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Abstract.— A large class of phylogenetic networks can be obtained from trees by the addition
of horizontal edges between the tree edges. These networks are called tree based networks.
Reticulation-visible networks and child-sibling networks are all tree based. In this work, we
present a simply necessary and sufficient condition for tree-based networks and prove that
there is a universal tree based network N for each set of species such that every phylogenetic
tree on the same species is a base of N . The existence of universal tree based network implies
that for any given set of phylogenetic trees (resp. clusters) on the same species there exists
a tree base network that display all of them.

Keywords: Phylogenetic tree, phylogenetic network, tree base, reticulation visibility,, hor-
izontal gene transfer

Reticulation process refers to the transfer of genes between organisms in a way other
than reproduction. One of the major reticulation processes is horizontal gene transfer. It has
been considered as a highly significant form of genetic transfer among single-cell organisms
(Doolittle, 1999; Doolittle and Bapteste, 2007; Smets and Barkay, 2006; Treangen and Rocha,
2011). Other reticulation processes include introgression, recombination and hybridization
(Dagan and Martin, 2006; Fontaine et al., 2015; McBreen and Lockhart, 2006).

A set of gene trees are usually reconciled into a phylogenetic network to model retic-
ulation processes (Doolittle and Bapteste, 2007; Huson, Rupp, and Scornavacca, 2011). A
phylogenetic network is a rooted acyclic digraph in which there is a special node of out-degree
2 and in-degree 0 (called the root) such that all the edges are directed away from it and the
set of in-degree 0 nodes correspond one-to-one the collection of present-day taxa under study.
A network is binary if every node other than the root and leaves is of degree three. Clearly,
a phylogenetic tree is a binary phylogenetic network without reticulation nodes.

Horizontal gene transfers are naturally modeled and visualized by using a tree-based
phylogenetic network, where the underlying base tree represents the evolution of the species
from which genes are sampled and branches are added between tree branches to represent
horizontal gene transfers (Smets and Barkay, 2006; Nakhleh, 2013). Surprisingly, phyloge-
netic networks that are used for modeling other reticulation processes may also have the same
topological structure, obtained from a tree by the addition of branches between tree branches,
even if not every binary phylogenetic network shares this property (van Iersel, 2013). Re-
cently, Francis and Steel (2015) initiated the study of tree-based networks. In their paper,
sufficient conditions for tree-based networks are presented. They further showed that this
class of networks include reticulation visible networks and tree-sibling networks.

In the present work, we answer two problems posed by Francis and Steel (2015).
Precisely, we present a simple necessary and sufficient condition for tree-based networks. We
also construct a universal network on X that has every tree on X as its base for any X of
an arbitrary size.



Tree-based Networks

Basic Definitions

A digraph D consists of a set of vertexes, V (D), and a collection of directed edges, E(D),
that each connects an ordered pair of vertexes. We call (u, v) ∈ E(D) an outgoing edge of
u and an incoming edge of v. For each x ∈ V (D), the number of the incoming edges of x
is called its indegree; the number of the outgoing edges of x is call its outdegree; the sum of
the indegree and outdegree of x is called its degree. The indegree, outdegree, and degree of
x are writeen di(x), do(x) and d(x), respectively.

A path from x to y in D is made up of two or more “successive” vertexes x =
u1, u2, · · · , uk = y, where (ui, ui+1) ∈ E(D) for 1 ≤ i ≤ k − 1 and k ≥ 2. A cycle is a path
from a node to itself. D is acyclic if it does not contain any cycle.

A binary phylogenetic network over a set X of species is an acyclic digraph with the
following properties:

• There exists a unique vertex ρ such that di(ρ) = 0. It is the root of the network. The
root is of outdegree 2.

• There are exactly |X| nodes ` such that di(`) = 1 and do(`) = 0, corresponding one-
to-one with the species. These nodes are called the leaves of the network.

• All the vertexes that are neither a leaf nor the root are of degree three. They are called
internal nodes.

An internal node x in a binary phylogenetic network is called a tree (or speciation)
node if di(x) = 1 and do(x) = 2; it is called a reticulation node if di(x) = 2 and do(x) = 1.
Since the root is the only vertex having indegree 0 in a phylogenetic network, there is a path
from the root to every other vertex. For two vertexes x and y, if there is a path from y to
x, y is said to be an ancestor of x and x is said to be a descendant of y.

A binary phylogenetic networks is shown in Figure 1, where we draw an open branch
entering the root, representing the least common ancestor of all the species. In rest of the
paper, for a binary phylogenetic network N , we shall use the following notation:

• ρN : The root of N ;

• V(N): The set of nodes in N ;

• T (N): The set of tree nodes in N ;

• R(N): The set of reticulation nodes in N ;

• E(N): The set of (directed) edges in N ;

• L(N): The set of labelled leaves in N ;

• c(u): The unique child of u if u ∈ R(N), or the set of the children of u if u ∈ T (N);
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Figure 1: A tree-based phylogenetic network (left) and a tree base of it (right). The sub-
division of the base tree (middle) is a subtree of the network that can be obtained by the
removal of the edges e1 and e2. Reticulation nodes in the network are represented by shaded
circles,

• p(u): The unique parent of u if u ∈ T (N), or the set of the parents of u if u ∈ R(N);

Tree-based networks

Let N be a network over a set of species, X. For a subset E ⊆ E(N), N −E denotes
the subnetwork of N obtained after the removal of the edges in E. If E contains exactly an
incoming edge for each reticulation vertex, then every non-root node in N −E is of indegree
1 and hence is a tree. However, it may contain new leaves. N is tree-based if there exists
E ⊆ E(N) such that N − E is a subtree having the same leaves as N .

The network in Figure 1 is tree-based. It has two reticulation vertexes. The edge e1
enters the top reticulation vertex, whereas e2 is an edge entering the other at the bottom.
The removal of these two edges results in a subtree with the same leaves as the network. On
the other hand, the network in Figure 2A is not tree-based. The reason is that no matter
which of the incoming edges (r1, r4) and (r2, r4) is removed for r4, the tail of the removed
edge becomes a new leaf in the resulting subtree.

Tree-based networks compose of a large class of interesting networks. A vertex in a
phylogenetic network is called visible (or stable) if there exists a leaf such that every path
from the network root to the leaf passes through the vertex. A network is reticulation visible
if every reticulation vertex is visible. Reticulation visible networks are tree-based (Francis
and Steel, 2015; Gambette et al., 2015).

A phylogenetic network is tree sibling if every reticulation vertex has a tree vertex
sibling. Tree sibling networks are also tree based (Francis and Steel, 2015).



Main Results

A necessary and sufficient condition for tree-based networks

In a binary phylogenetic network, a reticulation vertex is said to be of:

• type-0 if if its parents are both a reticulation vertex;

• type-1 if a parent is a reticulation vertex and the other is a tree vertex;

• type-2 if its parents are both a tree vertex.

In the network drawn in Fig 2A., the vertexes r1, r2 and r3 are of type-2, r5 is of type-1,
and r4 is of type-0. A tree-based network must not contain any type-0 reticulation vertexes
(Francis and Steel, 2015).

Let N be a binary phylogenetic network without type-2 vertexes. Setting R(N) =
{r1, r2, ..., rs}, we define an undirected bipartite graph B(N) = (X ∪ Y,E) as follows:

X = {x1, x2, . . . , xs | xi represents ri for each i},
Y = {y1, y2, . . . , yt | yi represents a parent in T (N) of a vertex in R(N) },

and

E = {(yj, xi) | the vertex represented by yj is a parent of the vertex by xi in N .}.

Remark that B(N) is essentially a bipartite subgraph of N . For example, Figure 2B shows
the bipartite network defined for the network in Figure 2A, in which x4 is not connected
with any other vertex, as the parents of r4 are both not a tree vertex.

Using the technique of Gambette et al. (2015), we are able to present a simple
necessary and sufficient condition for binary tree-based phylogenetic networks.

Lemma 1 Let N be a network without type-0 reticulation vertexes. Then N is tree-based if
and only if for every two type-1 reticulation vertexes, their correspondences are not connected
in BN .

Proof. First, we have the following two facts:
(i) Let e = (x, y) ∈ E(N). If x is a reticulation vertex, then x has out-degree 0 and

hence becomes a leaf in N − {e}.
(ii) Let e1 = (x1, y1) ∈ E(N) and e2 = (x2, y2) ∈ E(N) such that xi ∈ T (N) and

yi ∈ R(N) for i = 1, 2. If x1 = x2, then x1 becomes a leaf in N − {e1, e2}. If y1 = y2, then
y1 has in-degree 0 in N − {e1, e2}.

Each edge (t, r) in N corresponds an edge in B(N), where t ∈ T (N) and r ∈ R(N).
For a subset E ⊆ E(N) ∩ (T (N)×R(N)), we set EB(N) to be the subset of edges in B(N)
that correspond one-to-one to the edges in E. The two facts stated above imply that N −E
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Figure 2: (A) A binary phylogenetic network N , in which reticulation vertexes are repre-
sented by shaded circles. (B) The bipartite graph B(N) defined for N .

is a tree network with the same leaves as N if and only if E is a matching covering every
reticulation vertex in N and hence if and only if EB(N) is a complete matching from X to Y
in B(N).

Since B(N) is bipartite, by Hall’s theorem, there is a complete matching from X to
Y if and only if |X ′| ≤ |N(X ′)| for any X ′ ⊆ X, where N(X ′) is the set of vertexes that are
adjacent with some vertexes in X ′, and so if and only if there is a complete matching from
C ∩X to C ∩ Y for every connected component C in B(N).

A vertex xi in B(N) is of degree 1 if it corresponds a type-1 reticulation vertex; it
is of degree 2 if it corresponds a type-2 reticulation vertex. Each vertex y in B(N) has also
degree 1 or degree 2, as the tree vertex represented y has one or two reticulation children.
Therefore, every connected component is either a cycle or a path in B(N). Let C be a
connected component in B(N). If C is a cycle, C has a perfect matching from C ∩ X to
C ∩ Y . If C is a path, it contains exactly two degree-1 vertexes w′ and w′′. There is a
complete matching from C ∩X to C ∩ Y if and only if either w′ or w′′ is not in X.

Since the degree-1 vertexes in X correspond one-to-one to the type-1 reticulation
vertexes, we conclude that N is tree-based if and only if the correspondences of every two
type-1 reticulation vertexes are not connected in B(N). 2

Let u, v ∈ R(N). We say that they are connected by a zigzagy path if there is
a sequence of vertexes u = x0, x1, . . . , x2k = v such that the vertexes alternate between
reticulation vertexes and their tree vertex parents (Figure 3).

Recalled that B(N) is a disjoint union of paths and cycles. Obviously, each cycle
contains only type-2 reticulation vertexes. Each type-1 reticulation vertex appears only at
the ends of a path. Therefore, by Lemma 1, we have the following theorem.

Theorem 1 Let N be a binary network. N is tree-based if and only if (i) there is no type-0
reticulation vertex in N , and (i) no two type-1 vertexes are connected by a zigzagy path.
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Figure 3: (A) A maximal zigzag path between two type-1 reticulation vertexes r1 and r2.
(B) A maximal zigzagy path between a type-1 reticulation vertex r1 and a type-2 reticulation
vertex r2. (C) A maximal zigzagy path between two type-2 reticulaiton vertexes r1 and r2.
(D) A zigzagy cycle consisting of only type-2 reticulation vertexes.

Theorem 1 implies the following algorithm for determining whether a network is tree-
based or not.

Input A binary network N ;

1. If it contains a type-0 reticulation vertex, output “N is not tree-based”;
2. Do until there is no unmarked type-1 reticulation vertex {

Select an unmarked type-1 reticulation vertex u;
If the zigzagy path starting at u terminates at an

unmarked type-1 reticulation vertex, output “N is not tree-based”;
else mark u;

3. Output “N is tree-based”;

Obviously, the above algorithm is correct. Since any two zigzagy paths are disjoint,
it takes a linear time.

Universal tree-based networks

It is known that there exists a network that displays every phylogenetic tree on the
same species (see, for example, Francis and Steel, 2015). However, a tree may be displayed,
but not as a base, in a phylogenetic network. Therefore, the following question is posed by
Francis and Steel:

Does there exist a network U over X such that every phylogenetic tree over X
is a base for U for every large set of species X?



For |X| = 3, such a universal network exists (Francis and Steel, 2015). We shall present
such a universal tree-based network U for every X in the rest of this section.

Let X = {1, 2, · · · ,m}, m ≥ 3. The network U on X is divided into the upper and
lower parts (Figure 4A) and (Figure 4B). The upper part is denoted by Uupper. It is a
(2m− 3)-row network in which:

• the root ρU is the unique vertex in the row 1, written t01;

• the row 2i comprises i+ 1 tree vertexes ti1, ti2, · · · , ti(i+1) for i = 1, 2, ...,m− 2;

• the row 2i+ 1 comprises i reticulation vertexes ri1, ri2, · · · , rii for i = 1, 2, ...,m− 2;

• the edge set comprises (Figure 5A):

(middle diagonal edges) (tij, rij), (ti(j+1), rij), 1 ≤ j ≤ i, 1 ≤ i ≤ m− 2,

(side edges) (ti1, t(i+1)1), (ti(i+1), t(i+1)(i+2)), 0 ≤ i ≤ m− 3,

(middle vertical edges) (rij, t(i+1)(j+1)), 1 ≤ j ≤ i, 1 ≤ i ≤ m− 3.

Figure 4C shows how the rooted binary tree (`1, (((`2, `3), `4), `5)) is displayed in
Uupper, in which the i-th leaf counted from left corresponds to `i, i ≤ 5.

Lemma 2 Let m ≥ 3 and let U2m−4 consist of the vertexes in the top 2m− 4 rows and the
edges between them in Uupper. Then, every phylogenetic tree T over {1, 2, · · · ,m − 1} is a
base of U2m−4, where the j-th leaf (counted from left ) in T is mapped to t(m−2)j for each j
from 1 to m− 1.

The lower part Ulower is essentially a rearrangeable network with m inputs and m
outputs. A network with m inputs and m outputs is said to be rearrangeable if for any
one-to-one mapping π of the inputs to the outputs, we can construct vertex-disjoint paths
in the network linking the ith input and the π(i)th output for 1 ≤ i ≤ m (Leighton, 1992).
Figure 4D shows the vertex-disjoint paths for the mapping π = (45312) in Ubtm, where
m = 5 and π maps i to the i-th digit inside the parentheses.

Ulower is a mimic of the rearrangeable network derived from the well-known even-odd
transposition sorting process in a linear array (Leighton, 1992, page 139). The topological
structure of Ulower is slightly different for odd m and even m. We use Ri to denote the row
i in U .

When m is odd, Ulower is divided into 2m+ 1 rows R2m−2, R2m−1, · · · , R4m−2.

• For each i = m− 1,m+ 1, · · · , 2m− 2, R2i comprises m− 1 tree vertexes tij (1 ≤ j ≤
m− 1); R2i+1 comprises m− 1 reticulation vertexes rij (1 ≤ j ≤ m− 1).

• For each i = m,m+ 2, · · · , 2m− 3, R2i comprise m− 1 tree vertexes tij (2 ≤ j ≤ m);
R2i+1 comprises m− 1 reticulation vertexes rij (2 ≤ j ≤ m).

• The last row R4m−2 comprises m leaves labelled with j (1 ≤ j ≤ m) from left to right.
For sake of convenience, the j-th leaf is denoted by t(2m−1)j.
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Figure 4: The universal network U with five leaves. (A) The upper part Uupper. (B) The
lower part Ulower. The square dot arrows represent edges between the two parts. (C) The
display of a rooted binary tree with five unlabeled leaves in Uupper, where the round dot
arrows represent the removed edges. In this display, the i-th leaf (counted from left) in the
tree is mapped to the i-th vertex in the last row. (D) The vertex-disjoint paths for the
one-to-one mapping π = (45312), where π maps i to the i-th digit inside the parentheses.



The edges in Ulower are formally presented in Appendix A. Briefly, for i = m− 1 + 2j and
0 ≤ j ≤ (m − 1)/2, the m − 1 vertexes in R2i and R2i+1 are paired and connected in a
butterfly, as shown in Figure 5B.

For i = m + 2j and 0 ≤ j ≤ (m− 3)/2 the m− 1 vertexes in R2i and R2i+1 are also
paired and connected in a butterfly, as shown in Figure 5C.

For 0 ≤ j ≤ (m−3)/2, the first reticulation vertex r(m−1+2j)1 in R2m+4j−1 is connected
with the first tree vertex t(m+1+2j)1 in R2m+4j+1, whereas them-th reticulation vertex r(m+2j)m

in R2m+4j+1 is connected with the m-th tree vertex t(m+2+2j)m in R2m+4j+4.
Finally, there are also m edges between the vertexes at the bottom of Uupper and

the corresponding vertexes on the top in Ulower, which are represented by the square dot
arrows drawn between Figure 4A and 4B.

When m is even, the structure of Ulower is presented in Appendix A.

Lemma 3 Let π be any one-to-one mapping on {1, 2, · · · ,m}.
(i) When m is odd, there are m vertex-disjoint paths connecting t(m−1)j and t(2m−1)π(j)

(1 ≤ j ≤ m− 1) and tmm and t(2m−1)π(m) in Ulower.
(ii) When m is even, there are m vertex-disjoint paths connecting t(m−1)j and t(2m−1)π(j)

(1 ≤ j ≤ m) in Ulower.
Additionally, every vertex in Ulower appears in one of the m paths mentioned in (i) and (ii).

Theorem 2 Every phylogenetic tree over X is a base for U .

Proof. Essentially, we shall prove that for each tree T , its topological structure can be
displayed in Uupper and the leaves are then rearranged in Ulower according to the order
they appear in T . We just prove the theorem for odd m. (The case m is even is similar.)

Consider a phylogenetic tree T over X = {1, 2, · · · ,m}. Assume that its leaves are
listed as `1, `2, · · · , `m from left to right in T , where 1 ≤ `j ≤ m for each j. Then, there
exists j0 such that `j0 and `j0+1 are siblings. Let p0 be their parent. Then, T − {`j0 , `j0+1}
has m− 1 leaves including p0.

By Lemma 2, T − {`j0 , `j0+1} is displayed as a base in the first 2m − 4 rows such
that (i) `j (1 ≤ j < j0) is mapped to t(m−2)j, (ii) po is mapped to t(m−2)j0 , and (iii) `j
(j0 + 1 < j ≤ m) is mapped to t(m−2)(j−1). Note that all the leaves in T − {`j0 , `j0+1} are
one-to-one assigned to the tree vertexes in R2m−4.

The display of T −{`j0 , `j0+1} can be extended into a display of T only by (i) reassign
`j to t(m−1)j for j < j0, (ii) assign `j0 and `j0+1 to t(m−1)j0 and t(m−1)(j0+1), (iii) reassign `j
to t(m−1)j for j0 + 1 < j ≤ m − 1, and (iv) assign `m to tmm. It can be verify that such a
display of T does not have any dummy vertex.

Define π = (`1`2 · · · `m). Clearly, π is a one-to-one mapping over X, which maps i to
`i. By Lemma 2, there are vertex-disjoint paths that cover every vertex and connect t(m−1)j
and t(2m−1)`j (1 ≤ j ≤ m − 1) and tmm to t(2m−1)`m in Ulower. Combining the display of T
and the m disjoint paths, we conclude that T is a tree base for U . 2

Concluding Remarks
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Figure 5: (A) The edges between vertexes in the rows 2i, 2i + 1 and 2(i + 1) in the upper
part Utop for each i. (B) The edges between vertexes in the rows 2i and 2i+ 1 in the lower

part Utop for i = m− 1,m+ 1, · · · , 2m− 2. (C) The edges between the vertexes in the rows
2i and 2i+ 1 in the lower part for i = m,m+ 2, · · · , 2m− 3. Here m is odd.

The universal tree-based network we have constructed has an important implication.
A class of phylogenetic networks is said to be complete if every collection of phylogenetic
trees on a set of species can be displayed in a phylogenetic network on the same species in
the class. We use UX to denote the universal tree-based network on X for a set X of species.
Since every phylogenetic tree on X is displayed in UX , the class of tree-based networks is
complete.

In contrast, the class of reticulation visible networks is incomplete as well as its
subclasses such as galled trees (Wang et al., 2001) and galled networks. In fact, since a
reticulation visible network over X has at most 4(n− 1) reticulation vertexes (Gambette et
al., 2015), more than 24(n−1) different trees on X cannot all be displayed in a reticulation
visible phylogenetic tree simultaneously.

The completeness suggests that tree based networks are widespread in the entire space
of phylogenetic networks. The simple linear time algorithm for testing whether a phylogenetic
network is tree-based or not, given here, is definitely useful for further examination of the
distribution of tree based networks.

Finally, tree-based networks are a natural model for horizontal gene transfer. They
also compose a large complete class. Therefore, it is important to study how to reconstruct
a tree-based network with as few reticulation vertexes as possible from a set of gene trees or
from sequence data in future.



Acknowledgment

The author would like to thank Mike Steel for useful discussion on tree based networks.
The work was financially supported by Singapore Ministry of Education Academic Research
Fund MOE2014-T2-1-155.

*

References

[1] Dagan, T., Martin, W.F., The tree of one percent. Genome Biol., 7: 118, 2006.

[2] Doolittle, W.F., Phylogenetic classification and the universal tree. Science, 284: 2124-
2128, 1999.

[3] Doolittle, W.F., Bapteste, E., Pattern pluralism and the tree of life hypothesis. Proc. the
Nat’l Acad. Sci. (USA), 104: 2043–2049, 2007.

[4] Fontaine, M.C. et al., Extensive introgression in a malaria vector species complex revealed
by phylogenomics, Science, 347: 1258524. DOI: 10.1126/science.1258524

[5] Francis, A.R., Steel, M., Which phylogenetic networks are merely trees with additional
arcs? Syst. Biol., in press.

[6] Gambette, P., Gunawan, A.D.M., Labarre, A., Vialette, S., Zhang, L., Locating a tree in
a phylogenetic network in quadratic time, In Proc. of the 19th Int’l Conf. Res. in Comput.
Mol. Biol. (RECOMB), pp. 96–107, 2015.

[7] Huson, D. H., Rupp, R., Scornavacca, C., Phylogenetic Network: Concepts, Algorithms,
and Applications. Cambridge University Press, Cambridge, UK, 2011

[8] Huson,D.H, Kloepper,T.H., Beyond galled trees - decomposition and computation of
galled networks. In Proc. of the 11th Int’l Conf. Res. in Comput. Mol. Biol. (RECOMB),
pp. 211–225, 2007.

[9] Leighton, F.T. (1992). Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo, California, 1992.

[10] McBreen, K., Lockhart, P.J., Reconstructing reticulate evolutionary histories of plants.
Trends Plant Sci., 11: 103–122, 2006.

[11] Nakhleh, L., Computational approaches to species phylogeny inference and gene tree
reconciliation, Trends in Ecol. Evol., 28: 719–728, 2013.

[12] Smets, B.F., Barkay, T., Horizontal gene transfer: perspectives at a crossroads of sci-
entific disciplines. Nature Rev. Microbiol., 3: 675–678, 2006.



[13] Treangen, T.J., Rocha, E.P., Horizontal transfer, not duplication, drives the ex- pansion
of protein families in prokaryotes. PLoS Genetics, 7: e1001284, 2011.

[14] van Iersel, L., Different topological restrictions of rooted phylogenetic networks. which
make biological sense? http://phylonetworks.blogspot.co.nz/2013/03/different-topology,
2013.

[15] Wang, L., Zhang, K., Zhang, L., Perfect phylogenetic networks with recombination. J.
Comp. Biol., 8: 69–78, 2001.

http://phylonetworks.blogspot.co.nz/2013/03/different-topology


Appendix A

Proof of Lemma 2.

Let m ≥ 3. Recall that Ri denotes the set of vertexes in the row i in U . Let U2k−2 be the
subnetwork consisting of vertexes in the top 2(k − 1) rows in Uupper, k = 2, 3, · · · ,m − 2.
The leaves in U2k−2 are all the tree vertexes t(k−1)1, t(k−1)2, · · · , t(k−1)k in R2k−2. Note that
U2m−4 = Uupper − {r(m−2)j | 1 ≤ j ≤ m− 2}.

For each k, a vertex in a subtree of U2k−2 is said to be a dummy leaf if it is not in
the lowest level R2k−2, but has out-degree 0. We prove that every phylogenetic tree with k
leaves is a base of U2k−2 by induction on k.

When k = 2, N2 is the unique binary tree with 2 leaves. Therefore, the statement is
true.

Assume the statement is true for k − 1. Let T be a phylogenetic tree with k leaves.
The depth of a vertex in a rooted tree is defined to be the number of edges in the

path from the root to the vertex in the tree. The depth of the root is set to 0. Let `′ be the
leaf with the largest depth in T . The sibling `′′ of `′ must be also a leaf of T . (If `′′ were not
a leaf, its children would have a greater depth than `′.) We use p(`

′) to denote the parent of
`′ and `′′ in T . Clearly, T ′ = T − {`′, `′′} is a tree with j − 1 leaves, one of which is p(`′).

By the induction hypothesis, T ′ is a base of U2(k−1)−2 = U2k−4. Let E ′ ⊂ E(U2k−4)
such that U2k−4 − E ′ is a subdivision of T ′ in which there is no dummy leaf and all the
leaves of T ′ correspond one-to-one the tree vertexes t(k−2)j (1 ≤ j ≤ k− 2) in the row R2k−4.
Assume that p(`′) corresponds to t(k−2)j0 for some 1 ≤ j0 ≤ k − 2.

Define E ′′ = {(t(k−2)j, r(k−2)j) | j < j0} ∪ {(t(k−2)j, r(k−2)(j−1)) | j > j0}. Then,
Nk − E ′ − E ′′ is a subdivision of T in which (i) there is no dummy leaf, (ii) the jth leaf
corresponds to the jth vertex t(k−1)j in R2k−2 for j < j0, (iii) `′ and `′′ correspond to t(k−1)j0
and t(k−1)(j0+1), respectively, and (iv) the jth leaf corresponds to the jth vertex t(k−1)(j+1) in
R2k−2 for j ≥ j0 + 1.

This concludes the proof of Lemma 2. 2

The structure of Ulower

Whenm is odd, Ulower consists of the last 2m+1 rows in U : R2m−2, R2m−1, · · · , R4m−2.
For i = m−1,m+1, · · · , 2m−2, R2i comprises m−1 tree vertexes tij (1 ≤ j ≤ m−1).

R2i+1 comprises m− 1 reticulation vertexes rtj (1 ≤ j ≤ m− 1).
For i = m,m + 2, · · · , 2m − 3, R2i comprises m − 1 tree vertexes tij (2 ≤ j ≤ m);

R2i+1 comprises m− 1 reticulation vertexes m− 1 rij (2 ≤ j ≤ m).
The last row R4m−2 comprises m leaves each labelled with `j (1 ≤ j ≤ m) from left

to right. For sake of convenience, the j-th leaf is denoted by t(2m−1)j.



The edges in Ulower include:

(Vertical edges) (tij, rij), 1 ≤ j ≤ m− 1, i = m− 1 + 2k, 0 ≤ k ≤ (m− 1)/2;

(tij, rij), 2 ≤ j ≤ m, i = m+ 2k, 0 ≤ k ≤ (m− 3)/2;

(rij, t(i+1)j), 2 ≤ j ≤ m− 1, m− 1 ≤ i ≤ 2m− 3;

(ri1, t(i+2)1), i = (m− 1) + 2k, 0 ≤ k ≤ (m− 3)/2;

(rim, t(i+2)m), i = m+ 2k, 0 ≤ k ≤ (m− 3)/2;

(r(2m−2)1, t(2m−1)1);

(Diagonal edges) (tij, ri(j+1)), (ti(j+1), rij),

j = 1, 3, · · · ,m− 2, i = m− 1 + 2k, 0 ≤ k ≤ (m− 1)/2;

(tij, ri(j+1)), (ti(j+1), rij),

j = 2, 4, · · · ,m− 1, i = m+ 2k, 0 ≤ k ≤ (m− 3)/2;

Finally, there are m edges connecting m vertexes at the bottom in Uupper and the corre-
sponding vertexes in Ulower:

(t(m−2)1, t(m−1)1), (t(m−2)(m−1), tmm),

(r(m−2)j, t(m−1)(j+1)), j = 1, 2, · · · ,m− 2.

When m is even, Nlower also has 2m + 1 levels, each has m or m − 2 vertexes, as
shown in Figure 6.

For i = m− 1,m+ 1, · · · , 2m− 3, R2i comprises m tree vertexes tij (1 ≤ j ≤ m), and
R2i+1 comprises m reticulation vertexes rij (1 ≤ j ≤ m).

For i = m,m+ 2, · · · , 2m− 2, R2i comprises m− 2 tree vertexes tij (2 ≤ j ≤ m− 1),
and R2i+1 comprises m− 2 reticulation vertexes rij (2 ≤ j ≤ m− 1).

The lasr row R4m−2 consists of m leaves with labels `j from left to right, denoted by
t(2m−1)j (1 ≤ j ≤ m).

Ulower contains the following edges:

(Vertical edges) (tij, rij), (rij, t(i+1)j),

2 ≤ j ≤ m− 1, m− 1 ≤ i ≤ 2(m− 1);

(ri1, t(i+2)1), (rim, t(i+2)m),

i = m− 1 + 2k, 0 ≤ k ≤ (m− 2)/2;

(Diagonal edges) (tij, ri(j+1)), (ti(j+1), rij),

j = 1, 3, · · · ,m− 1,

i = m− 1 + 2k, 0 ≤ k ≤ (m− 2)/2;

(tij, ri(j+1)), (ti(j+1), rij),

j = 2, 4, · · · ,m− 2,

i = m+ 2k, 0 ≤ k ≤ (m− 2)/2.



L1: 𝑡0𝑗
L2: 𝑡1𝑗
L3: 𝑟1𝑗
L4: 𝑡2𝑗
L5: 𝑟2𝑗

L6: 𝑡3𝑗
L7: 𝑟3𝑗

L8: 𝑡4𝑗
L9: 𝑟4𝑗

L10: 𝑡5𝑗
L11: 𝑟5𝑗

L12: 𝑡6𝑗
L13: 𝑟6𝑗

L14: 𝑡7𝑗

𝑅2

𝑅4

𝑅6

𝑅8

𝑅10

𝑅12

𝑅14

Figure 6: A universal network U with four leaves. Here, the square dot arrows represent the
edges between the upper and lower parts.

Finally, there are m edges connecting the m vertexes in Uupper and the corresponding
vertexes in Ulower:

(t(m−2)1, t(m−1)1), (t(m−2)(m−1), t(m−1)m),

(r(m−2)j, t(m−1)(j+1)), j = 1, 2, · · · ,m− 2.

Proof of Lemma 3.

We first consider the case m is even. We define m + 1 vectors Si on {1, 2, · · · ,m}
(0 ≤ i ≤ m). We use Si[j] to denote its j-th component for 1 ≤ j ≤ m.

Initially, S0 = (π(1), π(2), · · · , π(m)). After Si is computed, we compute Si+1 as
follows.

When i is even, Si+1 is defined by:

Si+1[j] =

{
Si[j] if Si[j] ≤ Si[j + 1];

Si[j + 1] if Si[j] > Si[j + 1]

and

Si+1[j + 1] =

{
Si[j + 1] if Si[j] ≤ Si[j + 1];

Si[j] if Si[j] > Si[j + 1]



for j = 1, 3, · · · ,m− 1.
When i is odd, St+1 is defined by:

Si+1[1] = Si[1],

Si+1[m] = Si[m],

Si+1[j] =

{
Si[j] if Si[j] ≤ Si[j + 1];

Si[j + 1] if Si[j] > Si[j + 1]

and

Si+1[j + 1] =

{
Si[j + 1] if Si[j] ≤ Si[j + 1];

Si[j] if Si[j] > Si[j + 1]

for j = 2, 4, · · · ,m− 2.
Since we emulate the odd-even transposition sorting on an array with m elements

(Leighton, 1992, page 129), Sm = (π(1), π(2), · · · , π(m)). Using Si’s, we obtain m vertex-
disjoint paths connecting t(m−1)i and t(2m−1)π(i) as follows:

For k = m− 1,m+ 1, · · · , 2m− 3, and j = 1, 3, · · · ,m− 1, delete the vertical edges
(tkj, rkj) and (tk(j+1), rk(j+1)) if Sk−m+2[j] = Sk−m+1[j + 1] and Sk−m+2[j + 1] = Sk−m+1[j];
and delete the diagonal edges (tkj, rk(j+1)) and (tk(j+1), rkj) if Sk−m+2[j] = Sk−m+1[j] and
Sk−m+2[j] = Sk−m+1[j].

For k = m,m + 2, · · · , 2m − 2, and j = 2, 4, · · · ,m − 2, delete the vertical edges
(tkj, rkj) and (tk(j+1), rk(j+1)) if Sk−m+2[j] = Sk−m+1[j + 1] and Sk−m+2[j + 1] = Sk−m+1[j],
and delete the diagonal edges (tkj, rk(j+1)) and (tk(j+1), rkj) if Sk−m+2[j] = Sk−m+1[j] and
Sk−m+2[j] = Sk−m+1[j].

Since Sm = (π(1), π(2), · · · , π(m)), the resulting m vertex-disjoint paths connect
t(m−1)j to t(2m−1)π(i) and pass through every vertex in Ulower.

For the case m is odd, we can prove the statement similarly. 2


