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ABSTRACT
This paper investigates the issue on adaptive synchronization of delayed inertial Cohen–Grossberg neural networks (ICGNNs).
By adopting the method of variable transformation, the addressed model, which includes the so-called inertial term, is trans-
formed into first-order differential equations. On the basis of the well-known invariant principle of functional differential
equations, a novel and analytic scheme which ensures the adaptive synchronization between the drive-response system is pro-
posed in component form. It is worth mentioning that we only need to impose one controller to the spilt systems to realize the
adaptive synchronization, which is of less conservatism. At the end of this paper, a numerical example is provided to verify the
feasibility of the derived theoretical results. The established figures validate that the numerical simulations coincide well with
the developed theoretical results.
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1. INTRODUCTION

Neural networks(NNs) can be extensively applied in different fields,
such as pattern recognition, parallel computing, image processing
and so on. Therefore, they have been diffusely investigated in the
past decades [1–7]. In order to realize these applications, it is nec-
essary for people to study the dynamical behaviors of NNs, which
greatly motivates the qualitative analysis of different dynamical
behaviors [8–12]. In addition to stability, many other dynamical
behaviors, including periodic oscillation, bifurcation, dissipation
and synchronization, exist in real applications. Among them, the
synchronization of NNs has developed into a issue of both theoret-
ical and practical significance since synchronization is one of the
most important issues related to their dynamic behaviors [13–15].
Moreover, time delays are inevitably encountered during the hard-
ware implementation, which should be brought into the network
model. Therefore, the synchronization problems of NNs with time
delays have caused considerable attention and a great deal of works
have been published, see [16–19] and references therein.

Particularly, the Cohen–Grossberg neural network(CGNN) model
was initially established in 1983 [20]. It comprises a great deal
of famous NNs, including Hopfield NNs, bidirectional associa-
tive memory NNs and cellular NNs. Consequently, the synchro-
nization problem of CGNNs has also been proverbially studied
due to their underlying applications in information processing,
distributed computation and secure communication. For exam-
ple, in [21–23], the synchronization problems of CGNNs with
constant amplification gains and different delays were discussed.
In [24], some synchronization criteria for delayed CGNNs were
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proposed by employing a periodic intermittent controller. In [25],
Gan studied the adaptive synchronization of CGNNs with both
mixed delays and unknown parameters.

Nevertheless, the existing studies mainly focus on the NNs with
only first derivative of the states, and the effect caused by an iner-
tial term is not taken into account. The introduction of the inertial
term can be deemed as a key factor in generating chaotic behaviors,
bifurcation and some other complicated dynamics in a networked
system [26–30]. In addition, some synchronization conditions for
inertial NN with or without Markovian jumping parameters were
proposed in [31] and [32]. Based on the above discussion, it is obvi-
ous that the theoretical results for the synchronization of delayed
ICGNNs are limited, which motivates the present research.

In the light of the well-known invariant principle, an adaptive feed-
back controller is provided to achieve the synchronization goal.
Compared with previous research, the main contributions of the
work are summarized in three perspectives: (i) The introduction of
inertial termmakes this problemmore challenging, which has been
successfully resolved based on the variable transformation method.
(ii) We only need to impose one controller to the spilt systems,
which is of less conservatism. (iii) The model considered in this
paper is rather general, thus it comprises many existing results as its
special cases.

The remaining part of the paper is organized as follows. The model
description, necessary definition, lemma as well as assumptions
are given in Section 2. A novel and analytic adaptive controller is
presented in Section 3 to realize the synchronization of delayed
ICGNNs. Moreover, an illustrative example is presented to vali-
date the feasibility of the developed synchronization strategy in
Section 4. At last, the conclusion of this work is made in Section 5.
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2. MODEL DESCRIPTION AND
PRELIMINARIES

In this paper, the delayed ICGNNs model can be described by the
following differential equations:

d2ui(t)
dt2

= −𝛽i
dui(t)
dt

− 𝛼i(ui(t)) [hi(ui(t)) −
n

∑
j=1

aij fj(uj(t))

−
n

∑
j=1

bij fj(uj(t − 𝜏(t))) + Ji] ,

(1)

for i ∈ {1, 2,⋯ , n}. Inwhichui(t)denotes the state of the ith neuron
at time t and the second derivative of ui(t) represents the inertial
term, aij and bij stand for the connection strength and the time-
varying delay connection strength, respectively. fj(⋅) represents the
the activation function, 𝛽i > 0 is a constant,𝛼i(⋅) is an amplification
function, hi(⋅) denotes an appropriate behaved function, Ji stands
for the external input and 𝜏(t) represents the time-varying delay.

Considering (1) as the drive system, the corresponding response
system is devised as

d2xi(t)
dt2

= −𝛽i
dxi(t)
dt

− 𝛼i(xi(t)) [hi(xi(t)) −
n

∑
j=1

aij fj(xj(t))

−
n

∑
j=1

bij fj(xj(t − 𝜏(t))) + Ji] + Ui(t),

(2)

where Ui(t) is an appropriate controller that will be designed in the
sequel.

The variable transformation is introduced as

vi(t) =
dui(t)
dt

+ 𝛿iui(t), i = 1, 2,⋯ , n,

yi(t) =
dxi(t)
dt

+ 𝛿ixi(t), i = 1, 2,⋯ , n,

where 𝛿i > 0 is a constant.
Then, the above two systems are equivalent to

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

dui(t)
dt

= −𝛿iui(t) + vi(t),
dvi(t)
dt

= −𝛿i(𝛿i − 𝛽i)ui(t) + (𝛿i − 𝛽i)vi(t) − 𝛼i(ui(t))

×[hi(ui(t)) −
n
∑
j=1

aij fj(uj(t)) −
n
∑
j=1

bij

× fj(uj(t − 𝜏(t))) + Ji]

(3)

and

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

dxi(t)
dt

= −𝛿ixi(t) + yi(t),
dyi(t)
dt

= −𝛿i(𝛿i − 𝛽i)xi(t) + (𝛿i − 𝛽i)yi(t) − 𝛼i(xi(t))

× [hi(xi(t)) −
n
∑
j=1

aij fj(xj(t)) −
n
∑
j=1

bij

× fj(xj(t − 𝜏(t))) + Ji] + Ui(t).

(4)

Denote the error signals as e1i(t) = xi(t)− ui(t) and e2i(t) = yi(t)−
vi(t). Then, the error dynamics between the uncontrolled system (3)
and the controlled system (4) are derived as follows:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

de1i(t)
dt

= − 𝛿ie1i(t) + e2i(t),
de2i(t)
dt

= − 𝛿i(𝛿i − 𝛽i)e1i(t) + (𝛿i − 𝛽i)e2i(t) − (𝛼i(xi(t))
× hi(xi(t)) − 𝛼i(ui(t))hi(ui(t))) + 𝛼i(xi(t))
×

n
∑
j=1

aij( fj(xj(t)) − fj(uj(t))) + 𝛼i(xi(t))

×
n
∑
j=1

bij( fj(xj(t − 𝜏(t))) − fj(uj(t − 𝜏(t))))

+ (𝛼i(xi(t)) − 𝛼i(ui(t)))
n
∑
j=1

aij fj(uj(t))

+ (𝛼i(xi(t)) − 𝛼i(ui(t)))
n
∑
j=1

bij fj(uj(t − 𝜏(t)))

− (𝛼i(xi(t)) − 𝛼i(ui(t)))Ji + Ui(t).

(5)

To proceed further, the following hypotheses are utilized:

(A1): There exist positive constants 𝛼i andMi such that

0 ≤ 𝛼i(ui) ≤ 𝛼i, |𝛼i(ui) − 𝛼i(vi)| ≤ Mi|ui − vi|,

for all ui, vi ∈ ℝ, i ∈ {1, 2,⋯ , n}.
(A2): There exist positive constants li and fi such that the activation
functions fi(⋅) satisfy

| fi(ui)| ≤ fi, | fi(ui) − fi(vi)| ≤ li|ui − vi|,

where ui, vi ∈ ℝ, i ∈ {1, 2,⋯ , n}.
(A3): There exist positive constants 𝛾i such that

|𝛼i(ui)hi(ui) − 𝛼i(vi)hi(vi)| ≤ 𝛾i|ui − vi|,

where ui, vi ∈ ℝ, i ∈ {1, 2,⋯ , n}.
(A4): The time-varying transmission delay 𝜏(t) is supposed to
satisfy

0 < 𝜏(t) ≤ 𝜏, ̇𝜏(t) ≤ p < 1.

Before moving on, we present the following definition and lemma:

Definition 1. The drive system (1) and the response system (2) is
said to achieve synchronization, if the trivial solution of the error
system (5) is asymptotically stable, i.e.,

lim
t→∞

e1i(t) = lim
t→∞

(xi(t) − ui(t)) = 0. i = 1, 2,⋯ , n.

Remark 1. Since the drive-response systems (1) and (2) are equiv-
alent to (3) and (4), respectively, the synchronization problem
between (1) and (2) can be regarded as the synchronization problem
between (3) and (4). In addition, according to the variable transfor-
mation, one can see that e2i(t) just plays the role of adjoint variable.
Thus we only need to consider the dynamics of e1i(t) when investi-
gating the synchronization problem between systems (1) and (2).

Lemma 2. [25] For any vectors u, v ∈ ℝn, and any positive definite
matrix Ξ ∈ ℝn×n, the following matrix inequality always holds:

2uTv ≤ uTΞu + vTΞ−1v.
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3. MAIN RESULTS

In this part, a new criterion is presented to achieve the adaptive
synchronization of ICGNNs with time-varying delay. Besides, the
corresponding corollaries of inertial NNs and delayed CGNNs are
proposed.

Theorem 1. If the hypotheses (A1) − (A4) hold, then the drive-
response delayed ICGNNs (1) and (2) are synchronous with the adap-
tive feedback controller as

Ui(t) = 𝜉ie2i(t) + 𝜂i|e1i(t)|sign(e2i(t)), (6)

the feedback strengths 𝜉i and 𝜂i (i = 1, 2,⋯ , n) are adapted in the
light of the following update laws, respectively:

̇𝜉i = −𝜀ie22i(t), ̇𝜂i = −𝜃i|e1i(t)||e2i(t)|,

where 𝜀i and 𝜃i (i = 1, 2,⋯ , n) are any positive scalars.

Proof. Constructing the following Lyapunov functional:

V(t) = 1
2

n
∑
i=1

[e21i(t) + e22i(t) +
1

1 − p

n
∑
j=1

𝛼ilj|bij|

× ∫
t

t−𝜏(t)
e21j(s)ds +

1
𝜀i
(𝜉i + 𝜆1i)2 +

1
𝜃i
(𝜂i + 𝜆2i)2] ,

(7)

where 𝜆1i and 𝜆2i are scalars to be confirmed.

Calculating V̇(t) along the trajectory of error system (5) results in

V̇(t) =
n

∑
i=1

[e1i(t) ̇e1i(t) + e2i(t) ̇e2i(t) +
1

2(1 − p)

n

∑
j=1

𝛼ilj

× |bij|e21j(t) −
1 − ̇𝜏(t)
2(1 − p)

n

∑
j=1

𝛼ilj|bij|e21j(t − 𝜏(t))

+ 1
𝜀i
(𝜉i + 𝜆1i) ̇𝜉i +

1
𝜃i
(𝜂i + 𝜆2i) ̇𝜂i]

=
n

∑
i=1

[e1i(t) (−𝛿ie1i(t) + e2i(t))

+e2i(t)

(
− 𝛿i(𝛿i − 𝛽i)e1i(t) + (𝛿i − 𝛽i)e2i(t)

− (𝛼i(xi(t))hi(xi(t)) − 𝛼i(ui(t))hi(ui(t)))

+𝛼i(xi(t))
n

∑
j=1

aij( fj(xj(t)) − fj(uj(t))) + 𝛼i(xi(t))

×
n

∑
j=1

bij( fj(xj(t − 𝜏(t))) − fj(uj(t − 𝜏(t))))

+ (𝛼i(xi(t)) − 𝛼i(ui(t)))
n

∑
j=1

aij fj(uj(t))

+ (𝛼i(xi(t)) − 𝛼i(ui(t)))
n

∑
j=1

bij fj(uj(t − 𝜏(t)))

−(𝛼i(xi(t)) − 𝛼i(ui(t)))Ji + Ui(t)

)

+ 1
2(1 − p)

n

∑
j=1

𝛼ilj|bij|e21j(t) −
1 − ̇𝜏(t)
2(1 − p)

n

∑
j=1

𝛼ilj

× |bij|e21j(t − 𝜏(t)) − (𝜉i + 𝜆1i)e22i(t) −(𝜂i + 𝜆2i)|e1i(t)||e2i(t)|] .

(8)

Considering the assumptions (A1)−(A4) and the adaptive feedback
controller (6), V̇(t) undergoes the following estimation:

V̇(t) ≤
n

∑
i=1

[ − 𝛿ie21i(t) + e1i(t)e2i(t) − 𝛿i(𝛿i − 𝛽i)e1i(t)e2i(t)

+ (𝛿i − 𝛽i)e22i(t) + 𝛾i|e1i(t)||e2i(t)| + |e2i(t)|𝛼i

×
n

∑
j=1

|aij|lj|e1j(t)| + |e2i(t)|𝛼i

n

∑
j=1

|bij|lj|e1j(t − 𝜏(t))|

+Mi|e2i(t)||e1i(t)|
n

∑
j=1

|aij| fj +Mi|e2i(t)||e1i(t)|

×
n

∑
j=1

|bij| fj +Mi|e2i(t)||e1i(t)||Ji| +
1

2(1 − p)

×
n

∑
j=1

𝛼ilj|bij|e21j(t) −
1
2

n

∑
j=1

𝛼ilj|bij|e21j(t − 𝜏(t))

−𝜆1ie22i(t) − 𝜆2i|e1i(t)||e2i(t)|] .

(9)

According to Lemma 2, one can derive thatt

n

∑
i=1

|e2i(t)|𝛼i

n

∑
j=1

|aij|lj|e1j(t)|

≤ 1
2

n

∑
i=1

n

∑
j=1
𝛼i|aij|lj(e22i(t) + e21j(t)),

n

∑
i=1

|e2i(t)|𝛼i

n

∑
j=1

|aij|lj|e1j(t − 𝜏(t))|

≤ 1
2

n

∑
i=1

n

∑
j=1
𝛼i|aij|lj(e22i(t) + e21j(t − 𝜏(t))).

(10)

Substituting (10) into the right side of (9), one can further obtain
that

V̇(t) ≤
n
∑
i=1

[ − 𝛿ie21i(t) + (𝛿i − 𝛽i)e22i(t) + |1 − 𝛿2i + 𝛿i𝛽i|

× |e1i(t)||e2i(t)| + 𝛾i|e1i(t)||e2i(t)| +
1
2𝛼i

×
n
∑
j=1

(
|aij| + |bij|

)
lje22i(t) +

1
2

n
∑
j=1

𝛼j|aji|lie21i(t)

+ Mi

(
n
∑
j=1

(
|aij| + |bij|

)
fj + |Ji|

)
|e1i(t)||e2i(t)|

+ 1
2(1 − p)

n
∑
j=1

𝛼j|bji|lie21i(t) − 𝜆1ie22i(t) − 𝜆2i × |e1i(t)||e2i(t)|]

=
n
∑
i=1

[
(
1
2

n

∑
j=1

𝛼j|aji|li +
1

2(1 − p)

n

∑
j=1

𝛼j|bji|li − 𝛿i

)
× e21i(t) +

(
1
2𝛼i

n

∑
j=1

(
|aij| + |bij|

)
lj + 𝛿i − 𝛽i − 𝜆1i

)
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× e22i(t) +
(
|1 − 𝛿2i + 𝛿i𝛽i| + 𝛾i +Mi

(
n
∑
j=1

(|aij| + |bij|)

fj + |Ji|

)
− 𝜆2i

)
|e1i(t)||e2i(t)|] .

(11)

Letting

𝛿i =
1
2

n

∑
j=1

𝛼j|aji|li +
1

2(1 − p)

n

∑
j=1

𝛼j|bji|li + 1,

𝜆1i =
1
2𝛼i

n

∑
j=1

(|aij| + |bij|)lj + 𝛿i − 𝛽i,

𝜆2i = |1 − 𝛿 2
i + 𝛿i𝛽i| + 𝛾i +Mi

(
n

∑
j=1

(|aij| + |bij|) fj + |Ji|

)
.

(12)

In light of (11) and (12), one has

V̇(t) ≤
n

∑
i=1

(−e21i(t)) = −eT1(t)e1(t), (13)

where e1(t) = (e11(t), e12(t),⋯ , e1n(t))T. It is apparent that V̇(t) =
0 if and only if e1(t) = 0. Based on Definition 1 and the famous
invariant principle, nomatter what the initial value is, the trajectory
of e1(t) would converge asymptotically to the largest invariant set
E = {e1(t) = 0} contained in lim

t→∞
V̇(t) = 0, which implies the

adaptive synchronization can be reached.

Remark 2. The synchronization issue of delayed ICGNNs are
successfully resolved in Theorem 1. By means of variable transfor-
mationmethod, the original inertial system is split into two subsys-
tems. By imposing an adaptive controller to subsystem2, Theorem1
has presented a componentwise scheme to assure the adaptive syn-
chronization.

If we take 𝛼i(ui(t)) = 1 and hi(ui(t)) = ciui(t), then the model (1)
degenerates to

d2ui(t)
dt2

= −𝛽i
dui(t)
dt

− ciui(t) +
n

∑
j=1

aij fj(uj(t)) +
n

∑
j=1

bij

× fj(uj(t − 𝜏(t))) − Ji, i = 1, 2,⋯ , n.

(14)

As a consequence, the corresponding response system is

d2xi(t)
dt2

= −𝛽i
dxi(t)
dt

− cixi(t) +
n

∑
j=1

aij fj(xj(t)) +
n

∑
j=1

bij

× fj(xj(t − 𝜏(t))) − Ji + Ui(t).

(15)

Following the aforementioned variable transformation, the above
two systems can be rewritten as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dui(t)
dt

= −𝛿iui(t) + vi(t),

dvi(t)
dt

= −𝛿i(𝛿i − 𝛽i)ui(t) + (𝛿i − 𝛽i)vi(t) − ciui(t)

+
n

∑
j=1

aij fj(uj(t)) +
n

∑
j=1

bij fj(uj(t − 𝜏(t))) − Ji,

(16)

and

⎧
⎪
⎪
⎨
⎪
⎪
⎩

dxi(t)
dt

= −𝛿ixi(t) + yi(t),

dyi(t)
dt

= −𝛿i(𝛿i − 𝛽i)xi(t) + (𝛿i − 𝛽i)yi(t) − cixi(t)

+
n

∑
j=1

aij fj(xj(t)) +
n

∑
j=1

bij fj(xj(t − 𝜏(t))) − Ji + Ui(t).

(17)

Following the same line as in Theorem 1, the following corollary
can be readily obtained:

Corollary 1. Suppose that the assumptions (A2) and (A4) hold, the
drive-response delayed inertial NNs (14) and (15) are synchronous
with the adaptive controller as

Ui(t) = 𝜉ie2i(t) + 𝜂i|e1i(t)|sign(e2i(t)), (18)

the feedback strengths 𝜉i and 𝜂i (i = 1, 2,⋯ , n) are adapted in the
light of the following update laws, respectively:

̇𝜉i = −𝜀ie22i(t), ̇𝜂i = −𝜃i|e1i(t)||e2i(t)|,

where 𝜀i and 𝜃i (i = 1, 2,⋯ , n) are arbitrary positive scalars.
Letting

𝛿i =
1
2

n

∑
j=1

|aji|li +
1

2(1 − p)

n

∑
j=1

|bji|li + 1,

𝜆1i =
1
2

n

∑
j=1

(|aij| + |bij|)lj + 𝛿i − 𝛽i,

𝜆2i = |1 − 𝛿 2
i + 𝛿i𝛽i − ci|.

(19)

Remark 3. In [31], the authors discussed the synchronization prob-
lem of delayed inertial NNs based on the feedback controller. Com-
paredwith themodel in that paper, Corollary 1 does not impose two
controllers to the split drive system, which is of less conservatism.

When
d2ui(t)
dt2

= 0, 𝛽i = 1, the system (1) is further degenerated to

dui(t)
dt

= −𝛼i(ui(t)) [hi(ui(t)) −
n

∑
j=1

aij fj(uj(t)) −
n

∑
j=1

bij

× fj(uj(t − 𝜏(t))) + Ji] , i = 1, 2,⋯ , n.

(20)

For the drive system (20), the corresponding response system can
be designed as

dxi(t)
dt

= −𝛼i(xi(t)) [hi(xi(t)) −
n

∑
j=1

aij fj(xj(t)) −
n

∑
j=1

bij

× fj(xj(t − 𝜏(t))) + Ji × ] + Ui(t).

(21)

Analogously, we denote the error signal as ei(t) = xi(t) − ui(t).
By constructing a slightly different Lypunov functional V(t) = 1

2
∑n

i=1 [e
2
i (t) +

1
1−p

∑n
j=1 𝛼ilj|bij| ∫ tt−𝜏(t) e2j (s)ds + 1

𝜇i
(𝛿i + 𝜆i)2] and
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following the similar way as in Theorem 1, one can easily derive the
adaptive synchronization criterion for systems (20) and (21), which
is described in the following corollary without detailed proof.

Corollary 2. If the hypotheses (A1) − (A4) are satisfied, then the
drive-response delayed CGNNs (20) and (21) are synchronous with
the controller devised as

Ui(t) = 𝛿iei(t), (22)

the parameter 𝛿i (i = 1, 2,⋯ , n) is adapted in light of the following
update law:

̇𝛿i = −𝜇ie2i (t),

with 𝜇i (i = 1, 2,⋯ , n) are any positive scalars.
Letting

𝜆i =
1
2

n

∑
j=1

(
𝛼i|aij|lj + 𝛼i|bij|lj + 𝛼j|aji|li

)
+Mi

×
(

n

∑
j=1

(|aij + bij|) fj + |Ji|

)
+ 1
2(1 − p)

n

∑
j=1

𝛼j|bji|li + 𝛾i + 1.

(23)

Remark 4. In [16] and [21], the authors studied the synchroniza-
tion of CGNNs with constant amplification gains, which could be
deemed as a special case of Corollary 2. From the above discussion,
it is obvious that the model considered in this paper is quite general
and our results effectually improve several known ones.

4. A NUMERICAL EXAMPLE

Consider the following two-dimensional ICGNNs with time-
varying delay:

d2ui(t)
dt2

= −𝛽i
dui(t)
dt

− 𝛼i(ui(t)) [hi(ui(t)) −
2
∑
j=1

aij

× fj(uj(t)) −
2
∑
j=1

bij fj(uj(t − 𝜏(t))) + Ji] ,

(24)

where i = 1, 2. The parameters of system (23) are set as 𝛽1 = 𝛽2 =
1, a11 = −0.6, a12 = 0.3, a21 = 0.4, a22 = −0.1, b11 = 0.1, b12 =
−0.2, b21 = 0.2, b22 = −0.05. 𝜏(t) = 0.5 + 0.5 sin t, J1 = J2 = 0.2.
In addition, 𝛼1(u1) = 2 − 1

1+u21
, 𝛼2(u2) = 2 + 1

1+u22
, hi(ui) = ui,

fi(ui) = tanh(ui) for i = 1, 2.
The corresponding response system is presented as

d2xi(t)
dt2

= −𝛽i
dxi(t)
dt

− 𝛼i(xi(t)) [hi(xi(t)) −
2
∑
j=1

aij

× fj(xj(t)) −
2
∑
j=1

bij fj(xj(t − 𝜏(t))) + Ji] + Ui(t).

(25)

By adopting the variable transformation, the above two systems can
be rewritten as

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

dui(t)
dt

= −𝛿iui(t) + vi(t),

dvi(t)
dt

= −𝛿i(𝛿i − 𝛽i)ui(t) + (𝛿i − 𝛽i)vi(t) − 𝛼i(ui(t))

×[hi(ui(t)) −
2
∑
j=1

aij fj(uj(t)) −
2
∑
j=1

bij

× fj(uj(t − 𝜏(t))) + Ji]

(26)

and

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

dxi(t)
dt

= −𝛿ixi(t) + yi(t),

dyi(t)
dt

= −𝛿i(𝛿i − 𝛽i)xi(t) + (𝛿i − 𝛽i)yi(t) − 𝛼i(xi(t))

×[hi(xi(t)) −
2
∑
j=1

aij fj(xj(t)) −
2
∑
j=1

bij

× fj(xj(t − 𝜏(t))) + Ji] + Ui(t).

(27)

It is obvious that 1 ≤ 𝛼1(u1) ≤ 2, 2 ≤ 𝛼2(u2) ≤ 3, which implies
𝛼1 = 2, 𝛼2 = 3. For any u, v ∈ ℝ, one has

|𝛼i(u) − 𝛼i(v)| = | 1
1 + u2

− 1
1 + v2

|

≤
|u| + |v|

(1 + u2)(1 + v2)
|u − v| ≤ |u − v|,

for i = 1, 2. Hence we takeM1 = M2 = 1.
Moreover, for any u, v ∈ ℝ, we also have

|𝛼i(u)hi(u) − 𝛼i(v)hi(v)| ≤ 2|u − v| + | u
1 + u2

− v
1 + v2

|

≤ 3|u − v|,

for i = 1, 2. Thus we choose 𝛾1 = 𝛾2 = 3.
Since fi(ui) = tanh(ui), 𝜏(t) = 0.5 + 0.5 sin t, one can set fi = li =
1(i = 1, 2) and p = 0.5.
Then the assumptions (A1) − (A4) are all satisfied. According to
(12), after a simple calculation, we take 𝛿1 = 3, 𝛿2 = 2, 𝜆11 = 3.2,
𝜆12 = 2.125, 𝜆21 = 9.4, 𝜆22 = 4.95. According to Theorem 1,
the drive-response systems (24) and (25) can achieve synchroniza-
tion. Figure 1 depicts the state trajectories of systems (24) and (25).
Figure 2 further depicts the synchronization errors e1i(t)(i = 1, 2)
between the uncontrolled system and the controlled system. The
dynamic behaviors of control parameters 𝜉i and 𝜂i (i = 1, 2) are
illustrated in Figure 3. It is obvious that the numerical simulations
coincide well with the developed theoretical results.

5. CONCLUSTION

Generally, the synchronization problem of delayed ICGNNs has
been addressed in this work. The introduction of inertial term
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Figure 1 State trajectories of drive-response systems (24) and (25).

Figure 2 Dynamic behaviors of error signal between drive system
(24) and response system (25).

Figure 3 Dynamic behaviors of parameters 𝜉i and 𝜂i (i = 1, 2) in the
adaptive controller (6).

makes this problemmore complicated and challenging. By employ-
ing themethod of variable transformation, our synchronization cri-
terion is presented in component form, which can be easily verified.
It is also worth pointing out that our results comprise some conclu-
sion appeared in the previous literature, as well as reduce restriction
on the controller. In the end, a convictive example is proposed to
demonstrate the feasibility of the adaptive strategy.
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