

are achieved in terms of accuracy, robustness to noise, and computational performance by the proposed improved

MIMO method, both on the numerical and the experimental datasets. The MIMO iLF MATLAB implementation is

shared in the work supplementary material.

Keywords: Loewner Framework, Multi-input multi-output, Tangential interpolation, Ground vibration testing,

Modal analysis, Aeronautical structures, Vibration
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1. Introduction

Modal analysis plays an important role during the design and validation of industrial systems and products [1]. In

particular, the goal of Experimental Modal Analysis (EMA) is to extract the modal parameters – natural frequencies

(ωn), damping ratios (ζn), and mode shapes (ϕn) – of the system under analysis [2]. These are generally employed for

finite element model updating [3] or vibration-based Structural Health Monitoring (SHM) [4].

The modal parameters of the systems under scrutiny are extracted through System Identification (SI) techniques,

which are usually defined according to the type of data they are capable of processing. First, some techniques are

meant for output-only data, where the input is unknown a priori, and others for input-output data. The former is the

foundation of operational modal analysis and lies outside the scope of this work. The latter, known as EMA, represents

the context of this work. EMA methods can be further divided with respect to the number of input and output

channels, considering one or more of them. Single-input single-output (SISO) and single-input multi-output (SIMO)

modal analysis are the most widely used methods for EMA as they are easier and cheaper to implement than their

counterparts, especially multi-input multi-output (MIMO). That derives from the need for more advanced equipment

and dedicated algorithms. In most cases, SIMO testing can suffice the scope of the test, such as when only one in-

plane direction needs to be investigated [5]. However, at other times, a MIMO approach might be needed to fully

characterise some of the modes of the system, such as in [6], where an out-of-plane mode is not fully characterised in

the SIMO test.

In addition, despite SI being a mature and well-explored field [7], other-than-commercial openly available im-

plementations of MIMO methods for modal analysis are very scarce. This is another hurdle for the implementation

of more MIMO-based testing. Nevertheless, the MIMO algorithms have the same drawbacks as the existing SIMO

methods: the ill-conditioning of the fitting matrix resulting in high computational cost and time [8]. Hence, a tech-

nique based on rational interpolation along tangential directions, the Loewner Framework (LF), has been extended for

the extraction of the modal parameters from mechanical systems by the authors [9, 10, 11].

Thus, this work aims to introduce a novel computationally improved version of the LF (iLF) to extend the modal

parameters extraction capability of the LF from SIMO to full MIMO capability. The main innovative aspects are not

limited to the extension from SIMO to MIMO datasets; as it will be discussed in further detail, the newly introduced

version of the LF, iLF, is designed to be computationally more efficient than the traditional LF. This is a significant

advancement, as the original LF suffered from computational bottlenecks, especially when handling large datasets or

high-dimensional systems.

To achieve this aim, this work tackles the following:

1. in Section 2 (Methodology), the key aspects of MIMO and the conventional LF approach are recalled; the

proposed MIMO iLF implementation is then fully detailed;

2. in Section 3 (Numerical study), the proposed iLF approach is firstly validated on numerical data from a sim-

ulated structure, with a very simplified geometry (cantilever hollow beam). This allows to investigate the
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potential of the procedure in the most controlled fashion possible;

3. again in Section 3, the newly-proposed iLF is compared to the standard LF approach, introduced in previous

works [9], as well as to other state-of-the-art approaches - namely, the Least Square Complex Exponential

(LSCE) [12] and the frequency domain numerical algorithm for subspace state space system identification

(N4SID) [13]. Both accuracy and computational requirements are benchmarked for all procedures. The effects

of artificially added white Gaussian noise (WGN) are thoroughly investigated as well to assess the effectiveness

with increasingly noisy measurements;

4. The proposed methodology is then experimentally validated in Section 4. Data from controlled laboratory

Ground Vibration Tests on a full-scale advanced training jet aircraft are used, both from a single wing and

from the whole structure. As before, the results from other different classic algorithms are reported for direct

comparability;

5. The Conclusions (Section 5) ends this paper.

2. Methodology

2.1. Multi-input multi-output testing for modal parameters extraction

As already hinted before, MIMO testing is an advanced method in structural dynamics and modal analysis for

experimentally extracting modal parameters from complex systems. Unlike traditional SISO and SIMO methods,

MIMO testing involves simultaneously applying multiple inputs and measuring multiple responses. These multiple

inputs might be in different positions on the specimen or excite the structure in different directions.

Two state-of-the-art techniques for the extraction of modal parameters from MIMO data are LSCE [12] and N4SID

[13]. they are, respectively, based on the least-squares solution of the complex exponential formulation and stochastic

subspace identification. In this work, their frequency domain MATLAB implementations, functions modalfit1 and

n4sid2, are used solely for benchmarking purposes.

A few examples of MIMO tests can be found in the current scientific literature, with different applications. In

[14], an inner disc and railway wheel rim are tested using multiple impact hammers as input. Notably, [15], while

discussing the potential of digital twins for virtual testing, introduces the HYDRA test facility at the European Space

Research and Technology Centre, which includes a 6 degrees-of-freedom vibration table for full-scale satellites. In

aeronautics, [16] discusses the MIMO test, using two sting shakers as input, of a helicopter rotor spider and the

advantages of the MIMO setup compared to a SISO setup for the characterisation of the system.

The ultimate goal of MIMO in modal analysis is to obtain a complete characterisation of the system in a single

test. This is what, to be validated, the newly proposed technique has to obtain in a computationally efficient manner.

1https://uk.mathworks.com/help/signal/ref/modalfit.html
2https://uk.mathworks.com/help/ident/ref/n4sid.html
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2.2. The Loewner Framework

The conventional LF algorithm has been applied to the modelling of a multi-port electrical system [17] and to

aerodynamic model order reduction for aeroservoelastic modelling in [18]. The authors introduced LF for the identi-

fication of modal parameters from mechanical systems in [9], validated its computational performance in [10] and its

noise robustness characteristic for SHM in [11]. However, these studies were limited in their applicability to SIMO

systems only. This Section first outlines the general background of the LF and then expands on the computational

improvements brought by the iLF and its extension to MIMO systems.

Lets begin by defining the Loewner matrix L: Given a row array of pairs of complex numbers (µ j,v j), j = 1,...,q,

and a column array of pairs of complex numbers (λi,w j), i = 1,...,k, with λi, µ j distinct, the associated L, or divided-

differences matrix is:

L =


v1−w1
µ1−λ1

· · ·
v1−wk
µ1−λk

...
. . .

...

vq−w1

µq−λ1
· · ·

vq−wk

µq−λk

 ∈ C
q×k (1)

If there is a known underlying function ϕϕϕ, then wi = ϕϕϕ(λi) and v j = ϕϕϕ(µ j).

Karl Löwner established a connection between L and rational interpolation, also known as Cauchy interpolation

[19]. This allows to define interpolants based on determinants of submatrices of L. According to [20, 21], rational

interpolants can be derived from L. The approach based on the Loewner pencil is considered in this work. The

Loewner pencil consists of the L and Ls matrices, where Ls is the Shifted Loewner matrix, defined later.

In order to describe how the LF works, let us consider a linear time-invariant dynamical system Σ with m inputs

and p outputs, and k internal variables in descriptor-form representation, given by:

Σ : E
d
dt

x(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Du(t) (2)

where x(t) ∈ Rk is the internal variable, u(t) ∈ Rm is the function’s input and y(t) ∈ Rp is the output. The constant

system matrices are:

E,A ∈ Rk×k, B ∈ Rk×m C ∈ Rp×k D ∈ Rp×m (3)

a Laplace transfer function, H(s), of Σ can be defined in the form of a p×m rational matrix function, when the matrix

A − λE is non singular for a given finite value λ, such that λ ∈ C:

H(s) = C(sE − A)−1B + D (4)

Let us consider the more general case of tangential interpolation (rational interpolation along tangential directions [22]).

The right interpolation data becomes:

(λi; ri,wi), i = 1, . . . , ρ

Λ = diag[λ1, . . . , λk] ∈ Cρ×ρ

R = [r1 . . . rk] ∈ Cm×ρ

W = [w1 . . . wk] ∈ Cρ×ρ

}
(5)
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Likewise, the left interpolation data:

(µ j, l j, v j), j = 1, . . . , v

M = diag[µ1, . . . , µq] ∈ Cv×v

LT = [l1 . . . lv] ∈ Cp×v

VT = [v1 . . . vq] ∈ Cm×v

}
(6)

λi and µ j are the values at which H(s) is evaluated (the frequency bins in this application). The vectors ri and l j

are, respectively, the right and left tangential general directions, randomly selected in practice [18], and wi and v j

are the right and left tangential data. Linking wi and v j to the transfer function H, associated with realisation Σ in

Equation (2), solves the rational interpolation problem:

H(λi)ri = wi, j = 1. . . . , ρ and liH(µ j) = v j, i = 1, . . . , v (7)

such that the Loewner pencil satisfies Equation (7).

Now, let us consider a set of points Z = {z1, . . . , zN} in the complex plane, a rational function y(s), such that

yi := y(zi), i = 1, . . . ,N, and let Y = {y1, . . . , yN}. Including the left and right data partitions, the following is obtained:

Z = {λ1, . . . , λρ} ∪ {µ1, . . . , µv} and Y = {w1, . . . ,wρ} ∪ {v1, . . . , vv} (8)

with N = p + v. Thus, the matrix L becomes:

L =


v1r1−l1w1
µ1−λ1

· · ·
v1rρ−l1wρ
µ1−λρ

...
. . .

...

vvr1−lvw1
µv−λ1

· · ·
vvrρ−lvwρ
µv−λρ

 ∈ C
v×ρ (9)

Since vvrp and lvwp are scalars, the Sylvester equation is satisfied by L as follows:

LΛ −ML = LW − VR (10)

Now, Let us define the shifted Loewner matrix, Ls, as the L corresponding to sH(s):

Ls =


µ1v1r1−λ1l1w1
µ1−λ1

· · ·
µ1v1rρ−λρl1wρ
µ1−λρ

...
. . .

...

µvvvr1−λ1lvw1
µv−λ1

· · ·
vvrρ−lvwρ
µv−λρ

 ∈ C
v×ρ (11)

Likewise, the Sylvester equation is satisfied as follows:

LsΛ −MLs = LWΛ −MVR (12)

Let us focus on considering Equation (4) and matrix D. As shown in [21], D is set to 0 per convention as its

contributions are incorporated in the other matrices. So, Equation (4) becomes:
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H(s) = C(sE − A)−1B (13)

A realisation with the smallest possible dimension exists only if the system is fully controllable and observable.

Therefore, assuming the data is sampled from a system whose transfer function is characterised by Equation (13), the

generalised tangential observability, Ov, and generalised tangential controllability, Rρ, are defined as follows [23]:

Ov =


l1C(µ1E − A)−1

...

lvC(µqE − A)−1

 ∈ R
v×n (14)

Rρ =

[
(λ1E − A)−1Br1 · · · (λρE − A)−1Brρ

]
∈ Rn×ρ (15)

Now, let us incorporate Equations (14) and (15) into, respectively, Equations (9) and (11):

L j,i =
v jri − l jwi

µ j − λi
=

l jH(µi)ri − l jH(λi)ri

µ j − λi
= −l jC(µ jE − A)−1E(λiE − A)−1Bri (16)

(Ls) j,i =
µ jv j − λilwi

µ j − λi
=
µ jl jH(µi)ri − λil jH(λi)ri

µ j − λi
=

= −l jC(µ jE − A)−1A(λiE − A)−1Bri

(17)

Firstly, let us consider the case with a minimal amount of data, where it is assumed that p = v. This assumption is

based on the fact that no duplicate data is permitted in R and L. Thus, rearranging Equations (14) and (15) into (16)

and (17):

L = −OvERρ Ls = −OvARρ (18)

Then, letting the Loewner pencil be a regular pencil, in the sense of eig((L,Ls)) , (µi, λi):

E = −L, A = −Ls, B = V, C =W (19)

Accordingly, the interpolating rational function is defined as follows:

H(s) =W(Ls − sL)−1V (20)

The derivation presented applies to the minimal data scenario, a case rarely encountered in real-world datasets. Nev-

ertheless, the LF can be expanded to handle redundant data points effectively.

Firstly, let us assume:

rank[ζL − Ls] = rank[L Ls] == rank

LLs

 = k, ∀ζ ∈ {λ j} ∪ {µi} (21)
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Secondly, the short Singular Value Decomposition (SVD) of ζL − Ls is computed:

svd(ζL − Ls) = YΣlX (22)

where rank(ζL − Ls) = rank(Σl) = size(Σl) = k,Y ∈ Cv×k and X ∈ Ck×ρ. Thirdly, note that:

−AX + EXΣl = Y∗LsX∗X − Y∗LX∗XΣl = Y∗(Ls − LΣl) = Y∗VR = BR (23)

and likewise, −YA+MYE = LC such that X and Y are, respectively, the generalised controllability and observability

matrices for the system Σ with D = 0. After verifying the right and left interpolation conditions, the Loewner

realisation for redundant data is given by:

E = −Y∗LX, A = −Y∗LsX, B = Y∗V, C =WX (24)

The formulation of Equation (24) — that is, the Loewner realisation for redundant data — will be employed

throughout the remainder of this work. For a more detailed discussion of each step, the interested reader is referred to

[21, 20]. Finally, the modal parameters of the system can then be extracted by eigenanalysis of the system matrices A

and C in Equation (24).

2.2.1. Computational improvements

As briefly mentioned in the earlier Sections, this work introduces an improved version of the LF. In this iLF

implementation, the computational inefficiencies of the original implementation are amended to increase performance

and the implementation issues resolved to allow for MIMO modal identification capabilities.

In terms of inefficiencies in the original LF implementation for the extraction of mechanical systems, the following

are identified:

1. The for loops in the LF implementation originally reported in [17, 24, 25]: The most computationally

cumbersome part was the coordinate transformation to obtain matrices with real entries from the LF. This was

an iterative step in the LF original implementation, once available in [25]3. This is amended in the iLF with

a vectorised approach based on the Kronecker tensor product (kron4 in MATLAB). The code snippets of the

former and current implementations are found in Appendix A.1.

2. The way the matrices A and E are handled in the LF for modal parameters extraction in [9, 26]: In the

authors’ original contribution for modal parameters extraction with LF, a descriptor state-space model obtained

from LF was converted to a continuous state-space model with the dss5 and ss6 MATLAB functions. This was

3At the time of writing, it is no longer possible to download the original implementation from the original source, previously found at

http://aci.rice.edu/system-identification/. An implementation, modified by the first author, is available at https://dspace.lib.

cranfield.ac.uk/handle/1826/22465.
4https://uk.mathworks.com/help/control/ref/kron.html
5https://uk.mathworks.com/help/control/ref/dss.html
6https://uk.mathworks.com/help/control/ref/ss.html
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a considerable bottleneck. Now amended with simple matrices operations to obtain the continuous state-space

matrix A for the extraction of modal parameters. See Appendix A.2 for the MATLAB code snippets of the

original and improved implementation.

With respect to the capability expansion from SIMO to MIMO, the second improvement in the code allowed for

a slick transformation also of multi-input data. With the old implementation, this was a cumbersome and compu-

tationally demanding process, which limited the LF to SIMO data. The iLF implementation is openly available in

[27].

3. Numerical study

In this Section, a 3D Euler Bernoulli beam is introduced to validate the newly proposed iLF MIMO implementa-

tion. The beam is modelled as a cantilever beam discretised in 8 elements and 1.5 m long (L). The beam material is

aluminium, with a Young modulus (E) of 69 GPa and a density (ρ) of 2700 kgm-3. The beam cross-section is shown

in Figure 1b, alongside the beam discretisation (Figure 1a). As already mentioned earlier, this very simple finite ele-

ment model is intended as a controlled environment to evaluate the capabilities of the proposed MIMO iLF approach,

especially in terms of robustness to artificially-introduced measurement noise. Field test investigation on a real-life

case study will follow in the next Section.

L/8

L

x

z

y
Fy

Fz
E,A,ρ,Iz,Iy

(a)

2 mm

18 mm

20 mm

2 mm

y

z

8 mm

10 mm

(b)

Figure 1: 8-element 3D beam: Figure 1a is the schematic drawing of the discretised 8-element Euler-Bernoulli beam and Figure 1b shows the beam

rectangular box cross-section with the relative dimensions. Not in scale.

The excitation of the numerically simulated beam is applied at node # 2 (at a distance L/8 from the root) with a 1

N step input in the y and z directions. Rotations and x-axial displacement responses are ignored, resulting, therefore,

in 16 non-zero displacement time series (in m; please note that the root node is constrained at the wall) and 2 input
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force time histories (in N, corresponding to the y- and z-direction input). All the input and output signals are sampled

at 800 Hz, allowing inspections up to 400 Hz due to the Nyquist criterion. A damping ratio of 3% is arbitrarily set for

all modes. The MIMO Compliance FRFs (H(ω)) of the system take the shape of m:n:p (MATLAB notation), where

m is the number of outputs, n is the number of inputs, and p is the number of frequency bins. They are obtained as

follows, where Y(ω) and X(ω) are, respectively, the frequency domain representations of the output displacements

and input forces obtained through the Fast Fourier Transform:

Y(ω) = H(ω)X(ω) (25)

The computed FRFs are then used to identify the modal parameters through the iLF, the standard LF, and the two

benchmark methods – N4SID and LSCE. All these algorithms were implemented in MATLAB.

3.1. Modal parameters identification

The first step for assessing the suitability of iLF for the identification of modal parameters from MIMO mea-

surements is to compare its performance. This is done here in terms of both precision and computational efficiency.

Hence, the said FRFs were considered to identify the relevant modal parameters with N4SID, LSCE, LF (the standard

implementation with the extra MIMO capability), and iLF to compare it with the analytical results from the 3D beam

mass (M) and stiffness (K) matrices. The modal parameters are obtained by iterating over different orders k for the

four methods and extracting the relative modes using stabilisation diagrams between orders 32 (minimum order of

the system) and 60. The resulting stabilisation diagrams are shown in Figure 2, and the identified ωn are reported in

Table 1.

From Figure 2, it is clear that all methods, LSCE apart, can identify 16 stable modes. The relatively poor perfor-

mance of the LSCE algorithm is not unusual. In fact, in [9], LSCE was found to struggle in situations where modes

were close to each other. In the system under investigation, one can notice that modes #4-5 and 7-8 are relatively

close in frequency. On the computational side of things, it means that LSCE can only build rank-deficient matrices

for approximating the system, hence misinterpreting it, or partially identifying it.

Obtaining stable modes is not the only task required for an identification technique. Indeed, the identified modes

need to be coherent with their real-life, or in this case analytical, counterparts. Frequency-wise, this can be assessed

in terms of divergence between the identified ωn and the known target values.

As anticipated, LSCE cannot obtain the full set of modes of the system. In particular, the LSCE identified only the

last four modes ωn, with absolute errors orders of magnitude higher than the other methods (the maximum absolute

error is found for mode 16 and was over 12%). On the other hand, all other techniques showed similar results with an

error, in terms of ωn, of less than 0.05%. The same, even if not included in Table 1 for brevity, happens for ζn, with

the only exception of LSCE. For which errors over 29% are found.

In terms of ϕn, the Modal Assurance Criterion (MAC) value [28] between the modes identified and the analytical

ones is (close to) 1, exception made for the modes LSCE could not identify. Table 2 shows the diagonal terms

9
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Figure 2: 8-element 3D beam: Stabilisation diagrams for the model parameters identification via LF (Figure 2a), iLF (Figure 2b), N4SID (Fig-

ure 2c), and LSCE (Figure 2d).

(off-diagonal terms are negligible) of the MAC values between the analytical ϕn and those identified.

3.2. Computational performance

The computational performance of the methods is assessed by measuring the time to identification at every order

k ∈ [32, 60]. To achieve accurate results, each measurement is repeated ten times; hence, a mean and a standard

deviation are available for each identification. In Figure 3, the mean values are presented as solid points, and the

standard deviation is neglected as it accounts for a negligible percentage of the mean value. The time to identification

is measured on a 2019 Mac Pro base model with 64 GB of RAM running MATLAB 2021b.

As already shown in [10] for the SIMO modal parameters identification, N4SID is orders of magnitude slower

than LF and LSCE. LSCE is found to be the fastest method, but it is clear that it does not serve a purpose as it cannot

identify all modes. However, it’s important to see that the iLF is an order of magnitude faster than the traditional

implementation of LF. In addition, the conventional LF shows a slight dependency on model order, which is not the

case for the iLF. The regressed line equation verifies this in Figure 3.
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Table 1: Natural frequencies identified by MIMO iLF and the benchmark method. In parenthesis the relative error w.r.t. to the analytical result.

Natural Frequency [Hz] – (Difference w.r.t. analytical) [%]

Mode # Analytical N4SID LSCE LF iLF

1
14.277 14.284 - 14.284 14.284

(0.049) (-) (0.049) (0.049)

2
26.132 26.144 - 26.144 26.144

(0.046) (-) (0.046) (0.046)

3
43.123 43.142 - 43.142 43.142

(0.044) (-) (0.044) (0.044)

4
72.778 72.811 - 72.811 72.811

(0.045) (-) (0.045) (0.045)

5
78.929 78.964 - 78.964 78.964

(0.044) (-) (0.044) (0.044)

6
103.509 103.556 - 103.556 103.556

(0.045) (-) (0.045) (0.045)

7
133.208 133.268 - 133.268 133.268

(0.045) (-) (0.045) (0.045)

8
134.952 135.012 - 135.012 135.012

(0.044) (-) (0.044) (0.044)

9
165.432 165.506 - 165.506 165.506

(0.045) (-) (0.045) (0.045)

10
189.455 189.541 - 189.541 189.541

(0.045) (-) (0.045) (0.045)

11
191.161 191.247 - 191.247 191.247

(0.045) (-) (0.045) (0.045)

12
206.433 206.526 - 206.526 206.526

(0.045) (-) (0.045) (0.045)

13
247.006 247.117 227.811 247.117 247.117

(0.045) (-7.771) (0.045) (0.045)

14
302.794 302.930 266.604 302.930 302.930

(0.045) (-11.952) (0.045) (0.045)

15
349.887 350.044 306.939 350.044 350.044

(0.045) (-12.275) (0.045) (0.045)

16
377.839 378.009 370.251 378.009 378.009

(0.045) (-2.008) (0.045) (0.045)
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Table 2: The diagonal terms of the MAC values between the analytical ϕn and those identified.

Mode N4SID LSCE LF iLF

1 0.915 - 0.915 0.915

2 0.974 - 1 1

3 1 - 1 1

4 1 - 1 1

5 1 - 1 0.997

6 0.998 - 0.998 0.998

7 0.999 - 0.999 0.999

8 0.999 - 0.999 0.999

9 0.999 - 0.999 0.999

10 1 - 0.999 1

11 1 - 1 1

12 1 - 1 1

13 1 1 1 1

14 1 1 1 1

15 1 1 1 1

16 1 1 1 1

3.3. Investigation of noise effects

After having preliminary validated the iLF identification against the traditional LF and the benchmark methods,

the next step is to assess its robustness to noise. To achieve this, the time series are corrupted with different levels, with

respect to the standard deviation of the signal, of additive WGN. The selected levels are 0.1, 0.5, 1, 1.5 and 2% (note

that both the input and output signals are corrupted with noise). Then, the corrupted time series are used to obtain the

FRFs, which in turn are fed to iLF to obtain the modal parameters. The validation process is carried out in two steps:

(i) the minimum order k = 16 is considered, and (ii) the stable modes between orders 32 and 60 are examined.

The idea is to compare the modal parameters identified from the noisy measurements to those from the analytical

estimations. This comparison is shown in Figure 4 and 5, respectively, for the case of minimum order k and stable

modes.

From Figure 4, it is clear that the first 15 modes are identified within acceptable error margins. For example, the

maximum error in terms of ωn is less than 0.5%, less than 8.5% for ζn and the lowest MAC value of ϕn is 0.74, being

0.8 the minimum for an acceptable correlation. In addition, the first nine modes (exception made for mode #5 for the

1.5% noise level) are coherent with the analytically derived values for all noise levels. As expected, the maximum

discrepancies are found for the higher modes. This is a common trend for LF-derived techniques, and it was also
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Figure 3: 8-element 3D beam: Average time to identification for all methods considered for orders k between 32 and 60.

found in the SIMO application of LF reported in [11]. The most significant issues in modal identification precision

are found for the higher modes and the modes close in frequency.

The results of the identification of stable modes from the noised signals are shown in Figure 5. Here the results are

similar to that of the noiseless case, with minimal variations (less than 0.06%) in ωn and virtually no changes in the

identified ζn (differences are all – or close to – of 0%) and ϕn (all MAC values are 1). In conclusion, the computational

improvement of the iLF with respect to the conventional LF does not hamper its precision and robustness to noise.

In particular, it offers the same precision as industry-standard methods, like N4SID, on the numerical cases analysed.

In addition, it can identify systems that standard methods, like LSCE, struggle with - as it was for this case study.

Further, experimental dataset verification and validation are carried out in the remainder of the article.

4. The BAE Systems Hawk T1A aircraft benchmark

As of the writing of this article, the experimental data from the BAE Systems Hawk T1A aircraft has been recently

published by researchers from the Dynamics Research Group at the University of Sheffield. The full aircraft, a

Hawk T1A formerly in service with the British Royal Air Force and now decommissioned, is depicted in Figure 6.

The craft is shown at the University of Sheffield’s Structural Dynamics Laboratory for Verification and Validation

(LVV) facilities (Sheffield, UK), where it was tested. Importantly, the data used in this article are firstly described

in two separate documents: [29] and [30]. They focus on, respectively, the starboard wing and the whole Hawk

13
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Figure 4: 8-element 3D beam: Effects of input-output noise on the identification (difference w.r.t analytical results) ofωn (Figure 4a), ζn (Figure 4b),

and ϕn (Figure 4c) via the iLF at the minimum order k.

airframe structure. Both were used here for experimental validation. These two related datasets serve as a compelling

benchmark for dynamic System Identification techniques. Nevertheless, as discussed in this Section, some precautions

have been considered to ensure the full comparability of data from the two experimental campaigns.

In both cases, only the key aspects of the recorded data used for the algorithm validation will be recalled here. The

interested reader can refer to the original sources for further insights.

4.1. Wing experimental setup and data description

A total of 54 PCB Piezotronics accelerometers (nominal sensitivity: 10 mVg-1) are mounted on the lower and

upper surface of the starboard wing, as shown in Figure 7. They are arranged in a grid of three and two lines,

respectively, running parallel to the leading edge. Extra sensors are placed at the root boundary condition locations

and by the undercarriage door. One Tira TV 51140-MOSP modal shaker, directly attached to a PCB Piezotronics

208C02 force transducer with a sensitivity of 11.11 mVN-1, applies the input driving force on the wing lower surface.

Specifically, the acquisitions corresponding to burst random excitation – white noise forcing input, with amplitude

ramping at the beginning and end of the burst – with 0.4 V LMS input voltage are considered in this study. A Siemens

PLM LMS SCADAS unit was used to generate the input signal, and record the acceleration responses.

As can be inferred, this dataset only includes one input source. Therefore, it was used to obtain the SISO readings

to compare the SISO and SIMO capabilities of the iLF while getting baseline values for system modes.
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Figure 5: 8-element 3D beam: Effects of input-output noise on the identification (difference w.r.t. analytical results) of ωn (Figure 5a), ζn (Fig-

ure 5b), and ϕn (Figure 5c) via the iLF for the stable modes, such that k ∈ [32,60].

(a) (b)

Figure 6: Hawk T1A Aircraft: first (Figure 6a – retrieved from [29]) and second test setup (Figure 6b – retrieved from [30]).

More details on the wing setup and experiments can be found in [29]; the data is found in [31].

4.2. Whole airframe setup and data description

Recalling the structure of the target aircraft under testing conditions, as depicted in Figure 6, the second dataset,

available at [32], is made up of more than 200 test conditions, including different excitation signals and amplitude

levels. The same model of modal shakers and force transducers as in the other case were used.
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(a)

(b)

Figure 7: Hawk T1A Aircraft: the complete starboard wing test sensor layout for the first dataset. Figure 7a shows the wing upper surface and

Figure 7b the lower surface. Adapted from [29]).

To ensure comparability with the wing dataset, the recordings corresponding to a WGN input with the same input

voltage (0.4 V - before amplification) have been used. It should be noted, however, that MIMO tests, by definition,

result in an overall higher excitation energy. Here, unique drive signals for each of the five shakers were generated by

summing sine waves with random phases, followed by iterative adjustments to meet a defined tolerance of 4% between
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measured and target power spectral densities. Once aligned, spectral gain masks were stored and used to generate the

drive signals, allowing for variable test periods through frequency domain resampling by linear interpolation. In [30],

no information seems to be explicitly reported on the data collection system and the software used. Nevertheless,

these can be inferred to be National Instruments hardware with LabView software, since a similar control algorithm

implementation is used in [29] for the closed-cloop wing tests. In this case, five modal shakers are attached to the

starboard wing (i.e. the one already discussed above), the port wing, plus the starboard horizontal stabiliser, port

horizontal stabiliser, and vertical stabiliser. The exact locations are marked in orange in Figures 8 and 9.

A total of 85 between uni- and tri-axial accelerometers, resulting in 91 output channels, are mounted on the air-

frame, plus other sensing devices for a total of 139 recording channels, including other-than-accelerometers - namely

strain gauges, temperature, and humidity probes, not used in this research work. More details on the accelerometers

are found below [32]):

1. Both the starboard and the port wing (Figures 8a and 8b respectively) have two rows of uniaxial accelerometers

on the top side (14 sensors), parallel to the leading and trailing edges, and one on the bottom side (7 sensors),

parallel to the leading edge only, thus totalling 21 output channels per wing;

2. The two sides of the horizontal stabiliser are populated with two rows of five uniaxial sensors at both the rear

and front side, totalling 20 per side (located exclusively on the upper; see Figure 9a);

3. Similarly, the vertical stabiliser sensors are placed only on the starboard side, again with 10 sensors equally

distributed along the leading and trailing edge (Figure 9b);

4. All the accelerometers on the wings and stabilisers have the same nominal sensitivity of 10 mVg-1.

5. Three triaxial PCB Piezotronics accelerometers with higher nominal sensitivity (100 mVg-1) are placed at the

nose, cockpit, and tail of the fuselage (indicated in green in Figure Figure 10a)

6. Another set of four high-sensitivity (100 mVg-1) uniaxial PCB Piezotronics accelerometers are placed on the

fuselage midpoint on the upper, lower, port, and starboard sides (F MLU, F MLL, F MLP, and F MLS in Figure

Figure 10a);

7. Finally, two 100 mVg-1 uniaxial sensors are placed on each landing gear wheel axle and above the hydraulic

suspension, totalling six.

The 86th sensor, a triaxial accelerometer laid on the ground as a reference, is obviously not used here for SI. Apart

from this, all the other output channels are selected for MIMO System Identification, in conjunction with the five input

channels. Conversely, the fibre-Bragg grating strain gauges - described in [32] - are not considered here.

More details on the full aircraft setup and experiments can be found in [30].

4.2.1. Pre-processed FRFs

Regarding the processed data, the Frequency Response Functions (FRFs) are used. These are retrieved for the first

dataset, where they are already available in the frequency domain, and computed for the second dataset.
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(a)

(b)

Figure 8: Hawk T1A Aircraft: the sensor layout for the MIMO tests on the starboard (Figure 8a) and port wing (Figure 8b). Adapted from [30].

Please note: In the original images of the wings bottom view [30], the sensors were ordered from the wing tip to the root. However, the numbering

in the dataset metadata [32] reflects that of the modified figures presented here.

It is important to remark that for the FRFs for the SISO case (first dataset), the analytical definition was used by

the authors of the database, following (25), thus using Y(ω) i.e. the Fourier Transform of the output and X(ω) i.e.

the Fourier Transform of the input. This is also consistent with the procedure performed here in this paper for the

preliminary numerical analyses (which will be detailed later).

Conversely, to ensure more noise robustness, the H1 estimators are used in lieu of the actual FRF formulation for
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(a)

(b)

Figure 9: Hawk T1A Aircraft: the horizontal stabiliser (Figure 9a), and the vertical stabiliser (Figure 9b). Adapted from [32].

the second dataset (whole airframe). These are defined as

H1(ω) = S YX(ω)/S XX(ω)

i.e. the ratio between the cross-spectral density of the output with the input and the auto-spectral density of the input.

More specifically, in the dataset used here, the cross- and auto-spectral densities are computed via a short-time Fourier

transform (STFT) with a Hann window, a segment length of 16384 and an overlap of 8192. This was mentioned in

[30] and replicated in this work.

H1 estimators are indeed appreciated for their capability to reduce output measurement noise, which more signifi-

cantly affects the valleys of FRFs with signal leakage. However, it is well-known that, while the FRF estimators allow

for averaging over multiple acquisitions and provide more accurate estimates in absolute value, this is achieved at the

cost of losing the phase information in the auto-spectra. Nevertheless, this information is retained in the cross-spectra
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(a)

(b)

Figure 10: Hawk T1A Aircraft: the sensor layout for the MIMO tests on the fuselage and landing gears, seen from above and the port side,

Figures 10a and 10b respectively. Adapted from [32]

(see e.g. [33] Chapter 3.13).

Note that data for 10 repetitions of the same test is available for each test in both datasets. Hence, as suggested

by the authors of the datasets [34], the mean of the FRFs over each repetition is considered in all computations to

improve the signal-to-noise ratio.

4.2.2. Further considerations

Before continuing, there are two key aspects worth mentioning. The first one is that the sensor layout for the

starboard wing used in [32] is similar but not identical to the one of [31], as e.g. only two lines of sensors were used

on the upper side (one on the lower side). As it is better discussed in the Section 4, the nearest output channels were

selected to compare SISO, MISO, and MIMO tests between these two datasets.

The second aspect is that for the experiments on the whole airframe with WGN input, the excitation bandwidth was

5-256 Hz and the sampling rate was 2048 Hz. On the other hand, the first experimental campaign used a sampling

frequency of 512 Hz, but it was bandlimited between 5-256 Hz. Therefore, all analyses have been here limited to

fup = 256 Hz.

Before moving forward, it is necessary to say that LSCE will not be considered for the next study, as it did not

show to be able to cope with close-in-frequency modes well.
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4.3. Modal parameters estimation

Previous MIMO modal testing work on the aircraft does not explicitly report any results to be used as an external

benchmark [30]. Nevertheless, data is available from the SIMO modal testing of the aircraft starboard wing [29].

However, the results presented here are only for the SISO identification via RFP from the FRF for channel LTC-05

(Figure 11a), with no further numerical values included. It is clear that, for getting an idea of where (in frequency) the

modes of the full aircraft are, this approach is limited by the data considered. In addition, it should be noted that the

second to last mode (mode #22 according to [29]) is very likely a repetition of the previous mode (potentially a typo).

Nevertheless, it is possible to retrieve its actual value, as the authors shared the code used to obtain those results in

[34].

In [29], ranges for the natural frequencies of the starboard wing are supplied to be used to identify the modes via

RFP; hence, the identification is carried out in a peak-picking fashion rather than using higher-order models. Thus,

the idea is to compare this SISO result with a MISO result from the same, or close, sensor. To do this, the sensors

position graphs of the starboard wing supplied in [29] (SIMO) and [30] (MIMO) are superimposed in Figure 11a.

There, it is shown that the shaker is located in (almost) the same position in the two tests; however, the sensor row

of LTC-05 is not present in the MIMO sensor layout. Hence, another sensor, with a counterpart in the MIMO test, is

identified. In the SIMO test, this sensor is known as LLC-07, while in the MIMO test, it is identified as SW LC1.

In Figure 11b, the FRFs of these three sensors and the lines relative to the RFP identification shown in [29] are

presented. Just from a simple inspection by a trained eye, one can see that more modes possibly exist outside the

given frequency bands. The idea is to find these modes by carrying out a SIMO modal analysis for the LTC-05 and

LLC-07 channels and an MISO modal analysis on the SW LC1 channel before doing the full (91 channels) MIMO

modal analysis.

With this in mind, the idea is to do a SISO modal analysis on the frequency bands in [31] with N4SID and iLF.

The frequency bands considered are the following:

ωn ∈ [5, 9]; [12, 14]; [15, 19]; [22, 24]; [26, 30]; [30.5, 31]; [35, 37]; [40.5, 44]; [48.5, 54]; [60, 62]; [62.5, 63.5];

[63.8 70]; [86, 90]; [92, 100]; [112, 118.5]; [119.5, 122]; [122, 125]; [135, 138]; [154, 162].

The expectation is that N4SID and iLF will not perform as well as RFP in this task as they are more holistic

methods implemented for more typical scenarios with multiple outputs and inputs rather than being used in a peak-

picking fashion. Then, the SIMO and MISO analyses outlined above follow.

The identified ωn and ζn, for the different cases and sensors, are shown, respectively, in Tables 3 and 4. The

results marked with (*) are those erroneously reported in [29] and retrieved with the authors-provided [34] RFP

implementation. Please note that only frequencies 5-160 Hz are inspected in all cases for coherence with [29].

The results presented in [29] for the band-limited SISO identification via RFP of the LTC-05 sensor of the star-

board wing dataset show that 23 modes are found for the wing. Of course, these modes are representative of a local

state, and more modes are found when the full aircraft is tested. After all the SISO, SIMO, MISO, and MIMO identi-

fications, a total of 42 modes are identified in at least one of the cases. Hence, from now on, these modes are referred
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Figure 11: Hawk T1A Aircraft: Figure 11a shows the superimposition of the sensor and shaker locations of the tests in [29, 30], while Figure 11b

show the FRFs of selected channels from the data in [29, 30] superimposed to the SISO result in [29].
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Table 3: Natural frequencies identified by iLF, N4SID and RFP alongside the results in [29] for the channels specified in Figure 11a. The values

marked with (*) are those mistakenly reported in [29] and corrected with the code provided in [34].

Natural Frequency [Hz]

Case SISO SIMO MISO MIMO

Sensor(s) LTC-05 LLC-07 LTC-05 & LLC-07 SW LC1 All

Mode RFP [29] N4SID iLF RFP N4SID iLF N4SID iLF N4SID iLF iLF

1 7.09 7.10 7.11 7.11 7.10 7.11 - 7.13 - 6.97 6.98

2 13.05 13.02 13.08 13.06 13.02 13.08 - 13.13 - 15.47 15.43

3 17.10 17.10 17.10 17.10 17.10 17.10 - 17.11 - 16.30 16.32

4 - - - - - - - - - - 17.42

5 - - - - - - - 19.93 - 20.60 20.68

6 22.66 22.59 22.86 22.65 22.59 22.86 - 22.65 - - 22.16

7 - - - - - - - - - - 25.36

8 23.56 23.58 23.67 23.53 23.58 23.67 - 23.57 - 24.54 24.20

9 27.35 27.33 27.33 27.35 27.33 27.33 - 27.35 - 26.24 26.29

10 30.77 30.39 30.66 30.66 30.39 30.66 - 30.76 - - -

11 36.06 36.04 36.77 36.06 36.04 36.77 - - - - -

12 41.16 41.24 42.88 40.99 41.24 42.88 - 41.22 - 40.36 40.18

13 42.85 42.82 43.54 42.78 42.82 43.54 - 42.86 - - 43.29

14 - - - - - - - - - - 46.90

15 49.61 49.62 49.78 49.47 49.62 49.78 - 49.48 - - 50.00

16 52.07 52.37 51.87 51.67 52.37 51.87 - 51.74 - 53.22 53.38

17 60.81 61.46 61.59 61.92 61.46 61.59 - 60.72 - 59.36 -

18 63.01 62.74 62.88 62.96 62.74 62.88 - 62.61 - - -

19 65.23 65.21 65.05 65.22 65.21 65.05 - 64.97 - 63.52 -

20 67.39 68.08 66.39 67.66 68.08 66.39 - 67.91 - - 67.59

21 - - - - - - - - - 68.48 68.75

22 - - - - - - - - - 72.23 72.17

23 - - - - - - - - - 79.56 -

24 - - - - - - - - - 81.64 81.02

25 - - - - - - - - - 83.88 83.91

26 87.41 87.33 87.20 87.47 87.33 87.20 - 87.14 - 85.35 -

27 92.54 90.05 92.64 91.33 90.05 92.64 - 91.59 - 90.75 -

28 - - - - - - - - - 94.11 94.70

29 - - - - - - - - - 98.25 97.46

30 - - - - - - - 100.18 - - -

31 - - - - - - - - - - 102.15

32 - - - - - - - - - - 106.54

33 116.90 116.39 117.71 117.11 116.39 117.71 - 114.33 - 115.33 115.05

34 120.00 120.37 121.45 119.93 120.37 121.45 - 119.73 - - 120.95

35 124.60 120.72 123.73 124.91 120.72 123.73 - 124.62 - - 125.38

36 - - - - - - - - - 128.68 128.98

37 - - - - - - - - - 132.21 -

38 137.66 (*) 138.83 137.38 137.62 138.83 137.38 - 137.91 - 139.50 137.58

39 - - - - - - - 142.55 - - -

40 - - - - - - - 149.35 - 147.83 149.67

41 - - - - - - - - - - 151.89

42 157.10 156.06 156.79 157.14 156.21 157.70 - 157.07 158.77 158.38 156.92
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to with the numbering shown in Tables 3 and 4.

In terms of ωn for the SISO identifications, N4SID and iLF always match the frequencies identified by RFP in

LTC-05 and LLC-07, except for modes # 20, 27, and 35, where N4SID underestimates ωn. The band-limited SISO

approach works well when dealing with known frequency bounds, but this is never almost the case in experimental

dynamics; thus, higher-order models and means of discerning between numerically spurious modes and real modes

are needed. In the SIMO, MISO, and MIMO tests, this is tackled with stabilisation diagrams [35], where subsequent

(in terms of ascending model order k) identified ωn, ζn, and ϕn are checked for stability to verify their physical

meaningfulness. The SIMO identification obtained by iLF can identify 4 more modes (# 5, 30, 39, and 40) but lose

out on mode # 11. These are expected because as one gets a more complete distribution of data along the system,

more dominant (in terms of energy amplitude) modes can overshadow weaker modes (usually local or componential)

close in frequency. However, a more holistic approach allows to identify modes which are not as apparent in other

parts of the structure. This is a recurrent theme as more modes are identified as the test case involves more outputs

and channels.

Notably, the SIMO and MISO identification is mostly unsuccessful with N4SID, as only one stable mode is

identified in the MISO case, as confirmed in Figure 12a, and none for the SIMO case. On the other hand, iLF

(Figure 12b) can identify many new modes (8.7 % more than the SISO), in particular in the 68-84 Hz interval, as well

as most of the SISO modes. Even more, the MIMO iLF identification can detect even more modes as it considers all

91 channels located all around the aircraft. This analysis identifies a total of 33 modes, five of them being at their first

identification. To the authors’ knowledge, this is the first time the MIMO modal identification of the BAE System

Hawk T1A aircraft has been carried out. In general terms, the ωn identified by different cases are coherent and show

little deviation, showing confidence in the proposed iLF identification approach.

Regarding ζn, the results for SISO identification with N4SID and iLF are mostly wrong and inaccurate. The former

shows negative ζn (Modes #11 and 17), and the latter negligible ζn values for all modes. This is expected, as N4SID

and iLF are not meant to be used in a peak-picking fashion. Also, it should be noted that the RFP implementation in

[29, 34] shows negative damping for Mode #27 of the LLC-07 sensor as well. Nevertheless, the SISO values obtained

from RFP compare relatively well to those obtained by the SIMO and MISO identifications, validating the goodness

of those identifications even more.

Next, the computational efficiency of N4SID and iLF on the experimental SIMO and MISO data should be ex-

amined. The N4SID identification of the SIMO case took 13 h 35 min, while iLF only 13.748 s (a reduction of circa

99.97% of the elapsed time). The model order for both methods was set between 46 and 110. For the MISO identifi-

cation, with the same system and same model order range, the time to identification for N4SID was almost 21 h (20 h

57 min), while iLF obtained the results in 3.098 s (circa 99.99% reduction). The results were obtained in MATLAB

2021b running on a 14-core 2017 Apple iMac Pro with 128 GB of RAM. For reference, the same computation for

the SIMO case with iLF takes 15.034 s (9.989 s for MISO) on a consumer-grade laptop (CPU 12th Gen Intel Core

i5-1235U @ 1.30 GHz, 16 GB RAM, Windows 11 and MATLAB 2021b). Thus, the most complete identification of
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Table 4: Damping ratios identified by iLF, N4SID and RFP alongside the results in [29] for the channels specified in Figure 11a. The values marked

with (*) are those mistakenly reported in [29] and corrected with the code provided in [34].

Damping [-]

Case SISO SIMO MISO MIMO

Sensor(s) LTC-05 LLC-07 LTC-05 & LLC-07 SW LC1 All

Mode RFP [29] N4SID iLF (10-4) RFP N4SID iLF (10-4) N4SID iLF N4SID iLF iLF

1 0.0243 0.019 1.410 0.024 0.019 1.410 - 0.026 - 0.024 0.028

2 0.0155 0.005 1.197 0.014 0.005 1.197 - 0.012 - 0.006 0.008

3 0.0059 0.006 2.503 0.006 0.006 2.503 - 0.006 - 0.008 0.010

4 - - - - - - - - - - 0.015

5 - - - - - - - 0.022 - 0.008 0.012

6 0.0085 0.013 0.038 0.009 0.013 0.038 - 0.013 - - 0.012

7 0.0094 0.011 0.270 0.011 0.011 0.270 - 0.013 - 0.015 0.010

8 0.0158 0.015 0.212 0.016 0.015 0.212 - - - 0.013 -

9 - - - - - - - 0.015 - 0.013 0.016

10 0.0005 0.020 0.009 0.000 0.020 0.009 - 0.019 - - -

11 0.0001 -0.028 0.013 0.000 -0.028 0.013 - - - - -

12 0.0088 0.014 0.089 0.009 0.014 0.089 - 0.013 - 0.016 0.021

13 0.0072 0.007 0.014 0.015 0.007 0.014 - 0.007 - - 0.016

14 - - - - - - - - - - 0.017

15 0.0100 0.008 0.052 0.009 0.008 0.052 - 0.011 - - 0.031

16 0.0047 0.007 0.033 0.011 0.007 0.033 - 0.009 - 0.015 0.024

17 0.0039 -0.012 0.051 0.005 -0.012 0.051 - 0.010 - 0.012 -

18 0.0045 0.006 0.137 0.005 0.006 0.137 - 0.005 - - -

19 0.0105 0.012 0.022 0.012 0.012 0.022 - 0.014 - 0.011 -

20 0.0050 0.018 0.407 0.017 0.018 0.407 - 0.010 - - 0.006

21 - - - - - - - - - 0.013 0.013

22 - - - - - - - - - 0.014 0.019

23 - - - - - - - - - 0.011 -

24 - - - - - - - - - 0.013 0.030

25 - - - - - - - - - 0.004 0.016

26 0.0114 0.013 0.158 0.011 0.013 0.158 - 0.009 - 0.003 -

27 0.0280 0.003 0.004 -0.021 0.003 0.004 - 0.010 - 0.011 -

28 - - - - - - - - - 0.008 0.006

29 - - - - - - - - - 0.013 0.025

30 - - - - - - - 0.006 - - -

31 - - - - - - - - - - 0.021

32 - - - - - - - - - - 0.017

33 0.0131 0.040 0.006 0.013 0.040 0.006 - 0.010 - 0.017 0.015

34 0.0034 0.048 0.013 0.004 0.048 0.013 - 0.032 - - 0.015

35 0.0083 0.003 0.014 0.008 0.003 0.014 - 0.010 - - 0.013

36 - - - - - - - - - 0.005 -

37 - - - - - - - - - 0.007 -

38 0.0124 (*) 0.014 0.002 0.014 0.014 0.002 - 0.013 - 0.015 0.009

39 - - - - - - - 0.010 - - -

40 - - - - - - - 0.022 - 0.017 0.007

41 - - - - - - - - - - 0.009

42 0.0151 0.019 0.006 0.015 0.018 0.031 - 0.014 0.010 0.007 0.010
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Figure 12: Hawk T1A Aircraft: Stabilisation diagrams for the MISO modal identification via N4SID and iLF.

the system, the MIMO identification, is carried out solely with iLF due to the evident less computational efficiency of

N4SID. The MIMO iLF identification takes 15.084 s on the iMac Pro and 10.710 s on the consumer-grade laptop.
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Figure 13: Hawk T1A Aircraft: Stabilisation diagram of the MIMO test for all 91 accelerometer channels with iLF.

Figure 13 show the stabilisation diagram for the MIMO identification via iLF. This clearly shows the straight lines

made up of the 33 stable modes.

Having presented the identified ωn and ζn, the ϕn identified from the MIMO dataset need to be discussed. These

have been computed from all 91 accelerometer channels available; for conciseness, only the first six are shown in

Figure 14, and their explanation is given in Table 5.

For visualisation purposes only, the landing gear channels are not portrayed. The modal displacements have

been scaled with respect to a characteristic length defined depending on the accelerometer position. The wing modal

displacements are scaled to the aircraft semi-span (4.7 m), those relative to the fuselage to its maximum height (1.8

m), and those of the horizontal stabiliser displacements to its semi-span (2.18 m). Finally, the vertical stabiliser

displacements are scaled to its span, 2.05 m. The only known size is the semi-span the others are retrieved from an
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Figure 14: Hawk T1A Aircraft: ϕn of the first six modes.
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existing CAD model [36].

It is clear that, due to the high number of channels some artifacts are created in the modal displacement. In

particular, this is seen for ϕ4,6 (Figures 14d and 14f), where the port wing tip measurement is quite unstable. It should

be noted that some sensors are not aligned to the axis system defined in Figure 10, which means that suitable rotation

matrices had to be generated to reconcile the displacements with the reference system directions. In addition, the

signs of some displacements had to be corrected as many were likely placed facing down, with respect to the positive

direction of the reference system.

Table 5: Hawk T1A Aircraft: Description of the first six modes ϕn.

Mode Natural Frequency [Hz] Definition

1 6.98 Wing anti-symmetric (port side down) bending and torsion, horizontal sta-

biliser anti-symmetric (port side down) bending and torsion, and fuselage

bending (port direction).

2 15.43 Dominated by horizontal stabiliser anti-symmetric (port side down) bending,

with vertical stabiliser bending (port direction). Smaller contribution by wing

symmetric downwards bending,

3 16.32 Wing symmetric downwards bending and torsion, horizontal stabiliser sym-

metric upwards bending, vertical stabiliser bending (starboard direction), and

fuselage bending (starboard direction).

4 17.42 Wing symmetric upwards bending and torsion, horizontal stabiliser symmet-

ric downwards bending, vertical stabiliser bending (port direction), and fuse-

lage torsion.

5 20.68 Wing symmetric upwards bending and torsion, horizontal stabiliser symmet-

ric upwards bending, vertical stabiliser bending (starboard direction), and

fuselage torsion

6 22.16 Wing anti-symmetric (port side down) bending, horizontal stabiliser anti-

symmetric (starboard down) bending and vertical stabiliser (starboard direc-

tion) bending.

The ϕn appear more coupled than in other works, e.g. [37], due to the effect of the multi-input excitations and,

in particular, of the specific setup. In fact, as remarked by the dataset authors in [30], the same driving voltage

is provided to all shakers, which, in structural terms, means exciting less stiff structures (e.g. the stabilisers) with

the same force as stiffer parts, e.g. the main wings. This results in an energy concentration (also due to the close

proximity of the three shakers acting on the stabilisers) in a less stiff area. This is also backed up by the ϕ1−6, as

they all show a significant contribution from the stabiliser displacements. All the displacement contributions for each
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mode are detailed in Table 5. All the raw data of the identified results are available in an accessible format in an open

repository.

5. Conclusions

This work introduces the computationally improved Loewner Framework (iLF) for the extraction of modal param-

eters (natural frequencies, damping ratios, and mode shapes) from multi-input multi-output (MIMO) data. Numerical

and experimental validations have been carried out, yielding the following key findings:

• On the numerical dataset, the iLF is found to be as precise as N4SID and the standard LF for the extraction of

modal parameters from multi-input multi-output (MIMO) data;

• On the same numerical dataset, the iLF identification from MIMO data is shown to be reliably robust to mea-

surement noise, computationally less time-consuming than N4SID (2 orders of magnitude) and standard LF (an

order of magnitude), and not affected by the presence of close-in-frequency modes as severely as LSCE is;

• On the experimental dataset, the iLF successfully extracts the modal parameters of trainer jet aircraft from

MIMO data, also confirming its noise robustness and computational efficiency. Notably, to the best of the

Authors’ knowledge, this is the first instance in the literature that modal parameters are extracted from this very

recent dataset.

In summary, the iLF outperforms the said state-of-the-art methods, including its conventional counterpart, in terms

of accuracy and computational performance. Hence, the authors suggest its use for the extraction of modal parameters,

especially for MIMO test campaigns. A guided tutorial for the iLF for modal analysis from MIMO data is shared in

the Data Availability Statement, with all codes available to replicate the findings of this study.

Appendix A. MATLAB Code Snippets of the Improvements

Appendix A.1. Code Vectorisation

Original LF MATLAB implementation without vectorisation:

1 TL = eye(length(muRe));

2 TR = eye(length(laRe));

3 for (i = 1: length(muIm)/2), TL = blkdiag(TL ,1/ sqrt (2) *[1 1;-1j 1j]); end

4 for (i = 1: length(laIm)/2), TR = blkdiag(TR ,1/ sqrt (2) *[1 1j;1 -1j]); end

5 % transform and discard possible small imaginary parts (due to roundoff)

6 LL = real(TL*LL*TR); % discard possible imaginary parts

7 sLL = real(TL*sLL*TR); % in the order of machine precision

8 % the left and right subsets in the new coordinate system

9 W = real(W*TR);

10 V = real(TL*V);
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LF implementation after vectorisation:

1 numPairsMu = length(muIm) / 2;

2 numPairsLa = length(laIm) / 2;

3 TL = eye(length(muRe) + 2 * numPairsMu);

4 TR = eye(length(laRe) + 2 * numPairsLa);

5 blockTL = 1/sqrt (2) * [1 1; -1j 1j];

6 blockTR = 1/sqrt (2) * [1 1j; 1 -1j];

7 idxMu = length(muRe) + 1 : length(muRe) + 2 * numPairsMu;

8 idxLa = length(laRe) + 1 : length(laRe) + 2 * numPairsLa;

9 TL(idxMu , idxMu) = kron(eye(numPairsMu), blockTL);

10 TR(idxLa , idxLa) = kron(eye(numPairsLa), blockTR);

11 LL = real(TL * LL * TR);

12 sLL = real(TL * sLL * TR);

13 W = real(W * TR);

14 V = real(TL * V);

Appendix A.2. Code Decluttering

Original LF MATLAB implementation for the conversion from descriptor state-space to a continuous state-space

model:

1 % A, B, C, D, and E are the matrices from the LF realisation

2 sis = dss(A,B,C,D,E); %create descriptor state space model

3 sys = ss(sis ,’explicit ’); %convert to continuous state -space model

4 A=sys.A;

LF implementation after decluttering:

1 % A, B, C, D, and E are the matrices from the LF realisation

2 Am=A;Bm=B;Cm=C;Dm=D;Em=E;

3 A = pinv(Em)*Am;
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